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Original goal of cryptography:
Protect data from an eavesdropper/hacker/etc.

8

Means: Encryption, and authentication/signatures

Here: Clear distinction between
“good participants” and “malicious attacker”

Situation may not always be so clear cut...
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Cryptography

. -

Sometimes, participants may not trust each other:
® from Alice’s perspective: Bob may be honest or malicious
® from Bob’s perspective: Alice may be honest or malicious

Goal: Collaborate without the need to trust each other,
and so that nothing gets revealed beyond what is necessary.
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Multiparty Computation (M PC)

An advanced cryptographic concept
® for protecting individual data of different parties

® while using the data in collaboration with other parties

4
Goal: Collaborate without the need to trust each other,

and so that nothing gets revealed beyond what is necessary.
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Example:Yao’s “Millionairs’ Problem”™
- >

Two millionaires want to find out who is richer,
but without telling each other how much they own:
both should learn nothing beyond

y € {“Richard is richer”,“Elon is richer (or equally rich)”}
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LExample: Secure Voting
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Find out what the majority wants, i.e., tally the votes,
without revealing individual opinions/votes:
everyone should learn nothing beyond, say,

y = (sum of YES votes, sum of NO votes)



Example: Secure Auctions

| want at

Find the winning bid, while keeping individual bids private.
Everyone should learn nothing beyond, say,

y = “identity of the largest bid > m if one exists”

i.e., more formally,
y = argmazx{w,r,m}.



HOSPITAL
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Perform a scientific study on patient data,
without the hospital having to reveal such sensitive data.
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Etc. etc.
.

Find Facebook friends that are nearby, without letting
Facebook (or friends not nearby) know where you are.
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kThe General Goal

Given:
® n parties with private inputs z;,...,T,
® a function (or algorithm) f

; ; X% X Xp—=Y

i

® everyone learns the (correct) result y= f(x,...,n)

Want: compute y= f(x,...,2n), so that

® but nothing more (in particular, the z; remain secret)
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Fundamental Theorem of MPC ™

Originally invented/proven by [Yao 80’s, Goldwasser-Micali-Wigderson 87,
Chaum-Crépeau-Damgard 88, BenOr-Goldwasser-Wigderson 88]

r ‘I

Any function f:X;X...xX,—7Y can be jointly computed by
means of an interactive protocol in a secure way, so that:
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means of an interactive protocol in a secure way, so that:
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Fundamental Theorem of MPC ™

Originally invented/proven by [Yao 80’s, Goldwasser-Micali-Wigderson 87,
Chaum-Crépeau-Damgard 88, BenOr-Goldwasser-Wigderson 88]
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Any function f:X;X...xX,—7Y can be jointly computed by
means of an interactive protocol in a secure way, so that:

® everyone learns the correct result y= f(x,,...,2n),
® yet nothing more than than,

® even if some of the parties are dishonest.
$2 M

R
gV

(*) Comes in lots of variations
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Fundamental Theorem of MPC ™

V algorithm
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LMuItiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC ™

/\ \ /7 | e . 1

) Comes in lots of different variations, in terms of:
| ® number of conspiring dishonest parties it tolerates
® assumed capabilities of dishonest parties

® considered communication infrastructure

® (dis)allowing the protocol to abort

® (not) requiring fairness and/or cheater detection

® etc.

Also, comes with a (significant) overhead in computation
and communication.

v G
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Goal: Computing the sum, i.e., flz,...,2n) =>_ Ti
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Works sort-of, but: ﬁ g

“Leader’ can lie about the result:
— no correctness or fairness guaranteed
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Approach/solution limited to linear functions
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LMPC:A second try

Goal: Computing the sum, i.e., flz,...,2n) =>_ Ti

7 =45+ (—62)+...+18

| ~

P
NB: Here and later, arithmetic is modular arithmetic 3
(with a suitable modulus), i.e., in a finite ring or field.
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Goal: Computing the sum,i.e., flx,...

e

7 =45+(—62)+...+18
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2 Tp = Ty + Tp2 + ... T Ty,
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LA More Abstract Description

E T = T |+ | T2 T ... T T
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2 Lp = LTn Ln2 Lnn
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2 4 8

Parties can lie about their partial result:
— no correctness or fairness guaranteed

M To = Tor |2 2ma + e
Offers privacy of inputs against arbitrary coalitions f
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kA More Abstract Description )

2 & 8

Parties can lie about their partial result:
— no correctness or fairness guaranteed

B - G- — S T PH R T I D

Offers privacy of inputs against arbitrary coalitions j
- [ [ T ] .
Any party can stall the procedure — not abort-free

&d xn xnl 56772 oo mnn

Yy =Y + Y2 |+ ...+ Un
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i 8 A

Parties can lie about their partial result:
— no correctness or fairness guaranteed

B - G- — S T PH R T I D
Offers privacy of inputs against arbitrary coalitions f
- [ [ T ] .
Any party can stall the procedure — not abort-free

I :E _l xml __I xfn’)l T eee 1 lxrnfn l
Approach/solution limited to linear functions
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LA Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for
distributing (“sharing’”) a secret input s

~

Prime example:

S1;-++;8p random subject to s = s, +...+ 8, (mod p)

T Ctarty

® from all n shares s,,...,s,, the secret s can be recovere

® given less than n shares, no info on s is revealed Privgc
& y

\

° if s,...,5, is a sharing of s,and s,...,s, of s’ then

$1+81,...,8,+ 8y, is a sharing of s+5'.  lineqy;

—_—
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Computation phase:

The function f is computed on the shared inputs,
resulting in a sharing of y= f(xy,...,2n) .

Reconstruction phase:
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Sharing phase:
Every party P; shares his input z;.

Computation phase:

The function f is computed on the shared inputs,

resulting in a sharing of y= f(x1,...,20).  So far: only know how
to do for linear £

Reconstruction phase:

The share result y= f(x,,...,z,) is reconstructed.
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LA Paradigm for Doing MPC

Sharing phase:
Every party P; shares his input z;.

Computation phase:

The function f is computed on the shared inputs,

resulting in a sharing of y= f(x1,...,20).  So far: only know how

to do for lineg
Reconstruction phase: "/

The share result y= f(x,,...,z,) is reconstructed.

c'S.till SO0me issues aboyt
ishonest parties lying,

‘-—..§~___§~
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LThreshoId Secret Sharing

>
At the core is a cryptographic primitive for
distributing (“sharing’) a secret input s
by means of
preparing shares s,,5,,...,s, and giving s; to party P;,
so that for some
reco oy
any t+1 NStructability
® from aH=x shares, the secret s can be recovered
~_ atmost . . .
° giventess-than-u shares, no info on sis revealed Privacy
\

° if s,...,5, is a sharing of s,and s,...,s, of s’ then

$1+81,...,8,+ 8y, is a sharing of s+5'.  lineqy;
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LExampIe: Shamir Secret Sharing

To share s: choose a polynomial
p(x) = s+ ax+...+ a2
with random a,,...,a; and constant coefficient s, and set

si = p(1)

for 1=1,...,n.
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LExample: Shamir Secret Sharing )

To share s: choose a polynomial
p(x) = s+ ax+...+ a2
with random q,,...,a; and constant coefficient s, and set
s; = p(1)
for1=1.....,n.

Reconstructability & privacy hold by Lagrange interpolation
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Example: Shamir Secret Sharing
W >~

To share s: choose a polynomial
p(x) = s+ ax+...+ a2
with random a,,...,a; and constant coefficient s, and set
si = p(i)
for 1=1,...,n.
Reconstructability & privacy hold by Lagrange interpolation
As for linearity: if

s; =p(1) for p(x) =s+ axz+...+ a2
s;=p'(i) for p'(x) =s+ aiz+...+ a2’
then
si+s;=1p"(2) for p'(z) =p(x)+p'(z) = (s+5)+... .
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E Ty — T T2 Lin
+ + +
a Ly — |do1 L2 L2n
+ + +
+ + +
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Using Shamir’s Secret Sharing Scheme

E Ty — T T2 Lin
+ + + +
a Ly — |do1 L2 L2n
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Using Shamir’s Secret Sharing Scheme

- >
Offers privacy of inputs against ¢ dishonest parties
E I — 11 212 L1n
+ |+ [+ +
ﬂ Ly — | d21 L2 Lon
+ |+ [+ +
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Yy <Y Y2 Yn T\/\}
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Using Shamir’s Secret Sharing Scheme

-

>

Offers privacy of inputs against ¢ dishonest parties

4

T

Redundancy in shares (1, ...,4, must lie on deg-t poly):

— cheating will be detected
— correctness (but not abort-free nor fair)

nn

Yn

| 0 W
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Using Shamir’s Secret Sharing Scheme

|

‘

-

Offers privacy of inputs against ¢ dishonest parties

— cheating will be detected
— correctness (but not abort-free nor fair)

T

If we can enforce consistent sharings (we can!) of z;s,
set t<n/3,and use Reed-Solomon error correction:
— correctness (with guaranteed output delivery)

Nz

Yo

nn

Yn

| S

p

4

Redundancy in shares (1, ...,4, must lie on deg-t poly):

4
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LUsing Shamir’s Secret Sharing Scheme )

Offers privacy of inputs against ¢ dishonest parties Y

T

Redundancy in shares (1, ...,4, must lie on deg-t poly):

— cheating will be detected
— correctness (but not abort-free nor fair)

If we can enforce consistent sharings (we can!) of z;s,
set t<n/3,and use Reed-Solomon error correction:

— correctness (with guaranteed output delivery) y
T T oI T2 rnn) | SR

| = Works for addition / linear function evaluation only
e — . — T e ———
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LTowards Secure Multiplications )

For addition, exploited: Similarly, for multiplication:

N \ Degree becomes 2t !,
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LDegree Reduction

Due to [Chaum et al. 88], reinvented again in 2007/.

A

deg =2t
8 /‘\/\J
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LDegree Reduction

Due to [Chaum et al. 88], reinvented again in 2007/.
0 Produce a deg-27 and a deg-¢

deg =21 .
/-\/\'/ sharing of random unknown 7.
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Degree Reduction

S

Due to [Chaum et al. 88], reinvented again in 2007/.

A

Locally compute the deg-21

sharing of 0 =s—-.
e
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Degree Reduction

S

Due to [Chaum et al. 88], reinvented again in 2007/.

A

Reconstruct 6=s—1r, and
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Degree Reduction
- >

Due to [Chaum et al. 88], reinvented again in 2007/.

deg =2t Reconstruct 6 =s—1r, and
add ¢ to the deg-t sharing of r.

A

O=s8—r
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LPutting Above (And More) Things Together

Techniques for secure addition & secure multiplication
= secure arithmetic

&

Together with basic result from theory of computation:
“any computation can be put as an arithmetic computation™

|

Every computation can be done securely, i.e., so that

® everyone learns the correct result,
® yet nothing more than than,
® even if some of the parties are dishonest.
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‘Various Relations & Dependencies )

corruption
threshold -

abort vs.

e Bort efficiency

lots of

fairness variations infra-
| structure

verifiability

Optimal solution being very much application dependent.
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First MPC protocols Asymptotic complexity

G

—S 22— \\
1980 s 1990 2000 2010
(Im)possibility results Practical applicability

Current state of ““practical MPC”’;

® - companies that offer MPC solutions

software libraries that facilitate “writing MPC code”
isolated cases of real-life MPC deployment

But: no plug'n’play solution (seems to be inherent)
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kTimeIine from Theory to Practice )

First MPC protocols Asymptotic complexity

=2 NO
o g’ = o \\
1980 s 1990 2000 2010
(Im)possibility results Practical applicability

Current state of “practical MPC”’:

® 4 companies that offer MPC solutions
® 7 software libraries that facilitate “writing MPC code”
® - jsolated cases of real-life MPC deployment

But: no plug'n’play solution (seems to be inherent)
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Real-life MPC Example |: Trading Contracts

. >
Application scenario:

® Farmers in Demark wish to trade sugar beet contracts,
giving them rights to produce/sell to a certain price.

® Danisco (buying the beets) needs to be involved as well.

Reference: Secure Multiparty Computation Goes Live (eprint.iacr.org/2008/068)
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LReaI-Iife MPC Example |: Trading Contracts

Application scenario:
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Application scenario:

® Farmers in Demark wish to trade sugar beet contracts,
giving them rights to produce/sell to a certain price.

® Danisco (buying the beets) needs to be involved as well.

Problem: Farmers do not want to reveal their bids
(as they leak info on economic position and productivity).

Solution: Use MPC

® Since 2008, auction runs as a 3-party computation.

® Market clearing price computed in a secure way,
i.e., without revealing individual bids.

Reference: Secure Multiparty Computation Goes Live (eprint.iacr.org/2008/068)


http://eprint.iacr.org/2008/068
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Application scenario:

® Researchers in Estonia wanted to study the correlation
between working during university and failing to graduate.

® Required: linking databases from Estonian Tax & Customs
Board and from Ministry of Education & Research.

Reference: Students and Taxes: A Privacy-Preserving Study Using Secure Computation (PET 2016)
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Application scenario:

® Researchers in Estonia wanted to study the correlation
between working during university and failing to graduate.

® Required: linking databases from Estonian Tax & Customs
Board and from Ministry of Education & Research.

Problem: By law, these databases may not to revealed
(Estonian Personal Data Protection Act and Taxation Act).

Solution: Use MPC

® Statistical analysis was done by a 3-party computation,
without revealing the data bases.

Reference: Students and Taxes: A Privacy-Preserving Study Using Secure Computation (PET 2016)
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Application scenario:

® Have every user name & password you enter on a site
checked against credentials that are known to be unsafe.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)
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Application scenario:

® Have every user name & password you enter on a site
checked against credentials that are known to be unsafe.

Problem: You do not want to reveal your password.

Solution: Use MPC

® Google offers a Password Checkup extension for Chrome,
which uses a 2-party computation to check your
credentials, without Google learning your credentials.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)
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[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)
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[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

Application scenario:

® Effective HIV treatment is a very complicated matter.
® Effectiveness of a drug is related to genotype of HIV virus.
® Not well understood: 3 > 10'%2°0 possible HIV virus strains!
® Having an “experience database” would be very valuable.

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)



r ‘I

Potential Future Real-life MPC Example

b o
[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

Application scenario:

® Effective HIV treatment is a very complicated matter.
® Effectiveness of a drug is related to genotype of HIV virus.
® Not well understood: 3 > 10'%2°0 possible HIV virus strains!
® Having an “experience database” would be very valuable.
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® Doctors are not willing to share treatment (liability).
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[Joint work with CWI Crypto, TNO, UvA - Demonstrator only]

Application scenario:

® Effective HIV treatment is a very complicated matter.
® Effectiveness of a drug is related to genotype of HIV virus.
® Not well understood: 3 > 10'%2°0 possible HIV virus strains!
® Having an “experience database” would be very valuable.

Problem: ® Genotype of HIV virus is very sensitive data.
® Doctors are not willing to share treatment (liability).

Solution: Use MPC

® We built a MPC prototype for a “experience database”
with support for time-to-treatment-failure queries.

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIV Treatment (arXiv:1810.01.01107)
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¢ MPC has its roots in seminal work from the 80s.

¢ Originally considered to be of theoretical interest only.
¢ Stayed a “hot topic” within the research community.

¢ Now at the verge of being practically relevant.

¢ Several (though still isolated) real-life deployments.

¢ In principle: Applicable in lots and lots of scenarios.

¢ Comes with a “price tag”: considerable loss in efficiency.

¢ No plug’'n’play: need for tailor-made solution is inherent
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