

Centrum Wiskunde & Informatica

CWI Lectures November 21 & 22, 2019

Multiparty Computation Collaborate Without Compromise(ing Your Data)

Serge Fehr

Centrum Wiskunde & Informatica (CWI) Mathematical Institute, Leiden University

On the occasion of the Dijkstra Fellowship being awarded to David Chaum

Universiteit

Centrum Wiskunde & Informatica

CWI Lectures November 21 & 22, 2019

Multiparty Computation Collaborate Without Compromise(ing Your Data)

Serge Fehr

Centrum Wiskunde & Informatica (CWI) Mathematical Institute, Leiden University

On the occasion of the Dijkstra Fellowship being awarded to David Chaum

B

RA

 $S_{A} \oplus R_{A}$

E

Universiteit

Sc BRc

Æ

Rc

Leiden

- WHAT is multiparty computation?
- HOW does multiparty computation work?
- WHERE can/is multiparty computation be/ used?

- WHAT is multiparty computation?
- HOW does multiparty computation work?
- WHERE can/is multiparty computation be/ used?

Protect data from an eavesdropper/hacker/etc.

Protect data from an eavesdropper/hacker/etc.

Means: Encryption, and authentication/signatures

Protect data from an eavesdropper/hacker/etc.

Means: Encryption, and authentication/signatures

Here: Clear distinction between "good participants" and "malicious attacker"

Protect data from an eavesdropper/hacker/etc.

Means: Encryption, and authentication/signatures

Here: Clear distinction between "good participants" and "malicious attacker"

Situation may not always be so clear cut...

• from Alice's perspective: Bob may be honest or malicious

- from Alice's perspective: Bob may be honest or malicious
- from Bob's perspective: Alice may be honest or malicious

- from Alice's perspective: Bob may be honest or malicious
- from Bob's perspective: Alice may be honest or malicious

Goal: Collaborate without the need to trust each other, and so that nothing gets revealed beyond what is necessary.

• while using the data in collaboration with other parties

Goal: Collaborate without the need to trust each other, and so that nothing gets revealed beyond what is necessary.

Example: Yao's "Millionairs' Problem"

Two millionaires want to find out who is richer,

Example: Yao's "Millionairs' Problem"

Two millionaires want to find out who is richer, but without telling each other how much they own: both should learn nothing beyond

 $y \in \{$ "Richard is richer", "Elon is richer (or equally rich)" $\}$

Find out what the majority wants, i.e., tally the votes, without revealing individual opinions/votes: everyone should learn nothing beyond, say,

y = (sum of YES votes, sum of NO votes)

Find the winning bid, while keeping individual bids private. Everyone should learn nothing beyond, say,

y = "identity of the largest bid $\geq m$ if one exists"

i.e., more formally,

 $y = argmax\{w, x, m\}.$

Perform a scientific study on patient data, without the hospital having to reveal such sensitive data.

Etc. etc.

Find Facebook friends that are nearby, without letting Facebook (or friends not nearby) know where you are.

The General Goal

Given:

- *n* parties with private inputs x_1, \ldots, x_n
- a function (or algorithm) f

 $f: \chi_1 \times \ldots \times \chi_n {\rightarrow} \Upsilon$

Given:

- *n* parties with private inputs x_1, \ldots, x_n
- a function (or algorithm) f

Want: compute $y = f(x_1, \ldots, x_n)$, so that

- everyone learns the (correct) result $y = f(x_1, \ldots, x_n)$
- but nothing more (in particular, the x_i remain secret)

Multiparty Computation (MPC)

Fundamental Theorem of MPC (*)

Originally invented/proven by [Yao 80's, Goldwasser-Micali-Wigderson 87, Chaum-Crépeau-Damgård 88, BenOr-Goldwasser-Wigderson 88]

Any function $f: X_1 \times ... \times X_n \rightarrow Y$ can be jointly computed by means of an interactive protocol in a secure way, so that:

Multiparty Computation (MPC)

Fundamental Theorem of MPC (*)

Originally invented/proven by [Yao 80's, Goldwasser-Micali-Wigderson 87, Chaum-Crépeau-Damgård 88, BenOr-Goldwasser-Wigderson 88]

Any function f:X1×...×Xn→Y can be jointly computed by means of an interactive protocol in a secure way, so that:
everyone learns the correct result y=f(x1,...,xn),
yet nothing more than than,

Multiparty Computation (MPC)

Fundamental Theorem of MPC (*)

Originally invented/proven by [Yao 80's, Goldwasser-Micali-Wigderson 87, Chaum-Crépeau-Damgård 88, BenOr-Goldwasser-Wigderson 88]

Any function $f: \chi_1 \times \ldots \times \chi_n \rightarrow \Upsilon$ can be jointly computed by means of an interactive protocol in a secure way, so that: • everyone learns the correct result $y = f(x_1, \ldots, x_n)$, • yet nothing more than than, • even if some of the parties are **dishonest**. Comes in lots of variations U

Fundamental Theorem of MPC (*)

\forall algorithm

Fundamental Theorem of MPC (*)

 \forall algorithm

Fundamental Theorem of MPC (*)

- (*) Comes in lots of different variations, in terms of:
- number of conspiring dishonest parties it tolerates
- assumed capabilities of dishonest parties
- considered communication infrastructure
- (dis)allowing the protocol to abort
- (not) requiring fairness and/or cheater detection
- etc.

Also, comes with a (significant) **overhead** in computation and communication.

Y

- WHAT is multiparty computation?
- HOW does multiparty computation work?
- WHERE can/is multiparty computation be/ used?

MPC: A very first try

Goal: Computing the sum, i.e., $f(x_1, \ldots, x_n) = \sum x_i$

MPC: A very first try

Goal: Computing the sum, i.e., $f(x_1, \ldots, x_n) = \sum x_i$

MPC: A very first try

Goal: Computing the sum, i.e., $f(x_1,...,x_n) = \sum x_i$

MPC: A very first try

Goal: Computing the sum, i.e., $f(x_1,...,x_n) = \sum x_i$

MPC: A very first try

MPC: A very first try

MPC: A very first try

MPC: A very first try

Works sort-of, but:

Works sort-of, but:

"Leader" can lie about the result:

→ no correctness or fairness guaranteed

Works sort-of, but:

"Leader" can lie about the result:

→ no correctness or fairness guaranteed

Two parties together learn input of party in-between → no privacy of inputs against certain coalitions

Works sort-of, but:

"Leader" can lie about the result:

→ no correctness or fairness guaranteed

Two parties together learn input of party in-between → no privacy of inputs against certain coalitions

Any party can stall the procedure \rightarrow not abort-free

Works sort-of, but:

"Leader" can lie about the result:

→ no correctness or fairness guaranteed

Two parties together learn input of party in-between → no privacy of inputs against certain coalitions

Any party can stall the procedure \rightarrow not abort-free

Approach/solution limited to linear functions

Works sort-of, but:

"Leader" can lie about the result:

→ no correctness or fairness guaranteed

Two parties together learn input of party in-between **no privacy** of inputs against certain coalitions

Any party can stall the procedure \rightarrow not abort-free

Approach/solution limited to linear functions

MPC: A second try

MPC: A second try

MPC: A second try

-7 = 45 + (-62) + ... + 18

MPC: A second try

MPC: A second try

MPC: A second try

MPC: A second try

MPC: A second try

MPC: A second try

MPC: A second try

MPC: A second try

MPC: A second try

MPC: A second try

MPC: A second try

•

 $x_n = x_{n1} + x_{n2} + \ldots + x_{nn}$

A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for distributing ("sharing") a secret input sby means of preparing shares s_1, s_2, \ldots, s_n and giving s_i to party P_i , so that:

A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for **distributing** ("sharing") a secret input sby means of preparing shares s_1, s_2, \ldots, s_n and giving s_i to party P_i , so that:

• from all *n* shares s_1, \ldots, s_n , the secret *s* can be recovered

A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for distributing ("sharing") a secret input sby means of preparing shares s_1, s_2, \dots, s_n and giving s_i to party P_i , so that: reconstructability

- from all *n* shares s_1, \ldots, s_n , the secret *s* can be recovered
- given less than n shares, no info on s is revealed

A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for distributing ("sharing") a secret input sby means of preparing shares s_1, s_2, \dots, s_n and giving s_i to party P_i , so that: reconstructability

- from all n shares s_1, \ldots, s_n , the secret s can be recovered
- given **less** than *n* shares, no info on *s* is revealed *privacy*

• if s_1, \ldots, s_n is a sharing of s, and s'_1, \ldots, s'_n of s' then $s_1+s'_1, \ldots, s_n+s'_n$ is a sharing of s+s'. *linearity*

A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for **distributing** ("**sharing**") a secret input *s*

Sharing phase:

Computation phase:

Reconstruction phase:

Sharing phase: Every party P_i shares his input x_i .

Computation phase:

Reconstruction phase:

Sharing phase: Every party P_i shares his input x_i .

Computation phase:

The function f is computed on the shared inputs, resulting in a sharing of $y = f(x_1, ..., x_n)$.

Reconstruction phase:

Sharing phase: Every party P_i shares his input x_i .

Computation phase:

The function f is computed on the shared inputs, resulting in a sharing of $y = f(x_1, ..., x_n)$. So far: only

Reconstruction phase:

So far: only know how to do for linear f.

Sharing phase: Every party P_i shares his input x_i .

Computation phase:

The function f is computed on the shared inputs, resulting in a sharing of $y = f(x_1, ..., x_n)$. So far: only

Reconstruction phase:

So far: only know how to do for linear f.

The share result $y = f(x_1, \ldots, x_n)$ is reconstructed.

Sharing phase: Every party P_i shares his input x_i .

Computation phase:

The function f is computed on the shared inputs, resulting in a sharing of $y = f(x_1, ..., x_n)$. So far: only

Reconstruction phase:

So far: only know how to do for linear *f*.

The share result $y = f(x_1, \ldots, x_n)$ is reconstructed.

Still some issues about dishonest parties lying.

At the core is a cryptographic primitive for distributing ("sharing") a secret input sby means of preparing shares s_1, s_2, \dots, s_n and giving s_i to party P_i , so that reconstructability

- from all n shares, the secret s can be recovered
- given **less** than *n* shares, **no** info on *s* is **revealed** *privacy*
- if s_1, \ldots, s_n is a sharing of s, and s'_1, \ldots, s'_n of s' then $s_1+s'_1, \ldots, s_n+s'_n$ is a sharing of s+s'. *linearity*

Threshold Secret Sharing

At the core is a cryptographic primitive for distributing ("sharing") a secret input sby means of preparing shares s_1, s_2, \dots, s_n and giving s_i to party P_i , so that for some treconstructability

- from all n shares, the secret s can be recovered
- given **less** than *n* shares, **no** info on *s* is **revealed** *privacy*
- if s_1, \ldots, s_n is a sharing of s, and s'_1, \ldots, s'_n of s' then $s_1+s'_1, \ldots, s_n+s'_n$ is a sharing of s+s'. *linearity*

Threshold Secret Sharing

- At the core is a cryptographic primitive for distributing ("sharing") a secret input s by means of preparing shares s_1, s_2, \ldots, s_n and giving s_i to party P_i , so that for some treconstructability any t+1• from **all** *n* shares, the secret *s* can be recovered privacy • given less than n shares, no info on s is revealed
- if s_1, \ldots, s_n is a sharing of s, and s'_1, \ldots, s'_n of s' then $s_1 + s'_1, \ldots, s_n + s'_n$ is a sharing of s + s'. *linearity*

Threshold Secret Sharing

At the core is a cryptographic primitive for distributing ("sharing") a secret input s by means of preparing shares s_1, s_2, \ldots, s_n and giving s_i to party P_i , so that for some t*reconstructability* any t+1• from **all** *n* shares, the secret *s* can be recovered at most t privacy • given **less** than *n* shares, no info on *s* is revealed • if s_1, \ldots, s_n is a sharing of s, and s'_1, \ldots, s'_n of s' then $s_1 + s'_1, \dots, s_n + s'_n$ is a sharing of s + s'. *linearity*

Example: Shamir Secret Sharing

To share s: choose a polynomial

$$p(x) = s + a_1 x + \ldots + a_t x^t$$

with random a_1, \ldots, a_t and constant coefficient s, and set $s_i = p(i)$

for i = 1, ..., n.

Example: Shamir Secret Sharing

To share s: choose a polynomial

$$p(x) = s + a_1 x + \ldots + a_t x^t$$

with random a_1, \ldots, a_t and constant coefficient s, and set

 $s_i = p(i)$

for i = 1, ..., n.

Reconstructability & privacy hold by Lagrange interpolation

Example: Shamir Secret Sharing

To share s: choose a polynomial

$$p(x) = s + a_1 x + \ldots + a_t x^t$$

with random a_1, \ldots, a_t and constant coefficient s, and set

 $s_i = p(i)$

for i = 1, ..., n.

Reconstructability & privacy hold by Lagrange interpolation As for linearity: if

$$s_i = p(i)$$
 for $p(x) = s + a_1x + \dots + a_tx^t$
 $s'_i = p'(i)$ for $p'(x) = s' + a'_1x + \dots + a'_tx^t$

then

$$s_i + s'_i = p''(i)$$
 for $p''(x) = p(x) + p'(x) = (s + s') + \dots$

•

Using Shamir's Secret Sharing Scheme Offers privacy of inputs against t dishonest parties x_{12} x_{1n} \mathcal{X}_1 x_{11} x_{21} \mathcal{X}_{22} \mathcal{X}_2 \mathcal{X}_{2n} • • x_{n2} X_{nn} \mathcal{X}_n x_{n1} \boldsymbol{y} y_n y_1 y_2

Redundancy in shares $(y_1, \ldots, y_n \text{ must lie on deg-} t \text{ poly})$:

- → cheating will be detected
- → correctness (but not abort-free nor fair)

Offers **privacy** of inputs against t dishonest parties

Redundancy in shares $(y_1, \ldots, y_n \text{ must lie on deg-} t \text{ poly})$:

- → cheating will be detected
- → correctness (but not abort-free nor fair)
- If we can enforce consistent sharings (we can!) of x_i 's, set t < n/3, and use Reed-Solomon error correction:
- → correctness (with guaranteed output delivery)

Redundancy in shares $(y_1, \ldots, y_n \text{ must lie on deg-} t \text{ poly})$:

- → cheating will be detected
- → correctness (but not abort-free nor fair)
- If we can enforce consistent sharings (we can!) of x_i 's, set t < n/3, and use Reed-Solomon error correction: \rightarrow correctness (with guaranteed output delivery)
- ⇒ Works for addition / linear function evaluation only

Towards Secure Multiplications

For addition, exploited:

Towards Secure Multiplications

For addition, exploited:

Similarly, for multiplication:

Towards Secure Multiplications

For addition, exploited:

Similarly, for multiplication:

Degree Reduction

Produce a deg-2t and a deg-t sharing of random unknown r.

Degree Reduction

Locally compute the deg-2t sharing of $\delta = s - r$.

Degree Reduction

Reconstruct
$$\delta = s - r$$
 , and

 $\delta = s - r$

Degree Reduction

Reconstruct $\delta = s - r$, and add δ to the deg-*t* sharing of *r*.

 $\delta = s - r$

r deg = 2t

Putting Above (And More) Things Together

Techniques for secure addition & secure multiplication ⇒ secure arithmetic

Putting Above (And More) Things Together

Techniques for secure addition & secure multiplication ⇒ secure arithmetic

&

Together with basic result from theory of computation: "any computation can be put as an arithmetic computation"

Putting Above (And More) Things Together

Techniques for secure addition & secure multiplication ⇒ secure arithmetic

&

Together with basic result from theory of computation: "any computation can be put as an arithmetic computation"

Every computation can be done securely, i.e., so that

- everyone learns the correct result,
- yet nothing more than than,
- even if some of the parties are dishonest.

Various Relations & Dependencies

Optimal solution being very much application dependent.

- WHAT is multiparty computation?
- HOW does multiparty computation work?
- WHERE can/is multiparty computation be/ used?

Timeline from Theory to Practice

Timeline from Theory to Practice

Current state of "practical MPC":

- \exists companies that offer MPC solutions
- \exists software libraries that facilitate "writing MPC code"
- ∃ isolated cases of real-life MPC deployment

But: no plug'n'play solution (seems to be inherent)

Timeline from Theory to Practice

Current state of "practical MPC":

- \exists companies that offer MPC solutions
- \exists software libraries that facilitate "writing MPC code"
- ∃ isolated cases of real-life MPC deployment

But: no plug'n'play solution (seems to be inherent)

Real-life MPC Example 1: Trading Contracts

Application scenario:

- Farmers in Demark wish to trade sugar beet contracts, giving them rights to produce/sell to a certain price.
- Danisco (buying the beets) needs to be involved as well.

Reference: Secure Multiparty Computation Goes Live (eprint.iacr.org/2008/068)

Real-life MPC Example 1: Trading Contracts

Application scenario:

- Farmers in Demark wish to trade sugar beet contracts, giving them rights to produce/sell to a certain price.
- Danisco (buying the beets) needs to be involved as well.

Problem: Farmers **do not want to reveal** their bids (as they leak info on economic position and productivity).

Reference: Secure Multiparty Computation Goes Live (eprint.iacr.org/2008/068)

Real-life MPC Example 1: Trading Contracts

Application scenario:

- Farmers in Demark wish to trade sugar beet contracts, giving them rights to produce/sell to a certain price.
- Danisco (buying the beets) needs to be involved as well.
- **Problem:** Farmers **do not want to reveal** their bids (as they leak info on economic position and productivity).

Solution: Use MPC

- Since 2008, auction runs as a 3-party computation.
- Market clearing price computed in a secure way,
 i.e., without revealing individual bids.

Reference: Secure Multiparty Computation Goes Live (eprint.iacr.org/2008/068)

Real-life MPC Example 2: Data Mining

Application scenario:

- Researchers in Estonia wanted to study the correlation between working during university and failing to graduate.
- Required: linking databases from Estonian Tax & Customs Board and from Ministry of Education & Research.

Reference: Students and Taxes: A Privacy-Preserving Study Using Secure Computation (PET 2016)

Real-life MPC Example 2: Data Mining

Application scenario:

- Researchers in Estonia wanted to study the correlation between working during university and failing to graduate.
- Required: linking databases from Estonian Tax & Customs Board and from Ministry of Education & Research.

Problem: By law, these databases may not to revealed (Estonian Personal Data Protection Act and Taxation Act).

Reference: Students and Taxes: A Privacy-Preserving Study Using Secure Computation (PET 2016)

Real-life MPC Example 2: Data Mining

Application scenario:

- Researchers in Estonia wanted to study the correlation between working during university and failing to graduate.
- Required: linking databases from Estonian Tax & Customs Board and from Ministry of Education & Research.

Problem: By law, these databases may not to revealed (Estonian Personal Data Protection Act and Taxation Act).

Solution: Use MPC

 Statistical analysis was done by a 3-party computation, without revealing the data bases.

Reference: Students and Taxes: A Privacy-Preserving Study Using Secure Computation (PET 2016)

Real-life MPC Example 3: Password Checkup

Application scenario:

• Have every user name & password you enter on a site checked against credentials that are known to be unsafe.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)

Real-life MPC Example 3: Password Checkup

Application scenario:

• Have every user name & password you enter on a site checked against credentials that are known to be unsafe.

Problem: You do not want to reveal your password.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)

Real-life MPC Example 3: Password Checkup

Application scenario:

• Have every user name & password you enter on a site checked against credentials that are known to be unsafe.

Problem: You do not want to reveal your password.

Solution: Use MPC

• Google offers a *Password Checkup* extension for Chrome, which uses a 2-party computation to check your credentials, without Google learning your credentials.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)

[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)

[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

Application scenario:

- Effective HIV treatment is a very complicated matter.
- Effectiveness of a drug is related to genotype of HIV virus.
- Not well understood: $\exists > 10^{1250}$ possible HIV virus strains!
- Having an "experience database" would be very valuable.

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)

[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

Application scenario:

- Effective HIV treatment is a very complicated matter.
- Effectiveness of a drug is related to genotype of HIV virus.
- Not well understood: $\exists > 10^{1250}$ possible HIV virus strains!
- Having an "experience database" would be very valuable.

Problem: • Genotype of HIV virus is very sensitive data.

• Doctors are not willing to share treatment (liability).

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)

[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

Application scenario:

- Effective HIV treatment is a very complicated matter.
- Effectiveness of a drug is related to genotype of HIV virus.
- Not well understood: $\exists > 10^{1250}$ possible HIV virus strains!
- Having an "experience database" would be very valuable.
- **Problem:** Genotype of HIV virus is very sensitive data.
- Doctors are not willing to share treatment (liability).

Solution: Use MPC

• We built a MPC prototype for a "experience database" with support for *time-to-treatment-failure* queries.

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)

Recap

MPC has its roots in seminal work from the 80's.

- MPC has its roots in seminal work from the 80's.
- Originally considered to be of theoretical interest only.

- MPC has its roots in seminal work from the 80's.
- Originally considered to be of theoretical interest only.
- Stayed a "hot topic" within the research community.

- MPC has its roots in seminal work from the 80's.
- Originally considered to be of theoretical interest only.
- Stayed a "hot topic" within the research community.
- Now at the verge of being practically relevant.

- MPC has its roots in seminal work from the 80's.
- Originally considered to be of theoretical interest only.
- Stayed a "hot topic" within the research community.
- Now at the verge of being practically relevant.
- Several (though still isolated) real-life deployments.

- MPC has its roots in seminal work from the 80's.
- Originally considered to be of theoretical interest only.
- Stayed a "hot topic" within the research community.
- Now at the verge of being practically relevant.
- Several (though still isolated) real-life deployments.
- In principle: Applicable in lots and lots of scenarios.

- MPC has its roots in seminal work from the 80's.
- Originally considered to be of theoretical interest only.
- Stayed a "hot topic" within the research community.
- Now at the verge of being practically relevant.
- Several (though still isolated) real-life deployments.
- In principle: Applicable in lots and lots of scenarios.
- Comes with a "price tag": considerable loss in efficiency.

- MPC has its roots in seminal work from the 80's.
- Originally considered to be of theoretical interest only.
- Stayed a "hot topic" within the research community.
- Now at the verge of being practically relevant.
- Several (though still isolated) real-life deployments.
- In principle: Applicable in lots and lots of scenarios.
- Comes with a "price tag": considerable loss in efficiency.
- No plug'n'play: need for tailor-made solution is inherent

Centrur

Mather

Centrum Wiskunde & Informatica

Sc Rc

Æ

B

G

Rc

CWI Lectures November 21 & 22, 2019

Multiparty Computation Collaborate Without Compromise(ing Your Data)

o Informatica (CW)

Thank you for your attention!

RA

On the occasion of the Dijkstra Fellowship being awarded to

Serge Fehr

David Chaum

© David Chaum, The Spymasters Double Agent Problem, CRYPTO'89.

S_A \oplus R_A

E