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Context: TKI project

• Private/public collaboration between:
• TNO
• CWI, Cryptology group
• University of Amsterdam, Institute of Advanced Studies
• Philips Research

• Project duration: 1 year, start mid 2017
• Goal: innovative application of MPC techniques to practical use cases

Results

• Identified two use cases in the medical domain
• Developed solution using MPC
• Proof of concept implementations
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Choosing HIV treatment

• Treating HIV is not straightforward: multiple possible treatments, many
different viruses

• Virus mutates as it replicates. Bad treatment leads to more replication,
which means:

• Treatment failure
• Accumulation of drug resistances
• Faster progression to AIDS

• Even with optimal treatment, virus will eventually mutate
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Doctors’ decisions

Doctors have ≈ 5 minutes per patient to take decisions based on

• Guidelines based on medical research
• Knowledge
• Experience

UvA developed Comparative Drug Ranking System (CDRS) to assist doctors.COMPARATIVE DRUG RANKING SYSTEM (CDRS)

52 | Feasibility Study

UvA CDRS

Position 

on the 

virus 

genome

Amino acid

HIV mutations:
84V 
54I 
46D 
48V 
47V

Drug resistances:
FPV/r:["4", "Intermediate resistance", "I"],
IDV/r: ["4", "Intermediate resistance", "I"],
LPV/r: ["3", "Low-level resistance", "I"],
NFV: ["4", "Intermediate resistance", "I"],
SQV/r: ["5", "High-level resistance", "R"],
ATV/r:["4", "Intermediate resistance", "I"],
TPV/r:["3", "Low-level resistance", "I"],
DRV/r: ["2", "Potential low-level resistance", "S"]

Hospital

[84V 54I 46D 48V 47V]

Drug resistances
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Using treatment data

CDRS is based on current research / clinical trials.

Every time a patient needs new treatment→ feedback on prior treatment.
Can we use this data?

Two problems:

1. Doctors do not want to publish decisions for liability concerns
2. Patient’s HIV genotype is privacy-sensitive

Solution: multi-party computation!
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Protocol to run each time

Given a patient’s HIV genotype, for each treatment compute average time to
failure for patients with similar HIV virus

computation

treatment results

treatment results
HIV genotype treatment statistics
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Secret-shared database

Long running computation→ computation parties maintain an encrypted
(secret-shared) database:

(HIV genotype,treatment,time to failure)

Genotype is encoded as vector of relevant mutations (length = `).

To query database, we need to check against each row!

=⇒ Computation scales linearly in:

• The number of treatments Q
• The length `

• The number of rows N
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Implementation

• Encode genotype as binary vector of relevant mutations,
Q = 100, ` = 200,N ≤ 20 000.

• Implementation using Bristol-SPDZ framework (predecessor of MP-SPDZ /
SCALE-MAMBA), 2 machines connected through LAN, “Low Gear”
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possible to implement efficient database searches that require ordering or re-structuring 

the database in a non-oblivious way. 

We have evaluated the performance of the online phase of our protocol by deploying 

the computing parties on two different machines, each using one core of a i7-7567U CPU 

running at 3.50GHz and 32 GB of RAM, in a local network with 1 Gbit/s throughput. 

Moreover, we have instantiated the SPDZ protocol with 40-bit statistical security, 128-

bit computational security and a 128-bit prime field.  

The results in Figure 4 show the computation times that are needed for answering 

one query, for artificially-generated databases with sizes ranging from 100 to 20,000 

records. The maximum 20,000 approximates the number of HIV-positive registered 

individuals in the Netherlands [54]; thus even though a single patient may give rise to 

more than one entry, we consider 20,000 to be an appropriate size to simulate a nation-

wide database. The experiment is repeated multiple times, resulting in several data 

points per database size. Recall that per query we compute the average 𝑇𝑇𝐹 conditioned 

on ‘similar’ patients for 100 different treatments. Our current implementation can 

answer one query in less than 24 minutes if the database contains 20,000 patient records. 

The computational complexity scales linearly in the number of database records.  

 
Figure 4: CDSS computation time. 

3.2 Performance – offline phase  

In the SPDZ protocol certain computational tasks are executed in the offline phase, 

that is independent of the MPC use-case and that can be implemented with existing 

protocols. For this reason, we have merely estimated the computational costs of it. The 

offline phase can be run at any time to generate a large database of preprocessed data 

which, in turn, is consumed during the online phase.  

The performance of the offline phase can be quantified in the number of the so-called 

multiplication triples that are generated per second. In [55] various approaches for 

generating multiplication triples on i7-4790 and i7-3770S CPUs with 16 to 32 GB of 

RAM in a setting similar to ours (1 Gbit/s throughput) were evaluated. With two 
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Lessons learned

• Identifying a good use case can be hard.
Initial use case: search CDRS without leaking patient genotype.

Computation could be done locally without MPC! But we run into other
organizational challenges (frequent updates, fast machines).
When to use MPC: mutual privacy requirement

• MPC enables new solutions
• Performance of MPC can be good enough for practical applications
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