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Means: Encryption, and authentication/signatures

data

Here: Clear distinction between 
“good participants” and “malicious attacker”

Situation may not always be so clear cut…
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 Cryptography 

Goal: Collaborate without the need to trust each other, 
and so that nothing gets revealed beyond what is necessary.  

ALICE
BOB

from Bob’s perspective: Alice may be honest or malicious

Sometimes, participants may not trust each other: 
Multiparty Computation (MPC)
An advanced cryptographic concept

for protecting individual data of different parties
while using the data in collaboration with other parties



Two millionaires want to find out who is richer, 

 Example: Yao’s “Millionairs’ Problem”



Two millionaires want to find out who is richer, 

 Example: Yao’s “Millionairs’ Problem”

but without telling each other how much they own: 
both should learn nothing beyond

y Î {“Richard is richer”, “Elon is richer (or equally rich)”}



Find out what the majority wants, i.e., tally the votes, 
without revealing individual opinions/votes:  
everyone should learn nothing beyond, say, 

y = (sum of YES votes, sum of NO votes)

 Example: Secure Voting
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Find the winning bid, while keeping individual bids private. 
Everyone should learn nothing beyond, say, 

y = “identity of the largest bid ³ m if one exists”

i.e., more formally,
y = arg max {w,x,m}.

 Example: Secure Auctions

I offer w

I offer x

I want at 
least m



Perform a scientific study on patient data,  
without the hospital having to reveal such sensitive data. 

 Etc.



Find Facebook friends that are nearby, without letting 
Facebook (or friends not nearby) know where you are.  

 Etc. etc. 
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Given:
n parties with private inputs x1,…,xn

a function (or algorithm) f  

Want: compute y = f (x1,…,xn), so that
everyone learns the (correct) result y = f (x1,…,xn)
but nothing more (in particular, the xi remain secret)
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Fundamental Theorem of MPC (*) 
Originally invented/proven by [Yao 80’s, Goldwasser-Micali-Wigderson 87,  
Chaum-Crépeau-Damgård 88, BenOr-Goldwasser-Wigderson 88]

(*) Comes in lots of variations

Any function f :X1×…×Xn®Y can be jointly computed by 
means of an interactive protocol in a secure way, so that:

everyone learns the correct result y = f (x1,…,xn), 
yet nothing more than than,
even if some of the parties are dishonest.
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 Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC (*) 
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x2

x3
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y

y

y

x1

x2

x3

y

" algorithm

$ interactive protocol
xi‘s remain 

secret

(*) Comes in lots of different variations, in terms of: 
number of conspiring dishonest parties it tolerates
assumed capabilities of dishonest parties
considered communication infrastructure  
(dis)allowing the protocol to abort
(not) requiring fairness and/or cheater detection
etc.

Also, comes with a (significant) overhead in computation 
and communication.
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(with a suitable modulus), i.e., in a finite ring or field. 
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by means of
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so that:   

from all n shares s1,…,sn, the secret s can be recovered
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Prime example: 
s1,…,sn random subject to s  = s1 +…+ sn  (mod p)
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Sharing phase:  

Computation phase:  

Reconstruction phase:  

So far: only know how to do for linear f. 

Every party Pi shares his input xi .

The function f  is computed on the shared inputs,  
resulting in a sharing of y = f (x1,…,xn) . 

The share result y = f (x1,…,xn) is reconstructed.

Still some issues about dishonest parties lying. 
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At the core is a cryptographic primitive for 
distributing (“sharing”) a secret input s 

by means of
preparing shares s1,s2,…,sn and giving si to party Pi ,  

so that   

from all n shares, the secret s can be recovered

given less than n shares, no info on s is revealed 

if s1,…,sn is a sharing of s, and s1́,…,sń of s ́ then 
s1+s1́,…,sn+sń is a sharing of s+s ́. 

reconstructability

privacy

linearity

any t +1

at most t 

for some t
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 Example: Shamir Secret Sharing

To share s : choose a polynomial
p(x) = s + a1x +…+ atxt 

with random a1,…,at  and constant coefficient s, and set
si  = p(i) 

for i =1,…,n . 

Reconstructability & privacy hold by Lagrange interpolation
As for linearity: if

si  = p(i) for p(x) = s + a1x +…+ atxt 

sí  = pʹ(i) for pʹ(x) = s ́+ a1́x +…+ at́xt

then
 si +sí  = pʹ́ (i) for pʹ́ (x) = p(x)+pʹ(x) = (s +s ́ ) +… .
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x1 ® x11     x12    …    x1n

x2 ® x21     x22    …    x2n

xn ® xn1    xn2     …     xnn

⋮⋮
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=
y ¬ y1 y2 yn

3

Offers privacy of inputs against t dishonest parties

+

+

+

=

Redundancy in shares (y1, …,yn must lie on deg-t poly):  
→ cheating will be detected 
→ correctness (but not abort-free nor fair)

If we can enforce consistent sharings (we can!) of xi’s, 
set t <n/3, and use Reed-Solomon error correction: 
→ correctness (with guaranteed output delivery)

⇒ Works for addition / linear function evaluation only
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 Towards Secure Multiplications

For addition, exploited:

si

sí

si +sí

s

sʹ

s +sʹ

+

=

Similarly, for multiplication: 

si

sí

s

sʹ

·

=
si ·sís ·sʹ

p(x)

 Degree becomes 2t ! 

p(x)+pʹ(x)

pʹ(x)

p(x)

p(x)·pʹ(x)

pʹ(x)
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 Degree Reduction

Due to [Chaum et al. 88], reinvented again in 2007.  

-

= =

s 

deg = 2t

r r 

deg = 2t
deg = t

s-r 

deg = 2t

Produce a deg-2t and a deg-t 
sharing of random unknown r.
Locally compute the deg-2t 
sharing of d = s - r.
Reconstruct d = s - r , and  

d = s - r

+

deg = t

s 

add d to the deg-t sharing of r.
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 Putting Above (And More) Things Together

Techniques for secure addition & secure multiplication 
     ⇒ secure arithmetic

Together with basic result from theory of computation: 
“any computation can be put as an arithmetic computation”

Every computation can be done securely, i.e., so that
everyone learns the correct result, 
yet nothing more than than,
even if some of the parties are dishonest.

&

⇒



lots of 
variations

 Various Relations & Dependencies

Optimal solution being very much application dependent. 

corruption 
threshold

efficiency

infra-  
structure

abort vs.  
not abort

fairness

verifiability …



 Road Map

WHAT is multiparty computation? 

HOW does multiparty computation work? 

WHERE can/is multiparty computation be/ used?
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 Real-life MPC Example 1: Trading Contracts

Application scenario: 
Farmers in Demark wish to trade sugar beet contracts, 
giving them rights to produce/sell to a certain price.
Danisco (buying the beets) needs to be involved as well. 

Problem: Farmers do not want to reveal their bids  
 (as they leak info on economic position and productivity).

Solution: Use MPC 
Since 2008, auction runs as a 3-party computation.
Market clearing price computed in a secure way,  
i.e., without revealing individual bids. 

Reference: Secure Multiparty Computation Goes Live (eprint.iacr.org/2008/068)

http://eprint.iacr.org/2008/068
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Application scenario: 
Researchers in Estonia wanted to study the correlation 
between working during university and failing to graduate. 
Required: linking databases from Estonian Tax & Customs 
Board and from Ministry of Education & Research. 

Problem: By law, these databases may not to revealed  
 (Estonian Personal Data Protection Act and Taxation Act).

Solution: Use MPC 
Statistical analysis was done by a 3-party computation, 
without revealing the data bases. 

Reference: Students and Taxes:  A Privacy-Preserving Study Using Secure Computation (PET 2016)
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 Real-life MPC Example 3: Password Checkup

Application scenario: 
Have every user name & password you enter on a site 
checked against credentials that are known to be unsafe.  

Problem: You do not want to reveal your password.

Solution: Use MPC 
Google offers a Password Checkup extension for Chrome, 
which uses a 2-party computation to check your 
credentials, without Google learning your credentials.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)
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 Potential Future Real-life MPC Example

Application scenario: 
Effective HIV treatment is a very complicated matter. 
Effectiveness of a drug is related to genotype of HIV virus.
Not well understood: $ >101250 possible HIV virus strains!
Having an “experience database” would be very valuable. 

Genotype of HIV virus is very sensitive data. 
Doctors are not willing to share treatment (liability).

Solution: Use MPC 
We built a MPC prototype for a “experience database” 
with support for time-to-treatment-failure queries. 

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)

[Joint work with CWI Crypto, TNO, UvA - Demonstrator only] 

Problem:
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MPC has its roots in seminal work from the 80’s. 

Originally considered to be of theoretical interest only. 

Stayed a “hot topic” within the research community. 

Now at the verge of being practically relevant.

Several (though still isolated) real-life deployments. 

In principle: Applicable in lots and lots of scenarios. 

Comes with a “price tag”: considerable loss in efficiency. 

No plug’n’play: need for tailor-made solution is inherent
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Neither approach alone is optimal and hence acceptable to the spymasters. 
And simply conducting both kinds of protocol in parallel would be ridiculous, since 
it would give the disadvantages of both-a country breaking the cryptosystem 
could discover all other countries’ secrets, and any sufficient collusion could also 
learn the secrets. 

The new techniques presented here allow the best of both approaches in a 
single protocol. No collusion of countries is sufficient to obtain secrets of non- 
colluders; nor does breaking the cryptosystem yield any information whatsoever. 
The only way some countries can learn the secrets of others is for a collusion of a 
majority of countries to break the cryptosystem. 

Serge Fehr
Centrum Wiskunde & Informatica (CWI) 
Mathematical Institute, Leiden University

On the occasion of the Dijkstra Fellowship being awarded to 

David Chaum

CWI Lectures 
November 21 & 22, 2019

© David Chaum, The Spymasters Double Agent Problem, CRYPTO’89.

Multiparty Computation 
Collaborate Without 

Compromise(ing Your Data) 

Thank you for your attention! 


