
593

Neither approach alone is optimal and hence acceptable to the spymasters.
And simply conducting both kinds of protocol in parallel would be ridiculous, since
it would give the disadvantages of both-a country breaking the cryptosystem
could discover all other countries’ secrets, and any sufficient collusion could also
learn the secrets.

The new techniques presented here allow the best of both approaches in a
single protocol. No collusion of countries is sufficient to obtain secrets of non-
colluders; nor does breaking the cryptosystem yield any information whatsoever.
The only way some countries can learn the secrets of others is for a collusion of a
majority of countries to break the cryptosystem.

Serge Fehr
Centrum Wiskunde & Informatica (CWI) 
Mathematical Institute, Leiden University

On the occasion of the Dijkstra Fellowship being awarded to

David Chaum

CWI Lectures 
November 21 & 22, 2019

Multiparty Computation
Collaborate Without

Compromise(ing Your Data)

593

Neither approach alone is optimal and hence acceptable to the spymasters.
And simply conducting both kinds of protocol in parallel would be ridiculous, since
it would give the disadvantages of both-a country breaking the cryptosystem
could discover all other countries’ secrets, and any sufficient collusion could also
learn the secrets.

The new techniques presented here allow the best of both approaches in a
single protocol. No collusion of countries is sufficient to obtain secrets of non-
colluders; nor does breaking the cryptosystem yield any information whatsoever.
The only way some countries can learn the secrets of others is for a collusion of a
majority of countries to break the cryptosystem.

Serge Fehr
Centrum Wiskunde & Informatica (CWI) 
Mathematical Institute, Leiden University

On the occasion of the Dijkstra Fellowship being awarded to

David Chaum

CWI Lectures 
November 21 & 22, 2019

© David Chaum, The Spymasters Double Agent Problem, CRYPTO’89.

Multiparty Computation
Collaborate Without

Compromise(ing Your Data)

 Road Map

WHAT is multiparty computation?

HOW does multiparty computation work?

WHERE can/is multiparty computation be/ used?

 Road Map

WHAT is multiparty computation?

HOW does multiparty computation work?

WHERE can/is multiparty computation be/ used?

Original goal of cryptography:
Protect data from an eavesdropper/hacker/etc.

 Cryptography

data
ALICE

EVE

BOB

Enc()

Original goal of cryptography:
Protect data from an eavesdropper/hacker/etc.

 Cryptography

Means: Encryption, and authentication/signatures

data
ALICE

EVE

BOB

Enc()

Original goal of cryptography:
Protect data from an eavesdropper/hacker/etc.

 Cryptography

Means: Encryption, and authentication/signatures

data

Here: Clear distinction between
“good participants” and “malicious attacker”

ALICE

EVE

BOB

Enc()

Original goal of cryptography:
Protect data from an eavesdropper/hacker/etc.

 Cryptography

Means: Encryption, and authentication/signatures

data

Here: Clear distinction between
“good participants” and “malicious attacker”

Situation may not always be so clear cut…

ALICE

EVE

BOB

 Cryptography

ALICE
BOB

Sometimes, participants may not trust each other:

from Alice’s perspective: Bob may be honest or malicious

 Cryptography

ALICE
BOB

Sometimes, participants may not trust each other:

from Alice’s perspective: Bob may be honest or malicious

 Cryptography

ALICE
BOB

from Bob’s perspective: Alice may be honest or malicious

Sometimes, participants may not trust each other:

from Alice’s perspective: Bob may be honest or malicious

 Cryptography

Goal: Collaborate without the need to trust each other,
and so that nothing gets revealed beyond what is necessary.

ALICE
BOB

from Bob’s perspective: Alice may be honest or malicious

Sometimes, participants may not trust each other:

from Alice’s perspective: Bob may be honest or malicious

 Cryptography

Goal: Collaborate without the need to trust each other,
and so that nothing gets revealed beyond what is necessary.

ALICE
BOB

from Bob’s perspective: Alice may be honest or malicious

Sometimes, participants may not trust each other:
Multiparty Computation (MPC)
An advanced cryptographic concept

for protecting individual data of different parties
while using the data in collaboration with other parties

Two millionaires want to find out who is richer,

 Example: Yao’s “Millionairs’ Problem”

Two millionaires want to find out who is richer,

 Example: Yao’s “Millionairs’ Problem”

but without telling each other how much they own:
both should learn nothing beyond

y Î {“Richard is richer”, “Elon is richer (or equally rich)”}

Find out what the majority wants, i.e., tally the votes,
without revealing individual opinions/votes:  
everyone should learn nothing beyond, say,

y = (sum of YES votes, sum of NO votes)

 Example: Secure Voting

YES

NO

YES

NO YES
NO

NO

Find the winning bid, while keeping individual bids private.
Everyone should learn nothing beyond, say,

y = “identity of the largest bid ³ m if one exists”

i.e., more formally,
y = arg max {w,x,m}.

 Example: Secure Auctions

I offer w

I offer x

I want at
least m

Perform a scientific study on patient data,  
without the hospital having to reveal such sensitive data.

 Etc.

Find Facebook friends that are nearby, without letting
Facebook (or friends not nearby) know where you are.

 Etc. etc.

 The General Goal

Given:
n parties with private inputs x1,…,xn

a function (or algorithm) f

x1

x2

x3

f :X1×…×Xn®Y

 The General Goal

Given:
n parties with private inputs x1,…,xn

a function (or algorithm) f

Want: compute y = f (x1,…,xn), so that
everyone learns the (correct) result y = f (x1,…,xn)
but nothing more (in particular, the xi remain secret)

x1

x2

x3

f :X1×…×Xn®Y

 Multiparty Computation (MPC)

Fundamental Theorem of MPC (*)
Originally invented/proven by [Yao 80’s, Goldwasser-Micali-Wigderson 87,
Chaum-Crépeau-Damgård 88, BenOr-Goldwasser-Wigderson 88]

(*) Comes in lots of variations

Any function f :X1×…×Xn®Y can be jointly computed by
means of an interactive protocol in a secure way, so that:

x1

x2

x3

 Multiparty Computation (MPC)

Fundamental Theorem of MPC (*)
Originally invented/proven by [Yao 80’s, Goldwasser-Micali-Wigderson 87,
Chaum-Crépeau-Damgård 88, BenOr-Goldwasser-Wigderson 88]

(*) Comes in lots of variations

Any function f :X1×…×Xn®Y can be jointly computed by
means of an interactive protocol in a secure way, so that:

everyone learns the correct result y = f (x1,…,xn),
yet nothing more than than,

x1

x2

x3

y

y

y

 Multiparty Computation (MPC)

Fundamental Theorem of MPC (*)
Originally invented/proven by [Yao 80’s, Goldwasser-Micali-Wigderson 87,
Chaum-Crépeau-Damgård 88, BenOr-Goldwasser-Wigderson 88]

(*) Comes in lots of variations

Any function f :X1×…×Xn®Y can be jointly computed by
means of an interactive protocol in a secure way, so that:

everyone learns the correct result y = f (x1,…,xn),
yet nothing more than than,
even if some of the parties are dishonest.

x1

x2

x3

y

y

y

 Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC (*)

x1

x2

x3

" algorithm

 Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC (*)

x1

x2

x3

x2

x3

x1

" algorithm

 Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC (*)

x1

x2

x3

x2

x3

x1 x1

x2

x3

y

" algorithm

 Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC (*)

x1

x2

x3

x2

x3

x1

x1

x2

x3

x1

x2

x3

y

" algorithm

$ interactive protocol

 Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC (*)

x1

x2

x3

x2

x3

x1

x1

x2

x3

y

y

y

x1

x2

x3

y

" algorithm

$ interactive protocol

 Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC (*)

x1

x2

x3

x2

x3

x1

x1

x2

x3

y

y

y

x1

x2

x3

y

" algorithm

$ interactive protocol
xi‘s remain

secret

 Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC (*)

x1

x2

x3

x2

x3

x1

x1

x2

x3

y

y

y

x1

x2

x3

y

" algorithm

$ interactive protocol
xi‘s remain

secret

(*) Comes in lots of different variations, in terms of:
number of conspiring dishonest parties it tolerates
assumed capabilities of dishonest parties
considered communication infrastructure
(dis)allowing the protocol to abort
(not) requiring fairness and/or cheater detection
etc.

Also, comes with a (significant) overhead in computation
and communication.

 Road Map

WHAT is multiparty computation?

HOW does multiparty computation work?

WHERE can/is multiparty computation be/ used?

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

 MPC: A very first try

7

4

9

0 6

9

7

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

638

 MPC: A very first try

7

4

9

0 6

9

7

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

638+ = 645 638

 MPC: A very first try

7

4

9

0 6

9

7

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

638+ = 645 638

645

 MPC: A very first try

7

4

9

0 6

9

7

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

638+ = 645 638

645+ = 649
645

649

 MPC: A very first try

7

4

9

0 6

9

7

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

638+ = 645 638

645+ = 649
645

649

649+ = 658

658
658+ = 658 658+ = 664

 MPC: A very first try

7

4

9

0

658

6

664

664+ = 6739673

673+ = 6807680

680- = 42

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

638+ = 645 638

645+ = 649
645

649

649+ = 658

658
658+ = 658 658+ = 664

 MPC: A very first try

7

4

9

0

658

6

664

664+ = 6739673

673+ = 6807680

680- = 42

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

638+ = 645 638

645+ = 649
645

649

649+ = 658

658
658+ = 658 658+ = 664

 MPC: A very first try

7

4

9

0

658

6

664

664+ = 6739673

673+ = 6807680

42

Works sort-of, but:

 Analysis

Works sort-of, but:

 Analysis

“Leader” can lie about the result:  
 → no correctness or fairness guaranteed

Works sort-of, but:

 Analysis

“Leader” can lie about the result:  
 → no correctness or fairness guaranteed

Two parties together learn input of party in-between  
 → no privacy of inputs against certain coalitions

Works sort-of, but:

 Analysis

“Leader” can lie about the result:  
 → no correctness or fairness guaranteed

Two parties together learn input of party in-between  
 → no privacy of inputs against certain coalitions

Any party can stall the procedure → not abort-free

Works sort-of, but:

 Analysis

“Leader” can lie about the result:  
 → no correctness or fairness guaranteed

Two parties together learn input of party in-between  
 → no privacy of inputs against certain coalitions

Any party can stall the procedure → not abort-free

Approach/solution limited to linear functions

Works sort-of, but:

 Analysis

“Leader” can lie about the result:  
 → no correctness or fairness guaranteed

Two parties together learn input of party in-between  
 → no privacy of inputs against certain coalitions

Any party can stall the procedure → not abort-free

Approach/solution limited to linear functions

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

9

 0 6

 MPC: A second try

7

4

 9

 7

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

9

 0 6

 MPC: A second try

= 45+(-62)+…+187

4

 9

 7

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

9

 0 6

 MPC: A second try

= 45+(-62)+…+187

4

 9

 7NB: Here and later, arithmetic is modular arithmetic
(with a suitable modulus), i.e., in a finite ring or field.

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

9

 0 6

 MPC: A second try

= 45+(-62)+…+18 457

4

 9

 7

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

-62

9

 0 6

 MPC: A second try

= 45+(-62)+…+18 45

(-62)

7

4

 9

 7

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

-62

9

 0 6

 MPC: A second try

…

18

= 45+(-62)+…+18 45

(-62) 18

7

…

4

 9

 7

…

= 39+26+…+(-47)

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

-62

9

 0 6

 MPC: A second try

…

18

= 45+(-62)+…+18 45

(-62) 18

7

4

 9

 7

…

= 39+26+…+(-47)

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

-62

9

 0 6

 MPC: A second try

…

18

= 45+(-62)+…+18 45

(-62)

39

39

18

7

4

 9

 7

…

= 39+26+…+(-47)

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

-62

9

 0 6

 MPC: A second try

…

18

= 45+(-62)+…+18 45

(-62)

39

39

26 18

7

4

 9

 7

…

= 39+26+…+(-47)

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

-62

9

 0 6

 MPC: A second try

…

18

= 45+(-62)+…+18 45

(-62)

39

39

26

…

(-47) 18 (-47)

7

4

… 9

 7

…

= 39+26+…+(-47)

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

-62

9

 0 6

 MPC: A second try

…

18

= 45+(-62)+…+18 45

(-62)

39

39

26

…

(-47) 18 (-47)

7

4

…= …

= … = …

= … 9

 7 = 5+12+…5

12

5

…

…

…

…

+ + = 19+ + = -31

+ + + = 26

= 39+26+…+(-47)

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

-62

9

 0 6

 MPC: A second try

…

18

= 45+(-62)+…+18 45

(-62)

39

39

26

…

(-47) 18 (-47)

7

4

…= …

= … = …

= … 9

 7 = 5+12+…

26

5

12

5

-31
19

…

…

…

…

+ + = 19+ + = -31

+ + + = 26

= 39+26+…+(-47)

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

-62

9

 0 6

 MPC: A second try

…

18

= 45+(-62)+…+18 45

(-62)

39

39

26

…

(-47) 18 (-47)

7

4

…= …

= … = …

= … 9

 7 = 5+12+…

26

5

12

5

-31
19

…

26 + (-31) +…+ 26 =
…

…

…

+ + = 19+ + = -31

+ + + = 26

= 39+26+…+(-47)

Goal: Computing the sum, i.e., f(x1,…,xn) = å xi

-62

9

 0 6

 MPC: A second try

…

18

= 45+(-62)+…+18 45

(-62)

39

39

26

…

(-47) 18 (-47)

7

4

…= …

= … = …

= … 9

 7 = 5+12+…

26

5

12

5

-31
19

…

26 + (-31) +…+ 26 = 42
…

…

…

 A More Abstract Description

⋮

 A More Abstract Description

x1 = x11 + x12 + … + x1n

x2 = x21 + x22 + … + x2n

xn = xn1 + xn2 + … + xnn

⋮⋮

 A More Abstract Description

x1 = x11 + x12 + … + x1n

x2 = x21 + x22 + … + x2n

xn = xn1 + xn2 + … + xnn

⋮⋮

 A More Abstract Description

x1 = x11 + x12 + … + x1n

x2 = x21 + x22 + … + x2n

xn = xn1 + xn2 + … + xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y1 y2 yn

 A More Abstract Description

x1 = x11 + x12 + … + x1n

x2 = x21 + x22 + … + x2n

xn = xn1 + xn2 + … + xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y = + + … + y1 y2 yn

+

+

+

=

 A More Abstract Description

x1 = x11 + x12 + … + x1n

x2 = x21 + x22 + … + x2n

xn = xn1 + xn2 + … + xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y = + + … + y1 y2 yn

+

+

+

=

Offers privacy of inputs against arbitrary coalitions

 A More Abstract Description

x1 = x11 + x12 + … + x1n

x2 = x21 + x22 + … + x2n

xn = xn1 + xn2 + … + xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y = + + … + y1 y2 yn

+

+

+

=

Offers privacy of inputs against arbitrary coalitions

Parties can lie about their partial result:  
 → no correctness or fairness guaranteed

 A More Abstract Description

x1 = x11 + x12 + … + x1n

x2 = x21 + x22 + … + x2n

xn = xn1 + xn2 + … + xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y = + + … + y1 y2 yn

+

+

+

=

Offers privacy of inputs against arbitrary coalitions

Any party can stall the procedure → not abort-free

Parties can lie about their partial result:  
 → no correctness or fairness guaranteed

 A More Abstract Description

x1 = x11 + x12 + … + x1n

x2 = x21 + x22 + … + x2n

xn = xn1 + xn2 + … + xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y = + + … + y1 y2 yn

+

+

+

=Approach/solution limited to linear functions

Offers privacy of inputs against arbitrary coalitions

Any party can stall the procedure → not abort-free

Parties can lie about their partial result:  
 → no correctness or fairness guaranteed

 A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for
distributing (“sharing”) a secret input s

by means of
preparing shares s1,s2,…,sn and giving si to party Pi ,

so that:

 A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for
distributing (“sharing”) a secret input s

by means of
preparing shares s1,s2,…,sn and giving si to party Pi ,

so that:

from all n shares s1,…,sn, the secret s can be recovered

reconstructability

 A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for
distributing (“sharing”) a secret input s

by means of
preparing shares s1,s2,…,sn and giving si to party Pi ,

so that:

from all n shares s1,…,sn, the secret s can be recovered

given less than n shares, no info on s is revealed

reconstructability

privacy

 A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for
distributing (“sharing”) a secret input s

by means of
preparing shares s1,s2,…,sn and giving si to party Pi ,

so that:

from all n shares s1,…,sn, the secret s can be recovered

given less than n shares, no info on s is revealed

if s1,…,sn is a sharing of s, and s1́,…,sń of s ́ then
s1+s1́,…,sn+sń is a sharing of s+s ́.

reconstructability

privacy

linearity

 A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for
distributing (“sharing”) a secret input s

by means of
preparing shares s1,s2,…,sn and giving si to party Pi ,

so that:

from all n shares s1,…,sn, the secret s can be recovered

given less than n shares, no info on s is revealed

if s1,…,sn is a sharing of s, and s1́,…,sń of s ́ then
s1+s1́,…,sn+sń is a sharing of s+s ́.

reconstructability

privacy

linearity

Prime example:
s1,…,sn random subject to s = s1 +…+ sn (mod p)

 A Paradigm for Doing MPC

Sharing phase:

Computation phase:

Reconstruction phase:

 A Paradigm for Doing MPC

Sharing phase:

Computation phase:

Reconstruction phase:

Every party Pi shares his input xi .

 A Paradigm for Doing MPC

Sharing phase:

Computation phase:

Reconstruction phase:

Every party Pi shares his input xi .

The function f is computed on the shared inputs,  
resulting in a sharing of y = f (x1,…,xn) .

 A Paradigm for Doing MPC

Sharing phase:

Computation phase:

Reconstruction phase:

So far: only know how to do for linear f.

Every party Pi shares his input xi .

The function f is computed on the shared inputs,  
resulting in a sharing of y = f (x1,…,xn) .

 A Paradigm for Doing MPC

Sharing phase:

Computation phase:

Reconstruction phase:

So far: only know how to do for linear f.

Every party Pi shares his input xi .

The function f is computed on the shared inputs,  
resulting in a sharing of y = f (x1,…,xn) .

The share result y = f (x1,…,xn) is reconstructed.

 A Paradigm for Doing MPC

Sharing phase:

Computation phase:

Reconstruction phase:

So far: only know how to do for linear f.

Every party Pi shares his input xi .

The function f is computed on the shared inputs,  
resulting in a sharing of y = f (x1,…,xn) .

The share result y = f (x1,…,xn) is reconstructed.

Still some issues about dishonest parties lying.

 Threshold Secret Sharing

At the core is a cryptographic primitive for
distributing (“sharing”) a secret input s

by means of
preparing shares s1,s2,…,sn and giving si to party Pi ,

so that

from all n shares, the secret s can be recovered

given less than n shares, no info on s is revealed

if s1,…,sn is a sharing of s, and s1́,…,sń of s ́ then
s1+s1́,…,sn+sń is a sharing of s+s ́.

reconstructability

privacy

linearity

 Threshold Secret Sharing

At the core is a cryptographic primitive for
distributing (“sharing”) a secret input s

by means of
preparing shares s1,s2,…,sn and giving si to party Pi ,

so that

from all n shares, the secret s can be recovered

given less than n shares, no info on s is revealed

if s1,…,sn is a sharing of s, and s1́,…,sń of s ́ then
s1+s1́,…,sn+sń is a sharing of s+s ́.

reconstructability

privacy

linearity

for some t

 Threshold Secret Sharing

At the core is a cryptographic primitive for
distributing (“sharing”) a secret input s

by means of
preparing shares s1,s2,…,sn and giving si to party Pi ,

so that

from all n shares, the secret s can be recovered

given less than n shares, no info on s is revealed

if s1,…,sn is a sharing of s, and s1́,…,sń of s ́ then
s1+s1́,…,sn+sń is a sharing of s+s ́.

reconstructability

privacy

linearity

any t +1

for some t

 Threshold Secret Sharing

At the core is a cryptographic primitive for
distributing (“sharing”) a secret input s

by means of
preparing shares s1,s2,…,sn and giving si to party Pi ,

so that

from all n shares, the secret s can be recovered

given less than n shares, no info on s is revealed

if s1,…,sn is a sharing of s, and s1́,…,sń of s ́ then
s1+s1́,…,sn+sń is a sharing of s+s ́.

reconstructability

privacy

linearity

any t +1

at most t

for some t

 Example: Shamir Secret Sharing

To share s : choose a polynomial
p(x) = s + a1x +…+ atxt

with random a1,…,at and constant coefficient s, and set
si = p(i)

for i =1,…,n .

10 2 3 n

p(x)

s

s1

s2
s3

sn

x

 Example: Shamir Secret Sharing

To share s : choose a polynomial
p(x) = s + a1x +…+ atxt

with random a1,…,at and constant coefficient s, and set
si = p(i)

for i =1,…,n .

Reconstructability & privacy hold by Lagrange interpolation

 Example: Shamir Secret Sharing

To share s : choose a polynomial
p(x) = s + a1x +…+ atxt

with random a1,…,at and constant coefficient s, and set
si = p(i)

for i =1,…,n .

Reconstructability & privacy hold by Lagrange interpolation
As for linearity: if

si = p(i) for p(x) = s + a1x +…+ atxt

sí = pʹ(i) for pʹ(x) = s ́+ a1́x +…+ at́xt

then
 si +sí = pʹ́ (i) for pʹ́ (x) = p(x)+pʹ(x) = (s +s ́) +… .

 Using Shamir’s Secret Sharing Scheme

⋮

 Using Shamir’s Secret Sharing Scheme

x1 ® x11 x12 … x1n

x2 ® x21 x22 … x2n

xn ® xn1 xn2 … xnn

⋮⋮

3

 Using Shamir’s Secret Sharing Scheme

x1 ® x11 x12 … x1n

x2 ® x21 x22 … x2n

xn ® xn1 xn2 … xnn

⋮⋮

3

 Using Shamir’s Secret Sharing Scheme

x1 ® x11 x12 … x1n

x2 ® x21 x22 … x2n

xn ® xn1 xn2 … xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y1 y2 yn

3

 Using Shamir’s Secret Sharing Scheme

x1 ® x11 x12 … x1n

x2 ® x21 x22 … x2n

xn ® xn1 xn2 … xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y ¬ y1 y2 yn

3+

+

+

=

 Using Shamir’s Secret Sharing Scheme

x1 ® x11 x12 … x1n

x2 ® x21 x22 … x2n

xn ® xn1 xn2 … xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y ¬ y1 y2 yn

3

Offers privacy of inputs against t dishonest parties

+

+

+

=

 Using Shamir’s Secret Sharing Scheme

x1 ® x11 x12 … x1n

x2 ® x21 x22 … x2n

xn ® xn1 xn2 … xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y ¬ y1 y2 yn

3

Offers privacy of inputs against t dishonest parties

+

+

+

=

Redundancy in shares (y1, …,yn must lie on deg-t poly):  
→ cheating will be detected
→ correctness (but not abort-free nor fair)

 Using Shamir’s Secret Sharing Scheme

x1 ® x11 x12 … x1n

x2 ® x21 x22 … x2n

xn ® xn1 xn2 … xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y ¬ y1 y2 yn

3

Offers privacy of inputs against t dishonest parties

+

+

+

=

Redundancy in shares (y1, …,yn must lie on deg-t poly):  
→ cheating will be detected
→ correctness (but not abort-free nor fair)

If we can enforce consistent sharings (we can!) of xi’s,
set t <n/3, and use Reed-Solomon error correction:
→ correctness (with guaranteed output delivery)

 Using Shamir’s Secret Sharing Scheme

x1 ® x11 x12 … x1n

x2 ® x21 x22 … x2n

xn ® xn1 xn2 … xnn

⋮⋮

+

+

+

=

+

+

+

=

+

+

+

=
y ¬ y1 y2 yn

3

Offers privacy of inputs against t dishonest parties

+

+

+

=

Redundancy in shares (y1, …,yn must lie on deg-t poly):  
→ cheating will be detected
→ correctness (but not abort-free nor fair)

If we can enforce consistent sharings (we can!) of xi’s,
set t <n/3, and use Reed-Solomon error correction:
→ correctness (with guaranteed output delivery)

⇒ Works for addition / linear function evaluation only

 Towards Secure Multiplications

For addition, exploited:

si

sí

si +sí

s

sʹ

s +sʹ

+

=

p(x)

p(x)+pʹ(x)

pʹ(x)

 Towards Secure Multiplications

For addition, exploited:

si

sí

si +sí

s

sʹ

s +sʹ

+

=

Similarly, for multiplication:

si

sí

s

sʹ

·

=
si ·sís ·sʹ

p(x)

p(x)+pʹ(x)

pʹ(x)

p(x)

p(x)·pʹ(x)

pʹ(x)

 Towards Secure Multiplications

For addition, exploited:

si

sí

si +sí

s

sʹ

s +sʹ

+

=

Similarly, for multiplication:

si

sí

s

sʹ

·

=
si ·sís ·sʹ

p(x)

 Degree becomes 2t !

p(x)+pʹ(x)

pʹ(x)

p(x)

p(x)·pʹ(x)

pʹ(x)

 Degree Reduction

Due to [Chaum et al. 88], reinvented again in 2007.

s

deg = 2t

 Degree Reduction

Due to [Chaum et al. 88], reinvented again in 2007.

s

deg = 2t

r r

deg = 2t
deg = t

Produce a deg-2t and a deg-t
sharing of random unknown r.

 Degree Reduction

Due to [Chaum et al. 88], reinvented again in 2007.

-

=

s

deg = 2t

r r

deg = 2t
deg = t

s-r

deg = 2t

Produce a deg-2t and a deg-t
sharing of random unknown r.
Locally compute the deg-2t
sharing of d = s - r.

 Degree Reduction

Due to [Chaum et al. 88], reinvented again in 2007.

-

=

s

deg = 2t

r r

deg = 2t
deg = t

s-r

deg = 2t

Produce a deg-2t and a deg-t
sharing of random unknown r.
Locally compute the deg-2t
sharing of d = s - r.
Reconstruct d = s - r , and  

d = s - r

 Degree Reduction

Due to [Chaum et al. 88], reinvented again in 2007.

-

= =

s

deg = 2t

r r

deg = 2t
deg = t

s-r

deg = 2t

Produce a deg-2t and a deg-t
sharing of random unknown r.
Locally compute the deg-2t
sharing of d = s - r.
Reconstruct d = s - r , and  

d = s - r

+

deg = t

s

add d to the deg-t sharing of r.

 Putting Above (And More) Things Together

Techniques for secure addition & secure multiplication
 ⇒ secure arithmetic

 Putting Above (And More) Things Together

Techniques for secure addition & secure multiplication
 ⇒ secure arithmetic

Together with basic result from theory of computation:
“any computation can be put as an arithmetic computation”

&

 Putting Above (And More) Things Together

Techniques for secure addition & secure multiplication
 ⇒ secure arithmetic

Together with basic result from theory of computation:
“any computation can be put as an arithmetic computation”

Every computation can be done securely, i.e., so that
everyone learns the correct result,
yet nothing more than than,
even if some of the parties are dishonest.

&

⇒

lots of
variations

 Various Relations & Dependencies

Optimal solution being very much application dependent.

corruption
threshold

efficiency

infra-  
structure

abort vs.  
not abort

fairness

verifiability …

 Road Map

WHAT is multiparty computation?

HOW does multiparty computation work?

WHERE can/is multiparty computation be/ used?

 Timeline from Theory to Practice

1980 1990 2000 2010

First MPC protocols

(Im)possibility results

Asymptotic complexity

Practical applicability

 Timeline from Theory to Practice

1980 1990 2000 2010

First MPC protocols

(Im)possibility results

Asymptotic complexity

Practical applicability

Current state of “practical MPC”:
$ companies that offer MPC solutions
$ software libraries that facilitate “writing MPC code”
$ isolated cases of real-life MPC deployment

But: no plug’n’play solution (seems to be inherent)

 Timeline from Theory to Practice

1980 1990 2000 2010

First MPC protocols

(Im)possibility results

Asymptotic complexity

Practical applicability

Current state of “practical MPC”:
$ companies that offer MPC solutions
$ software libraries that facilitate “writing MPC code”
$ isolated cases of real-life MPC deployment

But: no plug’n’play solution (seems to be inherent)

 Real-life MPC Example 1: Trading Contracts

Application scenario:
Farmers in Demark wish to trade sugar beet contracts,
giving them rights to produce/sell to a certain price.
Danisco (buying the beets) needs to be involved as well.

Reference: Secure Multiparty Computation Goes Live (eprint.iacr.org/2008/068)

http://eprint.iacr.org/2008/068

 Real-life MPC Example 1: Trading Contracts

Application scenario:
Farmers in Demark wish to trade sugar beet contracts,
giving them rights to produce/sell to a certain price.
Danisco (buying the beets) needs to be involved as well.

Problem: Farmers do not want to reveal their bids  
 (as they leak info on economic position and productivity).

Reference: Secure Multiparty Computation Goes Live (eprint.iacr.org/2008/068)

http://eprint.iacr.org/2008/068

 Real-life MPC Example 1: Trading Contracts

Application scenario:
Farmers in Demark wish to trade sugar beet contracts,
giving them rights to produce/sell to a certain price.
Danisco (buying the beets) needs to be involved as well.

Problem: Farmers do not want to reveal their bids  
 (as they leak info on economic position and productivity).

Solution: Use MPC
Since 2008, auction runs as a 3-party computation.
Market clearing price computed in a secure way,  
i.e., without revealing individual bids.

Reference: Secure Multiparty Computation Goes Live (eprint.iacr.org/2008/068)

http://eprint.iacr.org/2008/068

 Real-life MPC Example 2: Data Mining

Application scenario:
Researchers in Estonia wanted to study the correlation
between working during university and failing to graduate.
Required: linking databases from Estonian Tax & Customs
Board and from Ministry of Education & Research.

Reference: Students and Taxes: A Privacy-Preserving Study Using Secure Computation (PET 2016)

 Real-life MPC Example 2: Data Mining

Application scenario:
Researchers in Estonia wanted to study the correlation
between working during university and failing to graduate.
Required: linking databases from Estonian Tax & Customs
Board and from Ministry of Education & Research.

Problem: By law, these databases may not to revealed  
 (Estonian Personal Data Protection Act and Taxation Act).

Reference: Students and Taxes: A Privacy-Preserving Study Using Secure Computation (PET 2016)

 Real-life MPC Example 2: Data Mining

Application scenario:
Researchers in Estonia wanted to study the correlation
between working during university and failing to graduate.
Required: linking databases from Estonian Tax & Customs
Board and from Ministry of Education & Research.

Problem: By law, these databases may not to revealed  
 (Estonian Personal Data Protection Act and Taxation Act).

Solution: Use MPC
Statistical analysis was done by a 3-party computation,
without revealing the data bases.

Reference: Students and Taxes: A Privacy-Preserving Study Using Secure Computation (PET 2016)

 Real-life MPC Example 3: Password Checkup

Application scenario:
Have every user name & password you enter on a site
checked against credentials that are known to be unsafe.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)

 Real-life MPC Example 3: Password Checkup

Application scenario:
Have every user name & password you enter on a site
checked against credentials that are known to be unsafe.

Problem: You do not want to reveal your password.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)

 Real-life MPC Example 3: Password Checkup

Application scenario:
Have every user name & password you enter on a site
checked against credentials that are known to be unsafe.

Problem: You do not want to reveal your password.

Solution: Use MPC
Google offers a Password Checkup extension for Chrome,
which uses a 2-party computation to check your
credentials, without Google learning your credentials.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)

 Potential Future Real-life MPC Example

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)

[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

 Potential Future Real-life MPC Example

Application scenario:
Effective HIV treatment is a very complicated matter.
Effectiveness of a drug is related to genotype of HIV virus.
Not well understood: $ >101250 possible HIV virus strains!
Having an “experience database” would be very valuable.

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)

[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

 Potential Future Real-life MPC Example

Application scenario:
Effective HIV treatment is a very complicated matter.
Effectiveness of a drug is related to genotype of HIV virus.
Not well understood: $ >101250 possible HIV virus strains!
Having an “experience database” would be very valuable.

Genotype of HIV virus is very sensitive data.
Doctors are not willing to share treatment (liability).

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)

[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

Problem:

 Potential Future Real-life MPC Example

Application scenario:
Effective HIV treatment is a very complicated matter.
Effectiveness of a drug is related to genotype of HIV virus.
Not well understood: $ >101250 possible HIV virus strains!
Having an “experience database” would be very valuable.

Genotype of HIV virus is very sensitive data.
Doctors are not willing to share treatment (liability).

Solution: Use MPC
We built a MPC prototype for a “experience database”
with support for time-to-treatment-failure queries.

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)

[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

Problem:

 Recap

 Recap

MPC has its roots in seminal work from the 80’s.

 Recap

MPC has its roots in seminal work from the 80’s.

Originally considered to be of theoretical interest only.

 Recap

MPC has its roots in seminal work from the 80’s.

Originally considered to be of theoretical interest only.

Stayed a “hot topic” within the research community.

 Recap

MPC has its roots in seminal work from the 80’s.

Originally considered to be of theoretical interest only.

Stayed a “hot topic” within the research community.

Now at the verge of being practically relevant.

 Recap

MPC has its roots in seminal work from the 80’s.

Originally considered to be of theoretical interest only.

Stayed a “hot topic” within the research community.

Now at the verge of being practically relevant.

Several (though still isolated) real-life deployments.

 Recap

MPC has its roots in seminal work from the 80’s.

Originally considered to be of theoretical interest only.

Stayed a “hot topic” within the research community.

Now at the verge of being practically relevant.

Several (though still isolated) real-life deployments.

In principle: Applicable in lots and lots of scenarios.

 Recap

MPC has its roots in seminal work from the 80’s.

Originally considered to be of theoretical interest only.

Stayed a “hot topic” within the research community.

Now at the verge of being practically relevant.

Several (though still isolated) real-life deployments.

In principle: Applicable in lots and lots of scenarios.

Comes with a “price tag”: considerable loss in efficiency.

 Recap

MPC has its roots in seminal work from the 80’s.

Originally considered to be of theoretical interest only.

Stayed a “hot topic” within the research community.

Now at the verge of being practically relevant.

Several (though still isolated) real-life deployments.

In principle: Applicable in lots and lots of scenarios.

Comes with a “price tag”: considerable loss in efficiency.

No plug’n’play: need for tailor-made solution is inherent

593

Neither approach alone is optimal and hence acceptable to the spymasters.
And simply conducting both kinds of protocol in parallel would be ridiculous, since
it would give the disadvantages of both-a country breaking the cryptosystem
could discover all other countries’ secrets, and any sufficient collusion could also
learn the secrets.

The new techniques presented here allow the best of both approaches in a
single protocol. No collusion of countries is sufficient to obtain secrets of non-
colluders; nor does breaking the cryptosystem yield any information whatsoever.
The only way some countries can learn the secrets of others is for a collusion of a
majority of countries to break the cryptosystem.

Serge Fehr
Centrum Wiskunde & Informatica (CWI) 
Mathematical Institute, Leiden University

On the occasion of the Dijkstra Fellowship being awarded to

David Chaum

CWI Lectures 
November 21 & 22, 2019

© David Chaum, The Spymasters Double Agent Problem, CRYPTO’89.

Multiparty Computation
Collaborate Without

Compromise(ing Your Data)

Thank you for your attention!

