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OUTLINE
• Reinforcement Learning 
• Markov Decis ion Proces s es  and 

the Bellman equations
• Linear Programming for MDPs
• A new breed of RL algorithms

• Relative entropy policy s earch
• Primal-dual methods
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Goal: learn behaviors  that 
maximize reward on the long run

Why is  this  interes ting?
• Model captures  many 

important real-world 
problems !

Why is  this  challenging?
• Environment dynamics  

typically unknown
• Actions  influence long-

term performance
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and clas s ify objects

Reinforcement learning: 
detect and clas s ify objects

AND 
take actions
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Emerging applications  in
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• Autonomous  driving
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• Go (Silver et al., 2016, 2017)
• Starcraft (Silver et al., 2019)
Emerging applications  in
• Robotics
• Autonomous  driving
• Dialogue management
• Recommendation s ys tems ,…

This talk:
taking a fresh look at 

the foundations
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MARKOV DECISION PROCESSES

EnvironmentLearner
(“Agent”)

State 𝑥𝑥𝑡𝑡

Action 𝑎𝑎𝑡𝑡

Goal:
maximize dis counted return

𝑅𝑅 = 𝔼𝔼 �
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑟𝑟 𝑥𝑥𝑡𝑡,𝑎𝑎𝑡𝑡

from initial s tate 𝑥𝑥0 ∼ 𝜈𝜈0
𝛾𝛾 ∈ 0,1



•Markov property: 𝑥𝑥𝑡𝑡+1 only depends  on 𝑥𝑥𝑡𝑡,𝑎𝑎𝑡𝑡
•Stationarity: 𝑃𝑃(⋅ |𝑥𝑥𝑡𝑡,𝑎𝑎𝑡𝑡) doesn’t depend on 𝑡𝑡

•Many other beautiful properties :
• There is  a  determinis tic optimal policy
• Simultaneous  optimality regardles s  of 𝜈𝜈0
• …

BASIC MDP FACTS

enough to cons ider s tationary policies
𝜋𝜋 𝑎𝑎 𝑥𝑥 = ℙ 𝑎𝑎𝑡𝑡 = 𝑎𝑎 𝑥𝑥𝑡𝑡 = 𝑥𝑥⇒
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SOLVING MDPS: THE CANONICAL WAY

Richard Bellman (1954): 
Solution can be found via 
“Dynamic Programming” 

Challenges for reinforcement learning:
• Expectation over next s tate 𝑥𝑥′ cannot be computed explicitly 

when trans ition dynamics  𝑃𝑃 are unknown!
• No hope of finding exact solution when s tate space is  large!



The Recipe for Modern RL Algorithms
• Parametrize a set of Q-functions: 𝑄𝑄𝜃𝜃: 𝜃𝜃 → ℝ𝒳𝒳×𝒜𝒜

(e.g., via neural networks)
• Find a Q-function that approximately solves the Bellman equations, e.g., 

by minimizing the “squared Bellman error”:
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• Add lots of heuristics to stabilize training
• Add lots of computational resources and bake on 1000 GPUs until ready

Don’t try this  at home!
• This  objective is

• non-convex
• non-s mooth
• impos s ible to evaluate

• Does  this  proces s  converge 
anywhere at all?

• If it converges , does  it lead to a  
good policy??
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LINEAR 
PROGRAMMING FOR 
MDPS
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×

reward function
How can we do this  efficiently 

over the s et of all policies ?
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𝜇𝜇𝜋𝜋 𝑥𝑥, 𝑎𝑎 = 𝜈𝜈0 𝑥𝑥 + 𝛾𝛾 𝑃𝑃𝜇𝜇𝜋𝜋 (𝑥𝑥)

THE SET OF OCCUPANCY MEASURES

occupancy of s tate  
𝑋𝑋𝑡𝑡 = 𝑥𝑥

initial s tate  dis tribution
occupancy of next s tate  

𝑋𝑋𝑡𝑡+1 = 𝑥𝑥

Theorem (Manne 1960)
𝜇𝜇 is  a  valid occupancy measure if and only if it s atis fies

𝐸𝐸𝜇𝜇 = 𝛾𝛾𝑃𝑃𝜇𝜇 + 𝜈𝜈0
“Bellman flow cons traints ”
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𝜋𝜋∗ 𝑎𝑎 𝑥𝑥 =
𝜇𝜇∗ 𝑥𝑥,𝑎𝑎

∑𝑎𝑎′ 𝜇𝜇∗ 𝑥𝑥,𝑎𝑎′
• Bas ic s olutions  corres pond to determinis tic policies

Dual Linear Program for MDPs
minimize 𝜈𝜈0,𝑉𝑉
subject to 𝐸𝐸𝑉𝑉 ≥ 𝑟𝑟 + 𝛾𝛾𝑃𝑃𝑉𝑉

• Dual s olution related to 
Bellman eqns as

𝑄𝑄∗ = 𝑟𝑟 + 𝛾𝛾𝑃𝑃𝑉𝑉∗



PROS AND CONS

Why is this useful?
• Defining optimality is  very s imple: no value functions , no 

fixed-point equations , no nonlinearity… 
jus t a  s ingle numerical objective!

• Eas ily comprehens ible with an optimization background 
• Powerful tool for developing algorithms
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Why is this useful?
• Defining optimality is  very s imple: no value functions , no 

fixed-point equations , no nonlinearity… 
jus t a  s ingle numerical objective!

• Eas ily comprehens ible with an optimization background 
• Powerful tool for developing algorithms

“Why don’t they teach this in school?!?”
• Need to ensure 𝜇𝜇∗ 𝑥𝑥, 𝑎𝑎 > 0 to extract policy :’(

• Temporal aspect is  a  bit abs tract
• Number of variables  and cons traints  is  large



•Manne (1960), de Ghellinck (1960), Denardo (1970)
• Formulated the primal LP and s howed equivalence to Bellman eqns .

•Schweitzer & Seidmann (1982)
• Propos ed a relaxation to reduce the number of cons traints
• (als o propos ed the s quared Bellman error objective!)

•De Farias  & Van Roy (2003)
• Analyzed the reduction of [SS82]
• Ins pired s ome follow-up work in RL [dFvR05,PZ09,PTPZ10,DFM12,LBS17]
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• Formulated the primal LP and s howed equivalence to Bellman eqns .

•Schweitzer & Seidmann (1982)
• Propos ed a relaxation to reduce the number of cons traints
• (als o propos ed the s quared Bellman error objective!)

•De Farias  & Van Roy (2003)
• Analyzed the reduction of [SS82]
• Ins pired s ome follow-up work in RL [dFvR05,PZ09,PTPZ10,DFM12,LBS17]

A BIT OF HISTORY

Is  this  the bes t 
we can do?

Common theme: 
analyze quality of approximate solution & 

solve the LP with generic solver



A NEW BREED OF 
RL ALGORITHMS



• add regularization for tractable s olution
• relax cons traints  like [SS85]
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• relax cons traints  like [SS85]

RELATIVE ENTROPY POLICY SEARCH

REPS (primal form)

maximize 𝜇𝜇, 𝑟𝑟 −
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KL 𝜇𝜇 𝜇𝜇0
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Intractable due to 
unknown 𝑃𝑃 in exponent!

Uncons trained convex 
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Lagrangian dualityCan we do better?



LOGISTIC Q-LEARNING
Bas -Serrano, Curi, Krause & Neu (2021)

Q-REPS (primal form)
maximize 𝜇𝜇, 𝑟𝑟 −

1
𝜂𝜂 KL 𝜇𝜇 𝜇𝜇0 −

1
𝛼𝛼𝐻𝐻(𝑢𝑢|𝑢𝑢0)

subject to 𝐸𝐸⊤𝜇𝜇 = 𝛾𝛾𝑃𝑃⊤𝑢𝑢 + 𝜈𝜈0
Φ⊤𝜇𝜇 = Φ⊤𝑢𝑢

• Lagrangian decompos ition to introduce “Q”
• Compos ite  regularization
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• Lagrangian decompos ition to introduce “Q”
• Compos ite  regularization

Q-REPS (dual form)

• 𝜃𝜃∗ = min
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• 𝜃𝜃∗ = min
𝜃𝜃
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log𝔼𝔼𝑥𝑥,𝑎𝑎∼𝜇𝜇0 𝑒𝑒
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• 𝜋𝜋∗ = 𝜋𝜋0 ∘ 𝑒𝑒𝜂𝜂 Φ𝜃𝜃∗−𝑉𝑉𝜃𝜃∗

LOGISTIC Q-LEARNING
Bas -Serrano, Curi, Krause & Neu (2021)

Q-REPS (primal form)
maximize 𝜇𝜇, 𝑟𝑟 −

1
𝜂𝜂 KL 𝜇𝜇 𝜇𝜇0 −

1
𝛼𝛼𝐻𝐻(𝑢𝑢|𝑢𝑢0)

subject to 𝐸𝐸⊤𝜇𝜇 = 𝛾𝛾𝑃𝑃⊤𝑢𝑢 + 𝜈𝜈0
Φ⊤𝜇𝜇 = Φ⊤𝑢𝑢

Explicit, tractable policy 
update!!

• Lagrangian decompos ition to introduce “Q”
• Compos ite  regularization

Uncons trained convex 
optimization problem!

Lagrangian duality



A PRINCIPLED LOSS FUNCTION

The Logistic Bellman Error (LBE)

𝒢𝒢 𝑄𝑄 =
1
𝜂𝜂

log𝔼𝔼 𝑥𝑥,𝑎𝑎 ∼𝜇𝜇0 𝑒𝑒
𝜂𝜂(𝑟𝑟 𝑥𝑥,𝑎𝑎 +𝛾𝛾 𝔼𝔼[𝑉𝑉𝑄𝑄(𝑥𝑥′)|𝑥𝑥,𝑎𝑎]−𝑄𝑄(𝑥𝑥,𝑎𝑎))

•Convex and smooth (compos ition of two monotone convex 
functions  that are smooth)

•2-Lipschitz w.r.t. ℓ∞-norm:
∇𝑄𝑄𝒢𝒢𝑘𝑘 𝑄𝑄

1
≤ 2

•Easy to es timate reliably us ing s ample trans itions

Bas -Serrano, Curi, Krause & Neu (2021)



A PRINCIPLED LOSS FUNCTION
Bas -Serrano, Curi, Krause & Neu (2021)

The Logistic Bellman Error (LBE)

𝒢𝒢 𝑄𝑄 =
1
𝜂𝜂

log𝔼𝔼 𝑥𝑥,𝑎𝑎 ∼𝜇𝜇0 𝑒𝑒
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STRONG GUARANTEES!

“Theorem”
𝒢𝒢𝑘𝑘 𝜃𝜃 − �̂�𝒢𝑘𝑘 𝜃𝜃 = 𝑂𝑂 𝜂𝜂

“Theorem”
err𝐾𝐾 ≤ 𝑂𝑂 1

𝐾𝐾
∑𝑘𝑘=1𝐾𝐾 𝜀𝜀𝑘𝑘 + 𝜂𝜂𝜀𝜀𝑘𝑘

“LBE can be es timated with 
small bias”

Imposs ible for squared BE!

“Optimization errors  𝜀𝜀𝑘𝑘
have moderate long-term 

impact”
Comparable with bes t 

results  for SBE!

Bas -Serrano, Curi, Krause & Neu (2021)



AND IT WORKS!!!



•Primal-dual methods : 
• cons ider equivalent s addle-point problem

max
𝜇𝜇

min
𝑉𝑉

𝜇𝜇, 𝑟𝑟 + 𝛾𝛾𝑃𝑃𝑉𝑉 − 𝐸𝐸𝑉𝑉 + 𝜈𝜈0,𝑉𝑉

• s olve with primal-dual gradient des cent
• s cale up by parametrizing 𝜇𝜇 = 𝑈𝑈𝑈𝑈 and 𝑉𝑉 = Ψ𝜃𝜃

OTHER LP-BASED METHODS
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max
𝜇𝜇

min
𝑉𝑉

𝜇𝜇, 𝑟𝑟 + 𝛾𝛾𝑃𝑃𝑉𝑉 − 𝐸𝐸𝑉𝑉 + 𝜈𝜈0,𝑉𝑉

• s olve with primal-dual gradient des cent
• s cale up by parametrizing 𝜇𝜇 = 𝑈𝑈𝑈𝑈 and 𝑉𝑉 = Ψ𝜃𝜃

OTHER LP-BASED METHODS

• Implementable with only s ample acces s  to 𝑃𝑃
• State of the art method for s mall MDPs
• When features  Φ and Ψ are chos en well:

• guaranteed convergence to optimum
• excellent empirical performance

Wang (2017), Chen, Li & Wang (2018), Bas -Serrano & Neu (2019)



•Off-policy RL: fixed data s et s ampled from 𝜇𝜇0
•“DualDICE” reparametrization of primal variables : 

𝜉𝜉(𝑥𝑥, 𝑎𝑎) = 𝜇𝜇 𝑥𝑥,𝑎𝑎 /𝜇𝜇0(𝑥𝑥, 𝑎𝑎)
•Leads  to new primal-dual and REPS-like algorithms

OTHER LP-BASED METHODS 2
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•Leads  to new primal-dual and REPS-like algorithms

OTHER LP-BASED METHODS 2

• Incredibly practical methods  for off-policy 
value es timation!

• Even works  without knowledge of 𝜇𝜇0!!

Nachum et a l. (2019a,2019b), Nachum & Dai (2020), 
Zhang et a l. (2020), Dai et a l. (2020)



•LP formulation is  currently obscure but holds  huge potential!
•Solid alternative to fixed-point computation
•His torical limitations  are mos tly due to rigid interpretation
•Useful for deriving new algorithms  & analyzing exis ting ones
•Lots  of work left to do!

• Room for improvement both in theory & practice
• Exis ting toolbox not as  well-developed as  for other RL approaches

SUMMARY
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THANKS!!





PRIMAL-DUAL METHODS

Primal LP for MDPs
maximize 𝜇𝜇, 𝑟𝑟
subject to 𝐸𝐸⊤𝜇𝜇 = 𝛾𝛾𝑃𝑃⊤𝜇𝜇 + 𝜈𝜈0

Dual LP for MDPs
minimize 𝜈𝜈0,𝑉𝑉
subject to 𝐸𝐸𝑉𝑉 ≥ 𝑟𝑟 + 𝛾𝛾𝑃𝑃𝑉𝑉
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subject to 𝐸𝐸⊤𝜇𝜇 = 𝛾𝛾𝑃𝑃⊤𝜇𝜇 + 𝜈𝜈0

Dual LP for MDPs
minimize 𝜈𝜈0,𝑉𝑉
subject to 𝐸𝐸𝑉𝑉 ≥ 𝑟𝑟 + 𝛾𝛾𝑃𝑃𝑉𝑉

Primal-dual formulation for MDPs
max
𝜇𝜇

min
𝑉𝑉

𝜇𝜇, 𝑟𝑟 + 𝛾𝛾𝑃𝑃𝑉𝑉 − 𝐸𝐸𝑉𝑉 + 𝜈𝜈0,𝑉𝑉

Equivalent via Lagrangian duality



Can be solved via iterative updates :
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State of the art s ample complexity for 
solving “small” MDPs!

(Wang 2017)



•Problem: intractable for large s tate spaces  due to large number 
of cons traints  & variables !

• Idea: parametrize 𝜇𝜇 and 𝑉𝑉 via linear functions !
• 𝜇𝜇𝜆𝜆 = Ψ𝑈𝑈 for s ome feature matrix Ψ ∈ ℝ 𝒳𝒳×𝒜𝒜 ×𝑛𝑛

• 𝑉𝑉𝜃𝜃 = Φ𝜃𝜃 for s ome feature matrix Φ ∈ ℝ𝒳𝒳×𝑚𝑚
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• Implementable with only s ample acces s  to 
trans ition function 𝑃𝑃

• When features  Φ and Ψ are chos en well:
• guaranteed convergence to optimum
• excellent empirical performance

Chen, Li & Wang (2018), Bas -Serrano & Neu (2019)
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DualDICE formulation for MDPs
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OFF-POLICY LEARNING

DualDICE formulation for MDPs
max
𝜉𝜉

min
𝑉𝑉
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Incredibly practical methods  for off-policy value es timation!
Even works  without knowledge of 𝜇𝜇0!!
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