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OUTLINE

* Remforcement Learning
* Markov Decision Processes and
the Bellman equations
* Linear Programming for MDPs
* Anew breed of RL algorithms
* Relative entropy policy search
* Primal-dual methods
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REINFORCEMENT LEARNING
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typically unknown
* Actions mfluence long-
Goal: learn behaviors that term performance
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MARKOV DECISION PROCESSES

Learner Action a :
e s Environment
(“Agent™)

State X

Goal:

maximize discounted return

Learner:
*Observe state x;, take action a;
*Obtain reward r(x;, a;)

R =E lz yir(x,, at)]
t=0

*Generate next state x;pq ~ P(- |x;, a; ) s bR Y SN TR ol
y € (0,1)

Environment:




BASIC MDP FACTS MARKOV

DECISION
PROCESSES

*Markov property: x;,, only depends on (x;, a;)
e Stationarity: P(- |x¢ a;) doesn’t depend on t

enough to consider stationary policies

n(alx) = Pla; = a|x; = x]

*Many other beautiful properties:
* There 1s a deterministic optimal policy
* Simultaneous optimality regardless of v,
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The Bellman optimality equations
Q*(x,a) =r(x,a) + yE[max_ Q*(x',a’) |x,a]
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The Bellman optimality equations
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Richard Bellman (1954):

Solution can be found via
“Dynamic Programming”




SOLVING MDPs: THE CANONICAL WAY

The Bellman optimality equations
Q*(x,a) =r(x,a) + yE[max_ Q*(x',a’) |x,a]

4 N \

value of taking
action a in state x

immediate reward expected future value

Challenges for reinforcement learning:
* Expectation over next state x’' cannot be computed explicitly

when transition dynamics P are unknown!
* No hope of finding exact solution when state space 1s large!
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[ ke /Pw{m for Modern FL ﬂ‘/yaﬁ/b‘ém

l oo () - [ n):
Don’t try this at home! |

* This objective 1s
® °* NON-convex
* non-smooth

* impossible to evaluate
* Does this process converge
anywhere at all?
e If it converges, does 1t lead to a
good policy??

.#d/ %)7‘() n/ n/)mhnf[#]h//ﬂ/l‘@:(’ﬂﬂ/‘&@:(’ /)un/ [-/ 4/)/)0 ﬂp//o L 4

,,,4
L\(Q) = E¢x a)~p (r(x, a) + yElmax Q(x’,a’) |x, aA] — Q(x,a) ]




LINEAR
PROGRAMMING FOR
MDPs
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A LINEAR REFORMULATION

Observe: the discounted return of policy T 1s
R} = Ep[X{Zo v r(xs ar)]

= Yieo ¥ Exlr(x;, ap)]

= YoV’ Yixa PrlX: = x,a; = alr(x, a)

— Zx,a Z?):O ytPn[xt =x,a; = aj r(x, a)

= Ug(x,a)

discounted occupancy measure of 7



A LINEAR REFORMULATION

Observe: the discounted return of policy T 1s
Ry =E; [Yizo v r(xe ap)l

= YoV En[r(xa)]

= YoV’ Yixa PrlX: = x,a; = alr(x, a)

— Zx,a 21(?():0 VtPTc[xt = X, = al r(x,a)

def

Y
— .un(x: Cl)
Discounted return 1s linear m p,:

R)C[ = (Ur, T) = Zx,a .un(x: a)r(x,a)
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EXAMPLE: 2D STATE SPACE

How can we do this efficiently

o reward function
over the set of all policies?

® —jnitial state
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THE SET OF OCCUPANCY MEASURES

For any policy T, the occupancy measure satisfies

> (@) = vo(x) + ¥ (Phtz) ()

occupancy of state I \

occupancy of next state

Xe=x . .. .
‘ initial state distribution Xiy1 =X

Theorem (Manne 1960)

u1s a valid occupancy measure if and only 1f 1t satisfies
Eu =yPu+ v,

“Bellman flow constraints’
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THE LP FORMULATION

Linear Programming for MDPs

maximize (u,r)
subjectto ETu=yPTu+v,

* Optimal policy ®* can be extracted from solution u™ as
u(x,a)

Yal (x,a")

* Basic solutions correspond to deterministic policies

m*(alx) =

e Dual solution related to
Bellman eqns as

Q*=r+yPV"




PROS AND CONS

Why is this useful?

* Defining optimality 1s very simple: no value functions, no
fixed-point equations, no nonlinearity...
just a single numerical objective!
* Easily comprehensible with an optimization background
 Powerful tool for developing algorithms



PROS AND CONS

Why is this useful?
* Defining optimality 1s very simple: no value functions, no
fixed-point equations, no nonlinearity...
just a smgle numerical objective!
* Easily comprehensible with an optimization background
 Powerful tool for developing algorithms

“Why don’t they teach this in school?!?”
e Need to ensure u*(x,a) > 0 to extract policy :’(

* Temporalaspectis a bit abstract
* Number of variables and constraints 1s large




A BIT OF HISTORY

*Manne (1960),de Ghellinck (1960), Denardo (1970)

* Formulated the primal LP and showed equivalence to Bellman eqns.

*Schweitzer & Seidmann (1982)

* Proposed a relaxation to reduce the number of constraints
* (also proposed the squared Bellman error objective!)

*De Farias &Van Roy (2003)
* Analyzed the reduction of [SS82]
* Inspired some follow-up work in RL [dFVvR05,PZ09,PTPZ10,DFM12,LBS17]
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* Formulated the prima IS thi the b e S t

*Schweitzer &Seidma
* Proposed a relaxation
* (also proposed the sq We Can dO?
*De Farias & Van Roy (2003)

* Analyzed the reduction of [SS82]
* Inspired some follow-up work in RL [dFVvR05,PZ09,PTPZ10,DFM12,LBS17]

Common theme:

analyze quality of approximate solution &
solve the LP with generic solver
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RELATIVE ENTROPY POLICY SEARCH

Peters, Miilling, Altiin (2010)

Linear Program for MDPs

maximize (u,r)
subjectto ETu=yPTu+v,

* add regularization for tractable solution
erelax constraints like [SS85]
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RELATIVE ENTROPY POLICY SEARCH

Peters, Miilling, Altiin (2010)

REPS (primal form)
1

maximize (u,r) ——KL(u|uy)
_ i
subjectto W'ETu=y¥Y'PTu+ ¥y,

Lagrangian duality

Can we do better?

Unconstrained convex
optimization problem!

Intractable due to
unknown P m exponent!




LOGISTIC Q-LEARNING

Bas-Serrano, Curi, Krause & Neu (2021)
Q- REPS 1(primal formf

maximize (u,7) — —KL(ulno) — —H(uluo)

subjectto E'u =yPTu + v,
d'u=>p'u

*Lagrangian decomposition to introduce “Q”
* Composite regularization
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LOGISTIC Q-LEARNING

Bas-Serrano, Curi, Krause & Neu (2021)
Q- REPS 1(primal formf

maximize (u,7) — —KL(ulno) — —H(uluo)

subjectto E'u=yPTu+v,
OTu=>o"u

e lagrangian decomposition to introduce “Q” : .

SHans! bOs! Q Lagrangian duality
* Composite regularization
Unconstrained convex

optimization problem!

Explicit, tractable policy
update!!



A PRINCIPLED LOSS FUNCTION

Bas-Serrano, Curi, Krause &Neu (2021)

The Logistic Bellman Error (LBE)

1 !
9(Q) = 7108 Exa)~ug [en(r ) +y EVo(xlxal-Q(xa)]

*Convex and smooth (composition of two monotone convex
functions that are smooth)

*2-Lipschitz w.r.t. £ ,-norm:

VoG (@], <2

*Easyto estimate reliably using sample transitions



A PRINCIPLED LOSS FUNCTION

Bas-Serrano, Curi, Krause & Neu (2021)

The Logistic Bellman Error (LBE)

1 !
9(Q) = 7108 Exa)~ug [en(r ) +y EVo(xlxal-Q(xa)]

' —— Logistic /
\ ~== Squared /

Bellman error
>
e




- STRONG GUARANTEES!

Bas-Serrano, Curi, Krause & Neu (2021)

“Theorem”

“Theorem”

“LBE can be estimated with
small bias”
Impossible for squared BE!

“Optimization errors &
have moderate long-term
impact”
Comparable with best
results for SBE!



Normalized Return

AND IT WORKS!!!
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OTHER LP-BASED METHODS

*Primal-dual methods:
*consider equivalent saddle-point problem
max mVin (u,r + yPV — EV) + (v,, V)
U

*solve with primal-dual gradient descent
*scale up by parametrizing u = UAdand V = W0
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*Primal-dual methods:
*consider equivalent saddle-point problem
max mVin (u,r + yPV — EV) + (v,, V)
U

*solve with primal-dual gradient descent
*scale up by parametrizing y = Udand V = W6

* Implementable with only sample access to P
 State of the art method for small MDPs
* When features & and W are chosen well:
 guaranteed convergence to optimum
* excellent empirical performance

Wang (2017), Chen, Li &Wang (2018), Bas-Serrano &Neu (2019) TE T o kB oW

t




OTHER LP-BASED METHODS 2

* Off-policy RL: fixed data set sampled from pg

*“DualDICE” reparametrization of primal variables:
$(x,a) = ulx, a)/po(x, a)
*Leads to new primal-dual and REP S-like algorithms



OTHER LP-BASED METHODS 2

* Off-policy RL: fixed data set sampled from u,

*“DualDICE” reparametrization of primal variables:
§(x,a) = ulx, a)/po(x, a)

*Leads to new primal-dual and REPS-like algorithms

 Incredibly practical methods for off-policy
value estimation!
 Even works without knowledge of uy!!

ALGAE (online) -
ALGAE (offline)

Nachum et al. (2019a,2019b), Nachum & Da1(2020), AC (online
Zhang et al. (2020), Daiet al. (2020) AC (offline)




SUMMARY

*LP formulation 1s currently obscure but holds huge potential!
*Solid alternative to fixed-pomnt computation

*Historical imitations are mostly due to rigid interpretation
*Useful for deriving new algorithms &analyzing existing ones

[ ots of work left to do!

* Room for improvement both in theory &practice
* Existing toolbox not as well-developed as for other RL approaches
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PRIMAL-DUAL METHODS

Primal LP for MDPs

maximize {(u,r)
subjectto E'u=yPTu+v,

Equivalent via Lagrangian duality

Primal-dual formulation for MDPs
max mVin (U, v + yPV — EV) + (vy, V)
U
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SADDLE-POINT OPTIMIZATION

Primal-dual formulation for MDPs

max mVin (U, v + yPV — EV) + (vy, V)
U

Can be solved via iterative updates:

*Visr = Vie = n((yP — E) Tpy, + vy)
° .uk+1 — ‘uk o 677(7"+YPVk—EVk)

*Gradients are expectations under uy
= efficient stochastic implementation

State of the art sample complexity for

solving “small” MDPs!
(Wang 2017)




SCALING UP

*Problem: mtractable for large state spaces due to large number
of constraints & variables!

*ldea: parametrize u and V via linear functions!
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SCALING UP

*Problem: mtractable for large state spaces due to large number
of constraints &variables!
*ldea: parametrize u and V via linear functions!
e 11, = WA for some feature matrix ¥ € RXxAxn

*Vy = @0 for some feature matrix ® € R**™

Relaxed primal-dual formulation for MDPs

max mein (A, @T(r + yPYO — EWO)) + {(v,, ¥O)

*Ors1 =0 —((yPY — EP) T DA, + PTvy)

T —
'Ak+1 — Ak o eN® (r+yPW¥0,—EW¥Y0})



SCALING UP

 Implementable with only sample access to
transition function P
* When features @ and W are chosen well:
 guaranteed convergence to optimum
* excellent empirical performance

Chen, L1 &Wang (2018), Bas-Serrano &Neu (2019)

*Ops1 =0 —n((yP¥Y — E¥)T DA, + ¥ Tvy)

T —
'Ak+1 — Ak o eN® (r+yP¥Y0;,—EY0Oy,)
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OFF-POLICY LEARNING

* What if we can’t sample from u;?
*Off-policy RL: fixed data set sampled from pg
* DualDICE reparametrization (Nachum & Da1,2020):

rewrite primal variables as &(x,a) = u(x,a)/uy(x, a)

DualDICE formulation for MDPs

mgaX mVin (51 Ho ° (T' + ]/PV — EV)) + (V(),V>

Incredibly practical methods for off-policy value estimation!

Even works without knowledge of uy!!
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