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Secure Multiparty Computation

A

B

z

y

x

Wanted: f (x , y , z)

I Computation on secret inputs

I Replace trusted third party
I Central questions in MPC

I How many honest parties?
I Dishonest parties still follow the protocol?

I MP-SPDZ supports > 30 protocols
across all properties



Unifying MPC: Black Box

a+ b = c

Parties

I Have handles to values

I Don’t know the values

I Can input values

I Can agree on computations
creating new values

I Can agree on outputting values



Unifying MPC: Basic Operations

Communication
Addition 7

Multiplication 3



Multiplication with Random Triple
(Beaver Randomization)

Have: x , y , addition in black box

Want: x · y

x · y = (x + a− a) · (y + b − b)

= (x + a) · (y + b) − (y + b) · a − (x + a) · b + a · b

Masked and revealed
(one-time pad)

Random secret triple
(preprocessed)
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Multiplication with Random Triple
(Beaver Randomization)

Have: x , y , addition in black box, ( a , b , a · b for random a, b)

Want: x · y

x · y = (x + a− a) · (y + b − b)

= (x + a) · (y + b) − (y + b) · a − (x + a) · b + a · b

Masked and revealed
(one-time pad)

Random secret triple
(preprocessed)



Scaling Up: I/O Parallelization

z = x · y
u = z · w

1. Compute z

2. Compute u

z = x · y
u = v · w

1. Compute z and u



Scaling Up: I/O Parallelization

z = x · y
u = z · w
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Goal: Automatize I/O Parallelization

Manual parallelization is tedious:

x10 = x2 · x3
x11 = x8 + x4

x12 = x10 · x1
x13 = x7 + x9

x14 = x7 · x1
x15 = x9 + x12

x16 = x13 · x14
x17 = x0 + x11

x18 = x11 · x15
x19 = x13 · x7

x20 = x4 + x6

x21 = x16 + x2

x22 = x0 + x12

x23 = x22 + x14

x24 = x11 + x19

x25 = x4 · x19
x26 = x23 · x9
x27 = x7 · x5
x28 = x13 + x21

x29 = x14 + x27

x30 = x19 · x1
x31 = x16 + x26

x32 = x0 · x10
x33 = x26 + x32

x34 = x7 + x3

x35 = x9 · x29
x36 = x33 + x22

x37 = x29 · x24
x38 = x16 + x23

x39 = x15 + x37

x40 = x12 · x39
x41 = x34 + x7

x42 = x32 + x5

x43 = x12 + x26

x44 = x43 · x38
x45 = x38 + x14

x46 = x44 · x27
x47 = x22 + x24

x48 = x39 · x38
x49 = x21 · x3

x50 = x28 + x16

x51 = x15 + x38

x52 = x50 · x46
x53 = x19 + x2

x54 = x20 · x13
x55 = x21 + x22

x56 = x19 · x6
x57 = x46 + x1

x58 = x38 · x55
x59 = x47 + x29



Use Case: Parallel Maximum

from util import max

M = sint.Matrix(n_rows, n_cols)

res = sint.Array(n_rows)

# populate M

...

for i in range(n_rows):

res[i] = M[i][0]

for j in range(1, n_cols):

res[i] = max(res[i], M[i][j])

Want
Maximum of every row

Without optimization

n rows * (n cols - 1) rounds of max

MP-SPDZ optimization

n cols - 1 rounds of max



Use Case: Parallel Maximum

from util import max, tree_reduce

M = sint.Matrix(n_rows, n_cols)

res = sint.Array(n_rows)

# populate M

...

for i in range(n_rows):

res[i] = tree_reduce(max, M[i])

Want
Maximum of every row

Without optimization

n rows * log(n cols) rounds of max

MP-SPDZ optimization

log(n cols) rounds of max



Toolchain Overview

Python high-level code

Compiler

Bytecode

Virtual machine

Compiler

I Implemented in Python

I Optimization (reduce network rounds)

I Library for various arithmetic:
integer, fractional, mathematical

I Machine learning functionality

Virtual machine
I One per protocol

I Implemented in C++

I Optimized for speed



Section 2

Machine Learning



Privacy-Preserving Machine Learning

Outsourced training

I Data owners share their inputs among computing parties

I Computing parties train a model securely using MPC

I Output model OR use it for secure inference



Deep Learning

I Established supervised machine learning concept
(known input-output combinations)

I Computation as chain of functions (layers)

I Some functions have parameters to be changed during training

I Function quantifying quality (loss)

I Chain rule allows changing of parameters toward minimizing loss
(backward propagation)



Secure Deep Learning Building Blocks

Quantization
Represent x as bx · 2f e to use integer computation for fractional numbers.

Mathematical functions
I Comparison

I Division

I Exponentiation

I Logarithm

I Square root



MNIST – Handwritten Digit Recognition

By Josef Steppan - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=64810040

I “Hello world” of machine learning

I Input: 28x28 gray-scale

I Output: 0–9

I Demonstrates utility of convolution
(local linear function)



Results for LeNet
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I Convolutional neural network
by LeCun et al.

I 4 linear layers

I AMSgrad optimizer (improved
stochastic gradient descent)

I Co-located AWS c5.9xlarge

I Time per epoch: 9 minutes

I 1 hour for 99% accuracy



Section 3

Outlook



Secure Computation Suitability

More suitable
I Small input/output: e.g. mathematical functions

I Predictable computation path: e.g. matrix multiplication

Less suitable: data-dependent computation path

I Graph algorithms

I Dictionary data structure



Opinion Page

I More utility, less mystery

I Beware of lower bounds

I Tell me



Links

https://github.com/data61/MP-SPDZ

https://mp-spdz.readthedocs.io

https://ia.cr/2020/521

https://twitter.com/mkskeller

https://github.com/data61/MP-SPDZ
https://mp-spdz.readthedocs.io
https://ia.cr/2020/521
https://twitter.com/mkskeller
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