REINFORCEMENT LEARNING VIA LINEAR PROGRAMMING

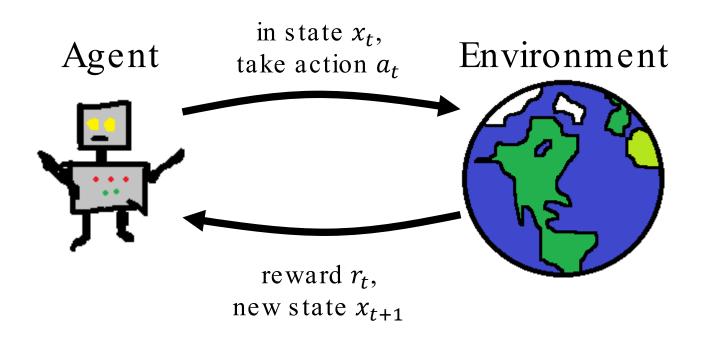
Gergely Neu

Universitat Pompeu Fabra *Barcelona*

OUTLINE

- Reinforcement Learning
- Markov Decision Processes and the Bellman equations
- Linear Programming for MDPs
- A new breed of RL algorithms
 - Relative entropy policy search
 - Primal-dual methods

REINFORCEMENT LEARNING



Goal: learn behaviors that maximize reward on the long run

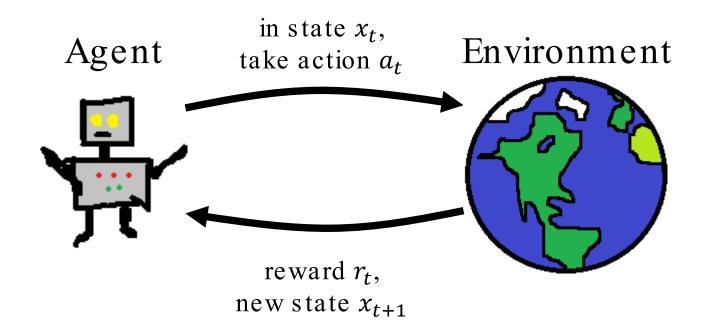
REINFORCEMENT LEARNING

Why is this interesting?

• Model captures many

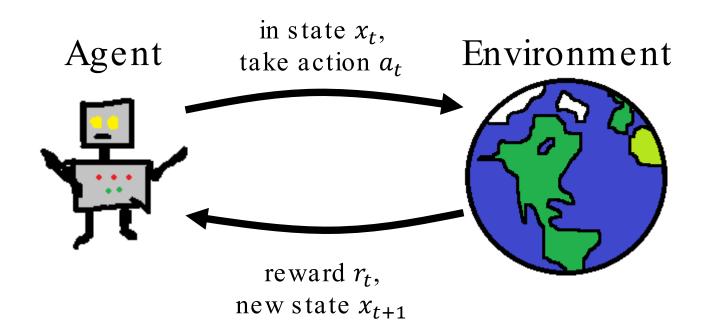
problems!

important real-world



Goal: learn behaviors that maximize reward on the long run

REINFORCEMENT LEARNING



Goal: learn behaviors that maximize reward on the long run

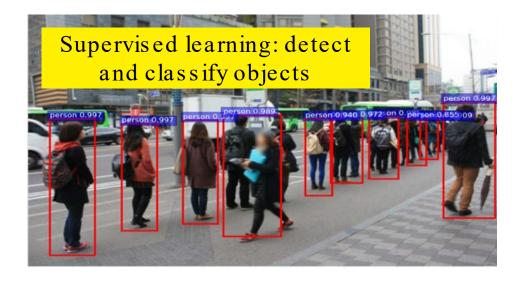
Why is this interesting?

• Model captures many important real-world problems!

Why is this challenging?

- Environment dynamics typically unknown
- Actions influence longterm performance

REINFORCEMENT LEARNING VS. SUPERVISED LEARNING



REINFORCEMENT LEARNING VS. SUPERVISED LEARNING

RL BREAKTHROUGHS

Superhuman performance in

- Atari (Mnih et al., 2013)
- Go (Silver et al., 2016, 2017)
- Starcraft (Silver et al., 2019) Emerging applications in
- Robotics
- Autonomous driving
- Dialogue management
- Recommendation systems,...

RL BREAKTHROUGHS

Superhuman performance in

- Atari (Mnih et al., 2013)
- Go (Silver et al., 2016, 2017)
- Starcraft (Silver et al., 2019) Emerging applications in
- Robotics
- Autonomous driving
- Dialogue management
- Recommendation systems,...

nature Reinforcement This talk: taking a fresh look at the foundations

MIT Technology Review

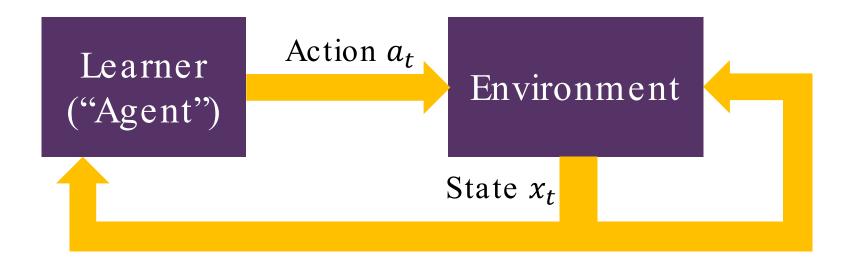
Microsoft

Research

MARKOV DECISION PROCESSES

and the Bellman equations

MARKOV DECISION PROCESSES



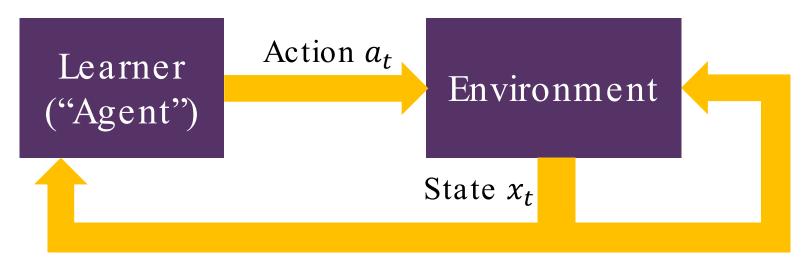
Learner:

- •Observe state x_t , take action a_t
- Obtain reward $r(x_t, a_t)$

Environment:

•Generate next state $x_{t+1} \sim P(\cdot | x_t, a_t)$

MARKOV DECISION PROCESSES



Learner:

- •Observe state x_t , take action a_t
- Obtain reward $r(x_t, a_t)$

Environment:

•Generate next state $x_{t+1} \sim P(\cdot | x_t, a_t)$

Goal: maximize discounted return $R = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t})\right]$ from initial state $x_{0} \sim v_{0}$ $\gamma \in (0, 1)$

BASIC MDP FACTS

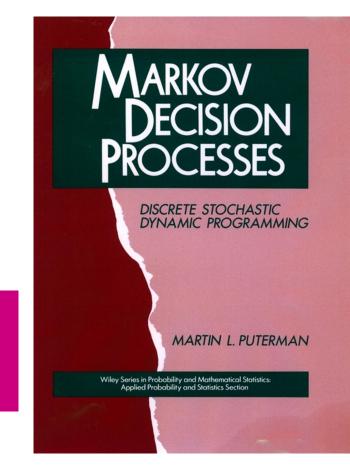
- Markov property: x_{t+1} only depends on (x_t, a_t)
- Stationarity: $P(\cdot | x_t, a_t)$ doesn't depend on t

enough to consider stationary policies $\pi(a|x) = \mathbb{P}[a_t = a|x_t = x]$

• Many other beautiful properties :

•

- There is a deterministic optimal policy
- Simultaneous optimality regardless of v_0



The Bellman optimality equations $Q^*(x,a) = r(x,a) + \gamma \mathbb{E}[\max_{a'} Q^*(x',a') | x, a]$

The Bellman optimality equations $Q^*(x,a) = r(x,a) + \gamma \mathbb{E}[\max_{a'} Q^*(x',a') | x, a]$ value of taking
action a in state ximmediate rewardexpected future value

The Bellman optimality equations $Q^{*}(x,a) = r(x,a) + \gamma \mathbb{E}[\max_{a'} Q^{*}(x',a') | x,a]$ value of taking immediate reward expected future value action a in state xOptimal policy can be extracted as: $\pi(a|x) = \begin{cases} 1 & \text{if } a = \arg\max_{a'} Q^*(x, a') \\ 0 & \text{otherwise} \end{cases}$

The Bellman optimality equations $Q^{*}(x,a) = r(x,a) + \gamma \mathbb{E}[\max_{a'} Q^{*}(x',a') | x,a]$ value of taking immediate reward expected future value action a in state xOptimal policy can be extracted as: Richard Bellman (1954): $\pi(a|x) = \begin{cases} 1 & \text{if } a = \arg\max_{a'} Q^*(x, a') \\ 0 & \text{otherwise} \end{cases}$ Solution can be found via

"Dynamic Programming"

The Bellman optimality equations $Q^*(x,a) = r(x,a) + \gamma \mathbb{E}[\max_{a'} Q^*(x',a') | x, a]$ value of taking
action a in state ximmediate rewardexpected future value

Challenges for reinforcement learning:

- Expectation over next state x' cannot be computed explicitly when transition dynamics P are unknown!
- No hope of finding exact solution when state space is large!

The Recipe for Modern RL Algorithms • Parametrize a set of Q-functions: $Q_{\theta}: \theta \to \mathbb{R}^{X \times A}$

(e.g., via neural networks) • Find a Q-function that approximately solves the Bellman equations, e.g., by minimizing the "squared Bellman error":

 $\mathcal{L}(Q) = \mathbb{E}_{(x,a)\sim\mu} \left| \left(r(x,a) + \gamma \mathbb{E}[\max_{a'} Q(x',a') | x,a] - Q(x,a) \right)^2 \right|$

Add lots of heuristics to stabilize training

• Add lots of computational resources and bake on 1000 GPUs until ready

The Recipe for Modern RL Algorithms

· Panamatuiza a pat of A functional O. A DXXA

Don't try this at home!

- This objective is
 - non-convex
 - non-smooth
 - impossible to evaluate
- Does this process converge anywhere at all?
- If it converges, does it lead to a good policy??

• Add hate at computational resources and help 1000 CP/le r^{2} add $\mathcal{L}(Q) = \mathbb{E}_{(x,a)\sim\mu} \left(r(x,a) + \gamma \mathbb{E}[\max_{a'} Q(x',a') | x,a] - Q(x,a) \right)^{2}$

LNEAR PROGRAMMING FOR **MDPs**

Observe: the discounted return of policy π is $R_{\gamma}^{\pi} = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t})]$

$$R_{\gamma}^{\pi} = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t})]$$

= $\sum_{t=0}^{\infty} \gamma^{t} \mathbf{E}_{\pi} [r(x_{t}, a_{t})]$

$$R_{\gamma}^{\pi} = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t})]$$

= $\sum_{t=0}^{\infty} \gamma^{t} \mathbf{E}_{\pi} [r(x_{t}, a_{t})]$
= $\sum_{t=0}^{\infty} \gamma^{t} \sum_{x,a} \mathbf{P}_{\pi} [x_{t} = x, a_{t} = a] r(x, a)$

$$R_{\gamma}^{\pi} = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t})]$$

= $\sum_{t=0}^{\infty} \gamma^{t} \mathbf{E}_{\pi} [r(x_{t}, a_{t})]$
= $\sum_{t=0}^{\infty} \gamma^{t} \sum_{x,a} \mathbf{P}_{\pi} [x_{t} = x, a_{t} = a] r(x, a)$
= $\sum_{x,a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi} [x_{t} = x, a_{t} = a] r(x, a)$

$$R_{\gamma}^{\pi} = \mathbf{E}_{\pi} [\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t})]$$

$$= \sum_{t=0}^{\infty} \gamma^{t} \mathbf{E}_{\pi} [r(x_{t}, a_{t})]$$

$$= \sum_{t=0}^{\infty} \gamma^{t} \sum_{x,a} \mathbf{P}_{\pi} [x_{t} = x, a_{t} = a] r(x, a)$$

$$= \sum_{x,a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi} [x_{t} = x, a_{t} = a] r(x, a)$$

$$\stackrel{\text{def}}{=} \mu_{\pi} (x, a)$$

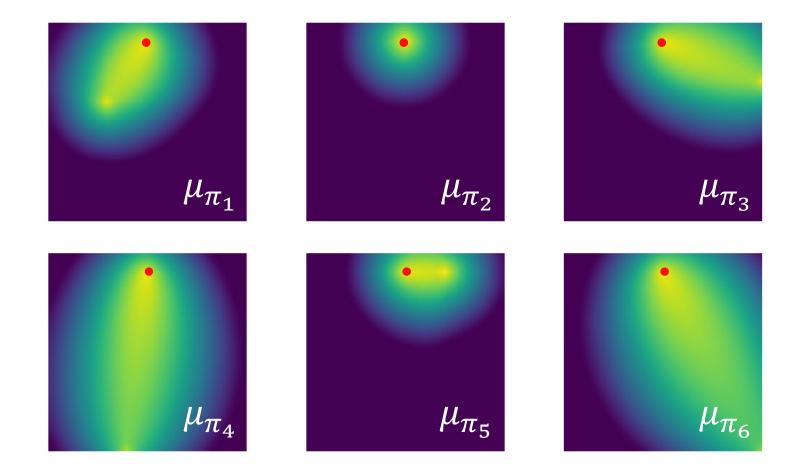
discounted occupancy measure of π

Observe: the discounted return of policy π is

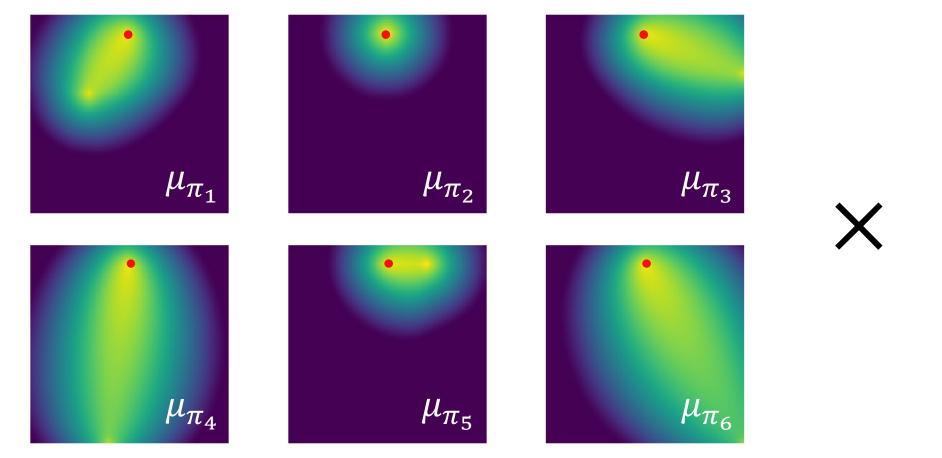
$$R_{\gamma}^{\pi} = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, a_{t}) \right]$$

= $\sum_{t=0}^{\infty} \gamma^{t} \mathbf{E}_{\pi} [r(x_{t}, a_{t})]$
= $\sum_{t=0}^{\infty} \gamma^{t} \sum_{x,a} \mathbf{P}_{\pi} [x_{t} = x, a_{t} = a] r(x, a)$
= $\sum_{x,a} \sum_{t=0}^{\infty} \gamma^{t} \mathbf{P}_{\pi} [x_{t} = x, a_{t} = a] r(x, a)$
 $\stackrel{\text{def}}{=} \mu_{\pi} (x, a)$

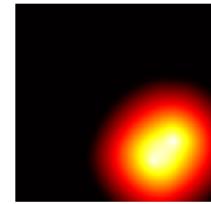
Discounted return is linear in μ_{π} : $R_{\gamma}^{\pi} = \langle \mu_{\pi}, r \rangle \stackrel{\text{def}}{=} \sum_{x,a} \mu_{\pi}(x, a) r(x, a)$



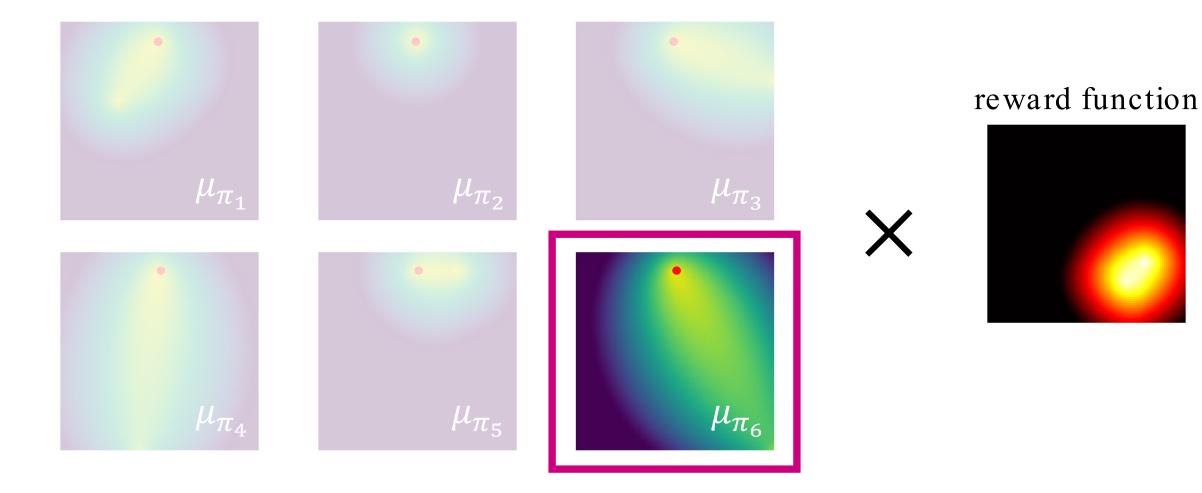
• = initial state



reward function

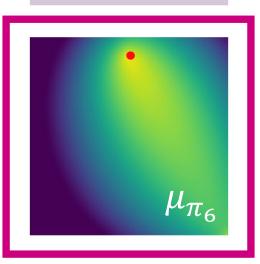


• = initial state



• = initial state

How can we do this efficiently over the set of all policies?



 μ_{π_3}

reward function



THE SET OF OCCUPANCY MEASURES

For any policy π , the occupancy measure satisfies

$$\sum_{a} \mu_{\pi}(x, a) = \nu_0(x) + \gamma(P\mu_{\pi})(x)$$

THE SET OF OCCUPANCY MEASURES

For any policy π , the occupancy measure satisfies

$$\sum_{a} \mu_{\pi}(x, a) = \nu_{0}(x) + \gamma(P\mu_{\pi})(x)$$
occupancy of state
$$X_{t} = x$$
initial state distribution
$$X_{t+1} = x$$

THE SET OF OCCUPANCY MEASURES

For any policy π , the occupancy measure satisfies

$$\sum_{a} \mu_{\pi}(x, a) = \nu_{0}(x) + \gamma(P\mu_{\pi})(x)$$
occupancy of state
$$X_{t} = x$$
initial state distribution
$$X_{t+1} = x$$

Theorem (Manne 1960)

 μ is a valid occupancy measure if and only if it satisfies $E\mu = \gamma P\mu + \nu_0$

"Bellman flow constraints"

THE LP FORMULATION

Linear Programming for MDPs maximize $\langle \mu, r \rangle$ subject to $E^{\top}\mu = \gamma P^{\top}\mu + \nu_0$

THE LP FORMULATION

Linear Programming for MDPs maximize $\langle \mu, r \rangle$ subject to $E^{\top}\mu = \gamma P^{\top}\mu + \nu_0$

• Optimal policy π^* can be extracted from solution μ^* as

$$\pi^*(a|x) = \frac{\mu^*(x,a)}{\sum_a' \mu^*(x,a')}$$

• Basic solutions correspond to deterministic policies

THE LP FORMULATION

Linear Programming for MDPs maximize $\langle \mu, r \rangle$ subject to $E^{\top}\mu = \gamma P^{\top}\mu + \nu_0$

• Optimal policy π^* can be extracted from solution μ^* as $\mu^*(x, q)$

$$\pi^*(a|x) = \frac{\mu^*(x,a)}{\sum_a' \mu^*(x,a')}$$

• Basic solutions correspond to deterministic policies

Dual Linear Program for MDPsminimize $\langle v_0, V \rangle$ subject to $EV \ge r + \gamma PV$

• Dual solution related to Bellman eqns as $Q^* = r + \gamma PV^*$

PROS AND CONS

Why is this useful?

- Defining optimality is very simple: no value functions, no fixed-point equations, no nonlinearity... just a single numerical objective!
 Easily comprehensible with an optimization background
 - Powerful tool for developing algorithms

PROS AND CONS

Why is this useful?

- Defining optimality is very simple: no value functions, no fixed-point equations, no nonlinearity... just a single numerical objective!
- Easily comprehensible with an optimization background
 - Powerful tool for developing algorithms

"Why don't they teach this in school?!?"
Need to ensure μ*(x, a) > 0 to extract policy :'(
Temporal aspect is a bit abstract
Number of variables and constraints is large

A BIT OF HISTORY

- •Manne (1960), de Ghellinck (1960), Denardo (1970)
 - Formulated the primal LP and showed equivalence to Bellman eqns.
- Schweitzer & Seidmann (1982)
 - Proposed a relaxation to reduce the number of constraints
 - (also proposed the squared Bellman error objective!)
- De Farias & Van Roy (2003)
 - Analyzed the reduction of [SS82]
 - Inspired some follow-up work in RL [dFvR05,PZ09,PTPZ10,DFM12,LBS17]

A BIT OF HISTORY

- •Manne (1960), de Ghellinck (1960), Denardo (1970)
 - Formulated the primal LP and showed equivalence to Bellman eqns.
- Schweitzer & Seidmann (1982)
 - Proposed a relaxation to reduce the number of constraints
 - (also proposed the squared Bellman error objective!)
- De Farias & Van Roy (2003)
 - Analyzed the reduction of [SS82]
 - Inspired some follow-up work in RL [dFvR05,PZ09,PTPZ10,DFM12,LBS17]

Common theme:

analyze quality of approximate solution & solve the LP with generic solver

A BIT OF HISTORY

- •Manne (1960), de Ghellinek (1960), Depardo (1970)
 - Formulated the primal
- •Schweitzer & Seidma
 - Proposed a relaxation
 - (also proposed the squ
- De Farias & Van Roy (2003)
 - Analyzed the reduction of [SS82]
 - Inspired some follow-up work in RL [dFvR05,PZ09,PTPZ10,DFM12,LBS17]

Is this the best

we can do?

Common theme:

analyze quality of approximate solution & solve the LP with generic solver

A NEW BREED OF RLALGORITHMS

RELATIVE ENTROPY POLICY SEARCH Peters, Mülling, Altün (2010)

Linear Program for MDPs maximize $\langle \mu, r \rangle$ subject to $E^{\top}\mu = \gamma P^{\top}\mu + \nu_0$

• add regularization for tractable solution

• relax constraints like [SS85]

RELATIVE ENTROPY POLICY SEARCH

Peters, Mülling, Altün (2010)

REPS (primal form) maximize $\langle \mu, r \rangle - \frac{1}{\eta} \text{KL}(\mu | \mu_0)$ subject to $\Psi^{\mathsf{T}} E^{\mathsf{T}} \mu = \gamma \Psi^{\mathsf{T}} P^{\mathsf{T}} \mu + \Psi^{\mathsf{T}} \nu_0$

• add regularization for tractable solution

• relax constraints like [SS85]

RELATIVE ENTROPY POLICY SEARCH

Peters, Mülling, Altün (2010)

REPS (primal form) maximize $\langle \mu, r \rangle - \frac{1}{\eta} \text{KL}(\mu | \mu_0)$ subject to $\Psi^{\mathsf{T}} E^{\mathsf{T}} \mu = \gamma \Psi^{\mathsf{T}} P^{\mathsf{T}} \mu + \Psi^{\mathsf{T}} \nu_0$

add regularization for tractable solutionrelax constraints like [SS85]

Lagrangian duality

 $\begin{aligned} & \mathsf{REPS} \text{ (dual form)} \\ \bullet \quad \theta^* = \min_{\theta} \frac{1}{\eta} \log \mathbb{E}_{x,a \sim \mu_0} \Big[e^{\eta(r(x,a) + \gamma \mathbb{E}[\Psi \theta(x')|x,a] - \Psi \theta(x))} \Big] \\ \bullet \quad \mu^* = \mu_0 \circ e^{\eta(r + \gamma P \Psi \theta^* - E \Psi \theta^*)} \end{aligned}$

RELATIVE ENTROPY POLICY SEARCH

Peters, Mülling, Altün (2010)

REPS (primal form) maximize $\langle \mu, r \rangle - \frac{1}{\eta} \text{KL}(\mu | \mu_0)$ subject to $\Psi^{\top} E^{\top} \mu = \gamma \Psi^{\top} P^{\top} \mu + \Psi^{\top} \nu_0$ • add regularization for tractable solution Lagrangian duality • relax constraints like [SS85] Unconstrained convex **REPS** (dual form) optimization problem! • $\theta^* = \min_{\alpha} \frac{1}{n} \log \mathbb{E}_{x, \alpha \sim \mu_0} \left[e^{\eta(r(x, \alpha) + \gamma \mathbb{E}[\Psi \theta(x') | x, \alpha] - \Psi \theta(x))} \right]$

•
$$\mu^* = \mu_0 \circ e^{\eta (r + \gamma P \Psi \theta^* - E \Psi \theta^*)}$$

RELATIVE ENTROPY POLICY SEARCH Peters, Mülling, Altün (2010)

REPS (primal form) maximize $\langle \mu, r \rangle - \frac{1}{\eta} \text{KL}(\mu | \mu_0)$ subject to $\Psi^{\top} E^{\top} \mu = \gamma \Psi^{\top} P^{\top} \mu + \Psi^{\top} \nu_0$

add regularization for tractable solutionrelax constraints like [SS85]

Lagrangian duality

Unconstrained convex optimization problem!

•
$$\theta^* = \min_{\theta} \frac{1}{\eta} \log \mathbb{E}_{x,a \sim \mu_0} \left[e^{\eta(r(x,a) + \gamma \mathbb{E}[\Psi\theta(x')|x,a] - \Psi\theta(x))} \right]$$

• $\mu^* = \mu_0 \circ e^{\eta(r + \gamma P \Psi\theta^* - E \Psi\theta^*)}$ Intractable due to unknown *P* in exponent!

REPS (dual form)

RELATIVE ENTROPY POLICY SEARCH Peters, Mülling, Altün (2010)

REPS (primal form) maximize $\langle \mu, r \rangle - \frac{1}{\eta} \text{KL}(\mu | \mu_0)$ subject to $\Psi^{\top} E^{\top} \mu = \gamma \Psi^{\top} P^{\top} \mu + \Psi^{\top} \nu_0$

Can we do better? Lagrangian duality Unconstrained convex optimization problem!

•
$$\theta^* = \min_{\theta} \frac{1}{\eta} \log \mathbb{E}_{x,a \sim \mu_0} \left[e^{\eta(r(x,a) + \gamma \mathbb{E}[\Psi \theta(x')|x,a] - \Psi \theta(x))} \right]$$

• $\mu^* = \mu_0 \circ e^{\eta(r + \gamma P \Psi \theta^* - E \Psi \theta^*)}$ Intractable due to unknown *P* in exponent!

LOGISTIC Q-LEARNING

Bas-Serrano, Curi, Krause & Neu (2021)

Q-REPS (primal form)
maximize
$$\langle \mu, r \rangle - \frac{1}{\eta} \operatorname{KL}(\mu | \mu_0) - \frac{1}{\alpha} H(u | u_0)$$

subject to $E^{\mathsf{T}} \mu = \gamma P^{\mathsf{T}} u + \nu_0$
 $\Phi^{\mathsf{T}} \mu = \Phi^{\mathsf{T}} u$

- Lagrangian decomposition to introduce "Q"
- Composite regularization

LOGISTIC Q-LEARNING

Bas-Serrano, Curi, Krause & Neu (2021)

$$\begin{array}{ll} \textbf{Q-REPS}_{1}(\text{primal form}) \\ \text{maximize} & \langle \mu, r \rangle - \frac{1}{-} \text{KL}(\mu | \mu_{0}) - \frac{1}{\alpha} H(u | u_{0}) \\ \text{subject to} & E^{\top} \mu = \gamma P^{\top} u + \nu_{0} \\ \Phi^{\top} \mu = \Phi^{\top} u \end{array}$$

• Lagrangian decomposition to introduce "Q"

Lagrangian duality

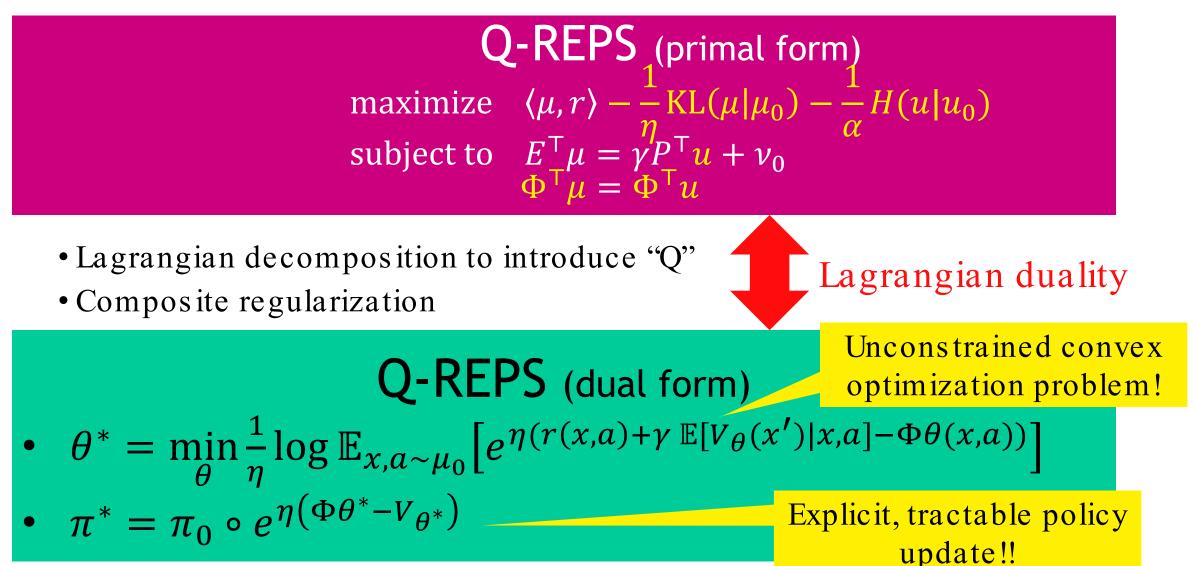
• Composite regularization

Q-REPS (dual form)

• $\theta^* = \min_{\theta} \frac{1}{\eta} \log \mathbb{E}_{x,a \sim \mu_0} \left[e^{\eta(r(x,a) + \gamma \mathbb{E}[V_{\theta}(x')|x,a] - \Phi \theta(x,a))} \right]$ • $\pi^* = \pi_0 \circ e^{\eta(\Phi \theta^* - V_{\theta^*})}$

LOGISTIC Q-LEARNING

Bas-Serrano, Curi, Krause & Neu (2021)



A PRINCIPLED LOSS FUNCTION Bas-Serrano, Curi, Krause & Neu (2021)

The Logistic Bellman Error (LBE) $\mathcal{G}(Q) = \frac{1}{\eta} \log \mathbb{E}_{(x,a) \sim \mu_0} \left[e^{\eta(r(x,a) + \gamma \mathbb{E}[V_Q(x')|x,a] - Q(x,a))} \right]$

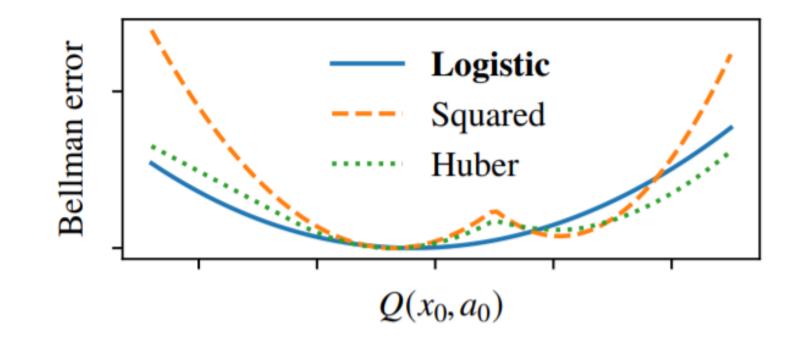
- •Convex and smooth (composition of two monotone convex functions that are smooth)
- •2-Lipschitz w.r.t. ℓ_{∞} -norm:

 $\left\|\nabla_{Q}\mathcal{G}_{k}(Q)\right\|_{1}\leq 2$

• Easy to estimate reliably using sample transitions

A PRINCIPLED LOSS FUNCTION Bas-Serrano, Curi, Krause & Neu (2021)

The Logistic Bellman Error (LBE) $\mathcal{G}(Q) = \frac{1}{\eta} \log \mathbb{E}_{(x,a) \sim \mu_0} \left[e^{\eta (r(x,a) + \gamma \mathbb{E}[V_Q(x')|x,a] - Q(x,a))} \right]$



STRONG GUARANTEES! Bas-Serrano, Curi, Krause & Neu (2021)

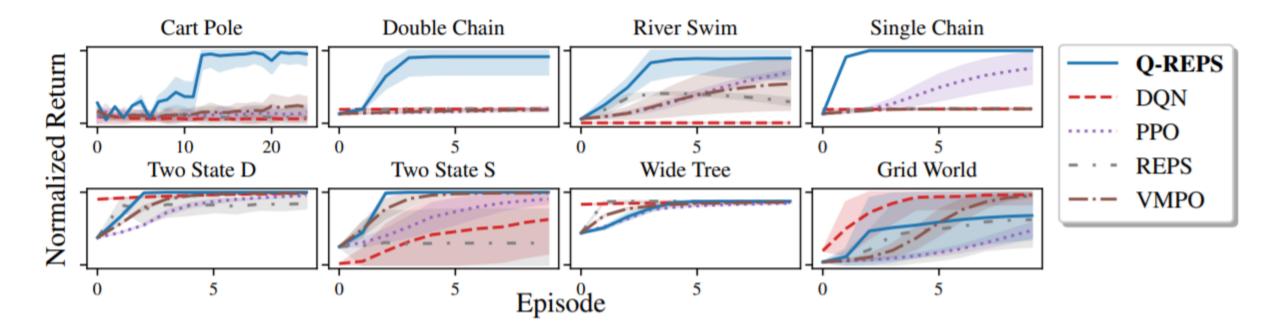
"Theorem" $|\mathcal{G}_k(\theta) - \hat{\mathcal{G}}_k(\theta)| = O(\eta)$ "LBE can be estimated with small bias" Impossible for squared BE!

"Theorem"

$$\operatorname{err}_{K} \leq O\left(\frac{1}{K}\sum_{k=1}^{K}\left(\varepsilon_{k} + \sqrt{\eta\varepsilon_{k}}\right)\right)$$

"Optimization errors ε_k have moderate long-term impact" Comparable with best results for SBE!

AND IT WORKS!!!

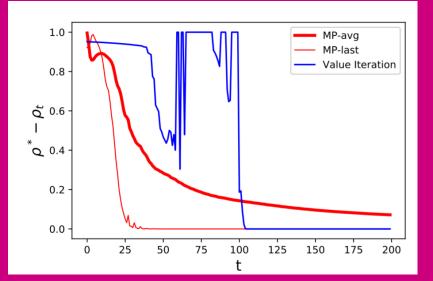


- Primal-dual methods:
 - consider equivalent saddle-point problem $\max_{\mu} \min_{V} \langle \mu, r + \gamma PV - EV \rangle + \langle v_0, V \rangle$
 - solve with primal-dual gradient descent
 - scale up by parametrizing $\mu = U\lambda$ and $V = \Psi\theta$

• Primal-dual methods:

- consider equivalent saddle-point problem max min $\langle \mu, r + \gamma PV - EV \rangle + \langle v_0, V \rangle$
- solve with primal-dual gradient descent
- scale up by parametrizing $\mu = U\lambda$ and $V = \Psi\theta$
- Implementable with only sample access to *P*
- State of the art method for small MDPs
- When features Φ and Ψ are chosen well:
 - guaranteed convergence to optimum
 - excellent empirical performance

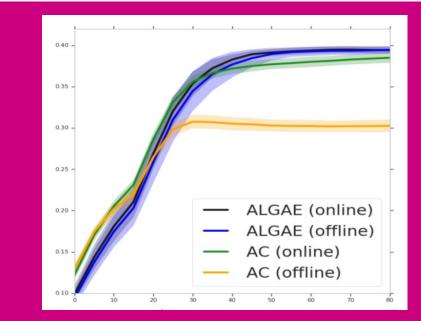
Wang (2017), Chen, Li & Wang (2018), Bas-Serrano & Neu (2019)



- •Off-policy RL: fixed data set sampled from μ_0
- "DualDICE" reparametrization of primal variables: $\xi(x, a) = \mu(x, a)/\mu_0(x, a)$
- •Leads to new primal-dual and REPS-like algorithms

- •Off-policy RL: fixed data set sampled from μ_0
- "DualDICE" reparametrization of primal variables: $\xi(x,a) = \mu(x,a)/\mu_0(x,a)$
- •Leads to new primal-dual and REPS-like algorithms
- Incredibly practical methods for off-policy value estimation!
- Even works without knowledge of $\mu_0!!$

Nachum et al. (2019a,2019b), Nachum & Dai (2020), Zhang et al. (2020), Dai et al. (2020)



SUMMARY

- •LP formulation is currently obscure but holds huge potential!
- Solid alternative to fixed-point computation
- •Historical limitations are mostly due to rigid interpretation
- •Useful for deriving new algorithms & analyzing existing ones
- •Lots of work left to do!
 - Room for improvement both in theory & practice
 - Existing toolbox not as well-developed as for other RL approaches

SUMMARY

- •LP formulation is currently obscure but holds huge potential!
- Solid alternative to fixed-point computation
- •Historical limitations are mostly due to rigid interpretation
- •Useful for deriving new algorithms & analyzing existing ones
- •Lots of work left to do!
 - Room for improvement both in theory & practice
 - Existing toolbox not as well-developed as for other RL approaches

THANKS!!

PRIMAL-DUAL METHODS

Primal LP for MDPs maximize $\langle \mu, r \rangle$ subject to $E^{\top}\mu = \gamma P^{\top}\mu + \nu_0$ Dual LP for MDPsminimize $\langle v_0, V \rangle$ subject to $EV \ge r + \gamma PV$

PRIMAL-DUAL METHODS

Primal LP for MDPs maximize $\langle \mu, r \rangle$ subject to $E^{\top}\mu = \gamma P^{\top}\mu + \nu_0$ Dual LP for MDPsminimize $\langle v_0, V \rangle$ subject to $EV \ge r + \gamma PV$

Equivalent via Lagrangian duality

Primal-dual formulation for MDPs $\max_{\mu} \min_{V} \langle \mu, r + \gamma PV - EV \rangle + \langle v_0, V \rangle$

SADDLE-POINT OPTIMIZATION

Primal-dual formulation for MDPs $\max_{\mu} \min_{V} \langle \mu, r + \gamma PV - EV \rangle + \langle v_0, V \rangle$

Can be solved via iterative updates:

•
$$V_{k+1} = V_k - \eta ((\gamma P - E)^\top \mu_k + \nu_0)$$

• $\mu_{k+1} = \mu_k \circ e^{\eta (r + \gamma P V_k - E V_k)}$

SADDLE-POINT OPTIMIZATION

Primal-dual formulation for MDPs $\max_{\mu} \min_{V} \langle \mu, r + \gamma PV - EV \rangle + \langle v_0, V \rangle$

Can be solved via iterative updates:

•
$$V_{k+1} = V_k - \eta ((\gamma P - E)^\top \mu_k + \nu_0)$$

• $\mu_{k+1} = \mu_k \circ e^{\eta (r + \gamma P V_k - E V_k)}$

•Gradients are expectations under μ_k \Rightarrow efficient stochastic implementation

SADDLE-POINT OPTIMIZATION

Primal-dual formulation for MDPs $\max_{\mu} \min_{V} \langle \mu, r + \gamma PV - EV \rangle + \langle v_0, V \rangle$

Can be solved via iterative updates:

•
$$V_{k+1} = V_k - \eta ((\gamma P - E)^\top \mu_k + \nu_0)$$

• $\mu_{k+1} = \mu_k \circ e^{\eta (r + \gamma P V_k - E V_k)}$

•Gradients are expectations under μ_k \Rightarrow efficient stochastic implementation

> State of the art sample complexity for solving "small" MDPs! (Wang 2017)

- Problem: intractable for large state spaces due to large number of constraints &variables!
- Idea: parametrize μ and V via linear functions!
 - $\mu_{\lambda} = \Psi \lambda$ for some feature matrix $\Psi \in \mathbb{R}^{(\mathcal{X} \times \mathcal{A}) \times n}$
 - $V_{\theta} = \Phi \theta$ for some feature matrix $\Phi \in \mathbb{R}^{\mathcal{X} \times m}$

Primal-dual formulation for MDPs $\max_{\mu} \min_{V} \langle \mu, r + \gamma PV - EV \rangle + \langle v_0, V \rangle$

- Problem: intractable for large state spaces due to large number of constraints &variables!
- Idea: parametrize μ and V via linear functions!
 - $\mu_{\lambda} = \Psi \lambda$ for some feature matrix $\Psi \in \mathbb{R}^{(\mathcal{X} \times \mathcal{A}) \times n}$
 - $V_{\theta} = \Phi \theta$ for some feature matrix $\Phi \in \mathbb{R}^{\mathcal{X} \times m}$

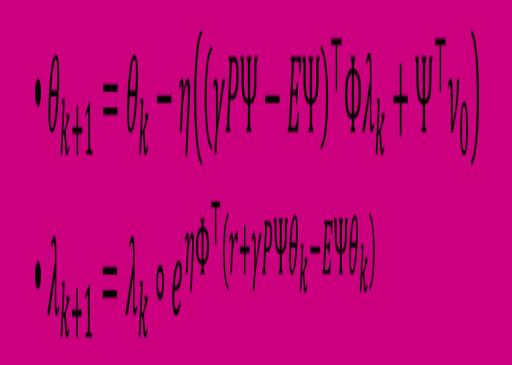
Relaxed primal-dual formulation for MDPs $\max_{\lambda} \min_{\theta} \langle \lambda, \Phi^{\top}(r + \gamma P \Psi \theta - E \Psi \theta) \rangle + \langle \nu_0, \Psi \theta \rangle$

- Problem: intractable for large state spaces due to large number of constraints & variables!
- Idea: parametrize μ and V via linear functions!
 - $\mu_{\lambda} = \Psi \lambda$ for some feature matrix $\Psi \in \mathbb{R}^{(\mathcal{X} \times \mathcal{A}) \times n}$
 - $V_{\theta} = \Phi \theta$ for some feature matrix $\Phi \in \mathbb{R}^{\mathcal{X} \times m}$

Relaxed primal-dual formulation for MDPs $\max_{\lambda} \min_{\theta} \langle \lambda, \Phi^{\top}(r + \gamma P \Psi \theta - E \Psi \theta) \rangle + \langle \nu_0, \Psi \theta \rangle$

- Implementable with only sample access to transition function *P*
- When features Φ and Ψ are chosen well:
 - guaranteed convergence to optimum
 - excellent empirical performance

Chen, Li & Wang (2018), Bas-Serrano & Neu (2019)



•
$$\theta_{k+1} = \theta_k - \eta ((\gamma P \Psi - E \Psi)^{\mathsf{T}} \Phi \lambda_k + \Psi^{\mathsf{T}} \nu_0)$$

• $\lambda_{k+1} = \lambda_k \circ e^{\eta \Phi^{\mathsf{T}} (r + \gamma P \Psi \theta_k - E \Psi \theta_k)}$

- What if we can't sample from μ_k ?
- •Off-policy RL: fixed data set sampled from μ_0

- What if we can't sample from μ_k ?
- •Off-policy RL: fixed data set sampled from μ_0
- DualDICE reparametrization (Nachum & Dai, 2020): rewrite primal variables as $\xi(x, a) = \mu(x, a)/\mu_0(x, a)$

- What if we can't sample from μ_k ?
- •Off-policy RL: fixed data set sampled from μ_0
- DualDICE reparametrization (Nachum & Dai, 2020): rewrite primal variables as $\xi(x,a) = \mu(x,a)/\mu_0(x,a)$

Primal-dual formulation for MDPs $\max_{\mu} \min_{V} \langle \mu, r + \gamma PV - EV \rangle + \langle v_0, V \rangle$

- What if we can't sample from μ_k ?
- •Off-policy RL: fixed data set sampled from μ_0
- DualDICE reparametrization (Nachum & Dai, 2020): rewrite primal variables as $\xi(x,a) = \mu(x,a)/\mu_0(x,a)$

DualDICE formulation for MDPs $\max_{\xi} \min_{V} \langle \xi, \mu_0 \circ (r + \gamma PV - EV) \rangle + \langle v_0, V \rangle$

- What if we can't sample from μ_k ?
- •Off-policy RL: fixed data set sampled from μ_0
- DualDICE reparametrization (Nachum & Dai, 2020): rewrite primal variables as $\xi(x,a) = \mu(x,a)/\mu_0(x,a)$

DualDICE formulation for MDPs $\max_{\xi} \min_{V} \langle \xi, \mu_0 \circ (r + \gamma PV - EV) \rangle + \langle \nu_0, V \rangle$

Incredibly practical methods for off-policy value estimation! Even works without knowledge of μ_0 !!