Multiparty Computation

Collaborate Without Compromise(ing Your Data)

Serge Fehr

Centrum Wiskunde \& Informatica (CWI) Mathematical Institute, Leiden University

On the occasion of the Dijkstra Fellowship being awarded to David Chaum

Multiparty Computation

Collaborate Without Compromise(ing Your Data)

Serge Fehr

Centrum Wiskunde \& Informatica (CWI)
Mathematical Institute, Leiden University

On the occasion of the Dijkstra Fellowship being awarded to David Chaum

© David Chaum, The Spymasters Double Agent Problem, CRYPTO'89.

Road Map

WHAT is multiparty computation?
HOW does multiparty computation work?
© WHERE can/is multiparty computation be/ used?

Road Map

WHAT is multiparty computation?
HOW does multiparty computation work?
© WHERE can/is multiparty computation be/ used?

Cryptography

Original goal of cryptography:
Protect data from an eavesdropper/hacker/etc.

Cryptography

Original goal of cryptography:
Protect data from an eavesdropper/hacker/etc.
Means: Encryption, and authentication/signatures

Cryptography

Original goal of cryptography:
Protect data from an eavesdropper/hacker/etc.
Means: Encryption, and authentication/signatures
Here: Clear distinction between
"good participants" and "malicious attacker"

Cryptography

Original goal of cryptography:
Protect data from an eavesdropper/hacker/etc.
Means: Encryption, and authentication/signatures
Here: Clear distinction between
"good participants" and "malicious attacker"
Situation may not always be so clear cut...

Cryptography

Sometimes, participants may not trust each other:

Cryptography

Sometimes, participants may not trust each other:

- from Alice's perspective: Bob may be honest or malicious

Cryptography

Sometimes, participants may not trust each other:

- from Alice's perspective: Bob may be honest or malicious
- from Bob's perspective:Alice may be honest or malicious

Cryptography

Sometimes, participants may not trust each other:

- from Alice's perspective: Bob may be honest or malicious
- from Bob's perspective:Alice may be honest or malicious

Goal: Collaborate without the need to trust each other, and so that nothing gets revealed beyond what is necessary.

Cryptography

BOB

Multiparty Computation (MPC)

An advanced cryptographic concept

- for protecting individual data of different parties
- while using the data in collaboration with other parties

Goal: Collaborate without the need to trust each other, and so that nothing gets revealed beyond what is necessary.

Example:Yao's "Millionairs' Problem"

Two millionaires want to find out who is richer,

Example:Yao's "Millionairs' Problem"

Two millionaires want to find out who is richer, but without telling each other how much they own: both should learn nothing beyond $y \in\{$ "Richard is richer","Elon is richer (or equally rich)" $\}$

Example: Secure Voting

Find out what the majority wants, i.e., tally the votes, without revealing individual opinions/votes: everyone should learn nothing beyond, say,

$$
y=(\text { sum of } Y E S \text { votes, sum of NO votes })
$$

Example: Secure Auctions

Find the winning bid, while keeping individual bids private. Everyone should learn nothing beyond, say,

$$
y=\text { "identity of the largest bid } \geq m \text { if one exists" }
$$

i.e., more formally,

$$
y=\arg \max \{w, x, m\}
$$

Etc.

Perform a scientific study on patient data, without the hospital having to reveal such sensitive data.

Etc. etc.

Find Facebook friends that are nearby, without letting Facebook (or friends not nearby) know where you are.

The General Goal

Given:

- n parties with private inputs x_{1}, \ldots, x_{n}
- a function (or algorithm) f

$$
f: X_{1} \times \ldots \times X_{n} \rightarrow \mathcal{Y}
$$

The General Goal

Given:

- n parties with private inputs x_{1}, \ldots, x_{n}
- a function (or algorithm) f

$$
f: X_{1} \times \ldots \times X_{n} \rightarrow \mathcal{Y}
$$

Want: compute $y=f\left(x_{1}, \ldots, x_{n}\right)$, so that

- everyone learns the (correct) result $y=f\left(x_{1}, \ldots, x_{n}\right)$
- but nothing more (in particular, the x_{i} remain secret)

Multiparty Computation (MPC)

Fundamental Theorem of MPC (*)

Originally invented/proven by [Yao 80's, Goldwasser-Micali-Wigderson 87, Chaum-Crépeau-Damgård 88, BenOr-Goldwasser-Wigderson 88]

Any function $f: \mathcal{X}_{1} \times \ldots \times \mathcal{X}_{n} \rightarrow \mathcal{Y}$ can be jointly computed by means of an interactive protocol in a secure way, so that:

Multiparty Computation (MPC)

Fundamental Theorem of MPC (*)

Originally invented/proven by [Yao 80's, Goldwasser-Micali-Wigderson 87, Chaum-Crépeau-Damgård 88, BenOr-Goldwasser-Wigderson 88]

Any function $f: \mathcal{X}_{1} \times \ldots \times \mathcal{X}_{n} \rightarrow \mathcal{Y}$ can be jointly computed by means of an interactive protocol in a secure way, so that:

- everyone learns the correct result $y=f\left(x_{1}, \ldots, x_{n}\right)$,
- yet nothing more than than,
${ }^{(*)}$ Comes in lots of variations

Multiparty Computation (MPC)

Fundamental Theorem of MPC (*)

Originally invented/proven by [Yao 80's, Goldwasser-Micali-Wigderson 87, Chaum-Crépeau-Damgård 88, BenOr-Goldwasser-Wigderson 88]

Any function $f: \mathcal{X}_{1} \times \ldots \times \mathcal{X}_{n} \rightarrow \mathcal{Y}$ can be jointly computed by means of an interactive protocol in a secure way, so that:

- everyone learns the correct result $y=f\left(x_{1}, \ldots, x_{n}\right)$,
- yet nothing more than than,
- even if some of the parties are dishonest.

(*) Comes in lots of variations

Multiparty Computation (MPC) - In Clip Arts
Fundamental Theorem of MPC (*)

Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC (*)

Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC (*)

\exists interactive protocol

Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC ${ }^{(*)}$

Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC (*)

x_{i} 's remain secret

Multiparty Computation (MPC) - In Clip Arts

Fundamental Theorem of MPC ${ }^{*}$)

${ }^{(*)}$ Comes in lots of different variations, in terms of:

- number of conspiring dishonest parties it tolerates
- assumed capabilities of dishonest parties
- considered communication infrastructure
- (dis)allowing the protocol to abort
- (not) requiring fairness and/or cheater detection - etc.

Also, comes with a (significant) overhead in computation and communication.

Road Map

WHAT is multiparty computation?

\& HOW does multiparty computation work?
\& WHERE can/is multiparty computation be/ used?

MPC: A very first try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC:A very first try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC: A very first try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC:A very first try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC: A very first try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC: A very first try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC: A very first try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC: A very first try

Analysis

Works sort-of, but:

Analysis

Works sort-of, but:
"Leader" can lie about the result:
\rightarrow no correctness or fairness guaranteed

Analysis

Works sort-of, but:
"Leader" can lie about the result:
\rightarrow no correctness or fairness guaranteed

Two parties together learn input of party in-between \rightarrow no privacy of inputs against certain coalitions

Analysis

Works sort-of, but:
"Leader" can lie about the result:
\rightarrow no correctness or fairness guaranteed

Two parties together learn input of party in-between \rightarrow no privacy of inputs against certain coalitions

Any party can stall the procedure \rightarrow not abort-free

Analysis

Works sort-of, but:
"Leader" can lie about the result:
\rightarrow no correctness or fairness guaranteed

Two parties together learn input of party in-between \rightarrow no privacy of inputs against certain coalitions

Any party can stall the procedure \rightarrow not abort-free

Approach/solution limited to linear functions

Analysis

Works sort-of, but:
"Leader" can lie about the result: \rightarrow no correctness or fairness guaranteed

Two parties together learn input of party in-between no privacy of inputs against certain coalitions

Any party can stall the procedure \rightarrow not abort-free
Approach/solution limited to linear functions

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC: A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

NB: Here and later, arithmetic is modular arithmetic (with a suitable modulus), i.e., in a finite ring or field.

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

$$
\sum 7=45+(-62)+\ldots+18
$$

 $45+39+\ldots+5=26$

$\frac{(-47)}{12}$

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$
$\underbrace{7=45+(-62)+\ldots+18}$

MPC:A second try

Goal: Computing the sum, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i}$

A More Abstract Description

8
 Q

1
8
8
8

A More Abstract Description

88

 8$$
\begin{array}{cl}
\text {. } & x_{1}=x_{11}+x_{12}+\ldots+x_{1 n} \\
\text { (1) } & x_{2}=x_{21}+x_{22}+\ldots+x_{2 n} \\
\vdots & \vdots \\
\text { @ } & x_{n}=x_{n 1}+x_{n 2}+\ldots+x_{n n}
\end{array}
$$

A More Abstract Description

88

8

	$x_{1}=$	x_{11}	$+$	x_{12}	$+\ldots+$	$x_{1 n}$
	$x_{2}=$	x_{21}	+	x_{22}	+ ... +	$x_{2 n}$
	\vdots					
	$x_{n}=$	$x_{n 1}$	+	$x_{n 2}$	+ $+\ldots+$	$x_{n n}$

A More Abstract Description

A More Abstract Description

88
 8

A More Abstract Description

Offers privacy of inputs against arbitrary coalitions

A More Abstract Description

18

a

Parties can lie about their partial result:
\rightarrow no correctness or fairness guaranteed $M \quad r_{\Omega}=\left|r_{n}\right|+\left|r_{n}\right|+\quad+\left|r_{\Omega_{n}}\right|$
Offers privacy of inputs against arbitrary coalitions

A More Abstract Description

ㅇ 8

a

Parties can lie about their partial result:
\rightarrow no correctness or fairness guaranteed
$M \quad r_{n}=\left|r_{n}\right|+\left|r_{a_{n}}\right|+\quad+\left|r_{r_{n}}\right|$
Offers privacy of inputs against arbitrary coalitions

Any party can stall the procedure \rightarrow not abort-free

$$
\begin{gathered}
x_{n}=x_{n 1} \\
= \\
= \\
y=y_{1} \\
y_{1}
\end{gathered}+\begin{gathered}
x_{n 2} \\
= \\
y_{2}
\end{gathered}+\ldots+\begin{array}{|c}
x_{n n} \\
= \\
y_{n}
\end{array}
$$

A More Abstract Description

18

-

Parties can lie about their partial result:
\rightarrow no correctness or fairness guaranteed
$M \quad r_{n}=\left|r_{n}\right|+\left|r_{n n}\right|+\quad+\left|r_{n_{n} \mid}\right|$
Offers privacy of inputs against arbitrary coalitions

Any party can stall the procedure \rightarrow not abort-free $x_{n}=\left|x_{n 1}\right|+x_{n n}\left|+\ldots+\left|x_{n n}\right|\right.$
Approach/solution limited to linear functions

$\mathscr{y}-|$| $\boldsymbol{y} 1$ | $\underline{y} 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for distributing ("sharing") a secret input s
by means of
preparing shares $s_{1}, s_{2}, \ldots, s_{n}$ and giving s_{i} to party P_{i},
so that:

A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for distributing ("sharing") a secret input s
by means of
preparing shares $s_{1}, s_{2}, \ldots, s_{n}$ and giving s_{i} to party P_{i},
so that:
reconstructability

- from all n shares s_{1}, \ldots, s_{n}, the secret s can be recovered

A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for

$$
\text { distributing ("sharing") a secret input } s
$$

by means of
preparing shares $s_{1}, s_{2}, \ldots, s_{n}$ and giving s_{i} to party P_{i},
so that:
reconstructability

- from all n shares s_{1}, \ldots, s_{n}, the secret s can be recovered
- given less than n shares, no info on s is revealed privacy

A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for

distributing ("sharing") a secret input s

by means of
preparing shares $s_{1}, s_{2}, \ldots, s_{n}$ and giving s_{i} to party P_{i}, so that:
reconstructability

- from all n shares s_{1}, \ldots, s_{n}, the secret s can be recovered
- given less than n shares, no info on s is revealed privacy
- if s_{1}, \ldots, s_{n} is a sharing of s, and $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ of s^{\prime} then $s_{1}+s_{1}^{\prime}, \ldots, s_{n}+s_{n}^{\prime}$ is a sharing of $s+s^{\prime}$. linearity

A Useful Tool: (Linear) Secret Sharing

At the core is a cryptographic primitive for distributing ("sharing") a secret input s
Prime example:

$$
s_{1}, \ldots, s_{n} \text { random subject to } s=s_{1}+\ldots+s_{n}(\bmod p)
$$

- from all n shares s_{1}, \ldots, s_{n}, the secret s can be recovered
- given less than n shares, no info on s is revealed privacy
- if s_{1}, \ldots, s_{n} is a sharing of s, and $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ of s^{\prime} then $s_{1}+s_{1}^{\prime}, \ldots, s_{n}+s_{n}^{\prime}$ is a sharing of $s+s^{\prime}$. linearity

A Paradigm for Doing MPC

Sharing phase:

Computation phase:

Reconstruction phase:

A Paradigm for Doing MPC

Sharing phase:
Every party P_{i} shares his input x_{i}.

Computation phase:

Reconstruction phase:

A Paradigm for Doing MPC

Sharing phase:
Every party P_{i} shares his input x_{i}.

Computation phase:

The function f is computed on the shared inputs, resulting in a sharing of $y=f\left(x_{1}, \ldots, x_{n}\right)$.

Reconstruction phase:

A Paradigm for Doing MPC

Sharing phase:
Every party P_{i} shares his input x_{i}.

Computation phase:

The function f is computed on the shared inputs, resulting in a sharing of $y=f\left(x_{1}, \ldots, x_{n}\right)$. So far: only know how

Reconstruction phase:

A Paradigm for Doing MPC

Sharing phase:
Every party P_{i} shares his input x_{i}.

Computation phase:

The function f is computed on the shared inputs, resulting in a sharing of $y=f\left(x_{1}, \ldots, x_{n}\right)$. So far: only know how

Reconstruction phase:

The share result $y=f\left(x_{1}, \ldots, x_{n}\right)$ is reconstructed.

A Paradigm for Doing MPC

Sharing phase:
Every party P_{i} shares his input x_{i}.

Computation phase:

The function f is computed on the shared inputs, resulting in a sharing of $y=f\left(x_{1}, \ldots, x_{n}\right)$. So far: only know how

Reconstruction phase:

 to do for linear f.The share result $y=f\left(x_{1}, \ldots, x_{n}\right)$ is reconstructed.
Still some issues about dishonest parties lying.

Threshold Secret Sharing

At the core is a cryptographic primitive for

distributing ("sharing") a secret input s

by means of
preparing shares $s_{1}, s_{2}, \ldots, s_{n}$ and giving s_{i} to party P_{i},
so that
reconstructability

- from all n shares, the secret s can be recovered
- given less than n shares, no info on s is revealed privacy
- if s_{1}, \ldots, s_{n} is a sharing of s, and $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ of s^{\prime} then $s_{1}+s_{1}^{\prime}, \ldots, s_{n}+s_{n}^{\prime}$ is a sharing of $s+s^{\prime}$. linearity

Threshold Secret Sharing

At the core is a cryptographic primitive for distributing ("sharing") a secret input s
by means of
preparing shares $s_{1}, s_{2}, \ldots, s_{n}$ and giving s_{i} to party P_{i},
so that for some t
reconstructability

- from all n shares, the secret s can be recovered
- given less than n shares, no info on s is revealed privacy
- if s_{1}, \ldots, s_{n} is a sharing of s, and $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ of s^{\prime} then $s_{1}+s_{1}^{\prime}, \ldots, s_{n}+s_{n}^{\prime}$ is a sharing of $s+s^{\prime}$. linearity

Threshold Secret Sharing

At the core is a cryptographic primitive for distributing ("sharing") a secret input s
by means of
preparing shares $s_{1}, s_{2}, \ldots, s_{n}$ and giving s_{i} to party P_{i},
so that for some t
any $t+1$
reconstructability

- from aHt shares, the secret s can be recovered
- given less than n shares, no info on s is revealed privacy
- if s_{1}, \ldots, s_{n} is a sharing of s, and $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ of s^{\prime} then

$$
s_{1}+s_{1}^{\prime}, \ldots, s_{n}+s_{n}^{\prime} \text { is a sharing of } s+s^{\prime} \text {. linearity }
$$

Threshold Secret Sharing

At the core is a cryptographic primitive for distributing ("sharing") a secret input s
by means of
preparing shares $s_{1}, s_{2}, \ldots, s_{n}$ and giving s_{i} to party P_{i},
so that for some t
any $t+1$
reconstructability

- from aHt shares, the secret s can be recovered
at most t
- giventess shares, no info on s is revealed privacy
- if s_{1}, \ldots, s_{n} is a sharing of s, and $s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ of s^{\prime} then $s_{1}+s_{1}^{\prime}, \ldots, s_{n}+s_{n}^{\prime}$ is a sharing of $s+s^{\prime}$. linearity

Example: Shamir Secret Sharing

To share s : choose a polynomial

$$
p(x)=s+a_{1} x+\ldots+a_{t} x^{t}
$$

with random a_{1}, \ldots, a_{t} and constant coefficient s, and set

$$
s_{i}=p(i)
$$

for $i=1, \ldots, n$.

Example: Shamir Secret Sharing

To share s : choose a polynomial

$$
p(x)=s+a_{1} x+\ldots+a_{t} x^{t}
$$

with random a_{1}, \ldots, a_{t} and constant coefficient s, and set

$$
s_{i}=p(i)
$$

for $i=1, \ldots, n$.
Reconstructability \& privacy hold by Lagrange interpolation

Example: Shamir Secret Sharing

To share s : choose a polynomial

$$
p(x)=s+a_{1} x+\ldots+a_{t} x^{t}
$$

with random a_{1}, \ldots, a_{t} and constant coefficient s, and set

$$
s_{i}=p(i)
$$

for $i=1, \ldots, n$.
Reconstructability \& privacy hold by Lagrange interpolation As for linearity: if

$$
\begin{aligned}
& s_{i}=p(i) \text { for } p(x)=s+a_{1} x+\ldots+a_{t} x^{t} \\
& s_{i}^{\prime}=p^{\prime}(i) \text { for } p^{\prime}(x)=s^{\prime}+a_{1}^{\prime} x+\ldots+a_{t}^{\prime} x^{t}
\end{aligned}
$$

then

$$
s_{i}+s_{i}^{\prime}=p^{\prime \prime}(i) \text { for } p^{\prime \prime}(x)=p(x)+p^{\prime}(x)=\left(s+s^{\prime}\right)+\ldots .
$$

Using Shamir's Secret Sharing Scheme

98
 Q

Y
 8

Using Shamir's Secret Sharing Scheme

88

Using Shamir's Secret Sharing Scheme

88

Using Shamir's Secret Sharing Scheme

88

$$
\begin{array}{cccc}
\text { B } & x_{1} & \rightarrow & \begin{array}{c}
x_{11} \\
+ \\
\text { (1) }
\end{array} \\
x_{2} & \rightarrow & \begin{array}{c}
x_{21} \\
+ \\
\vdots
\end{array} & \\
\vdots & & \\
\text { 日 } & x_{n} & \rightarrow & \begin{array}{c}
1 \\
+ \\
x_{n 1} \\
= \\
y_{1} \\
\hline
\end{array}
\end{array}
$$

x_{12}	\ldots	$x_{1 n}$
+		 x_{22} + + $x_{2 n}$ $x_{n 2}$ $=$ y_{2}
	\ldots	
+		
$x_{n n}$		
+		
y_{n}		

Using Shamir's Secret Sharing Scheme

88

x_{12}	\ldots
+	\ldots
x_{22}	\ldots
+	
+	
$x_{n 2}$	\ldots
$=$	
y_{2}	

$x_{1 n}$
+
$x_{2 n}$
+
+
$x_{n n}$
$=$
y_{n}

Using Shamir's Secret Sharing Scheme

Offers privacy of inputs against t dishonest parties

Using Shamir's Secret Sharing Scheme

Offers privacy of inputs against t dishonest parties
Redundancy in shares (y_{1}, \ldots, y_{n} must lie on deg- t poly):
\rightarrow cheating will be detected
\rightarrow correctness (but not abort-free nor fair)

कn कn	$w^{n} 2$	$\omega_{n n}$	i
$=\quad=$	$=$	-	
$y \leftarrow y_{1}$	y_{2}	y_{n}	

Using Shamir's Secret Sharing Scheme

Offers privacy of inputs against t dishonest parties
Redundancy in shares (y_{1}, \ldots, y_{n} must lie on deg- t poly):
\rightarrow cheating will be detected
\rightarrow correctness (but not abort-free nor fair)
If we can enforce consistent sharings (we can!) of x_{i} 's, set $t<n / 3$, and use Reed-Solomon error correction:
\rightarrow correctness (with guaranteed output delivery)
$\stackrel{w_{n}}{=}$

Using Shamir's Secret Sharing Scheme

Offers privacy of inputs against t dishonest parties
Redundancy in shares (y_{1}, \ldots, y_{n} must lie on deg- t poly):
\rightarrow cheating will be detected
\rightarrow correctness (but not abort-free nor fair)
If we can enforce consistent sharings (we can!) of x_{i} 's, set $t<n / 3$, and use Reed-Solomon error correction:
\rightarrow correctness (with guaranteed output delivery)
\Rightarrow Works for addition / linear function evaluation only

Towards Secure Multiplications

For addition, exploited:

Towards Secure Multiplications

For addition, exploited:

Similarly, for multiplication:

Towards Secure Multiplications

For addition, exploited:

Similarly, for multiplication:

Degree Reduction

Due to [Chaum et al. 88], reinvented again in 2007.

Degree Reduction

Due to [Chaum et al. 88], reinvented again in 2007.

Produce a deg- $2 t$ and a deg- t sharing of random unknown r.

Degree Reduction

Due to [Chaum et al. 88], reinvented again in 2007.

Locally compute the deg- $2 t$ sharing of $\delta=s-r$.

Degree Reduction

Due to [Chaum et al. 88], reinvented again in 2007.

Reconstruct $\delta=s-r$, and

Degree Reduction

Due to [Chaum et al. 88], reinvented again in 2007.

Reconstruct $\delta=s-r$, and add δ to the deg- t sharing of r.

Putting Above (And More) Things Together

Techniques for secure addition \& secure multiplication
\Rightarrow secure arithmetic

Putting Above (And More) Things Together

Techniques for secure addition \& secure multiplication
\Rightarrow secure arithmetic

\&

Together with basic result from theory of computation: "any computation can be put as an arithmetic computation"

Putting Above (And More) Things Together

Techniques for secure addition \& secure multiplication
\Rightarrow secure arithmetic
\&

Together with basic result from theory of computation: "any computation can be put as an arithmetic computation"

$$
\Downarrow
$$

Every computation can be done securely, i.e., so that

- everyone learns the correct result,
- yet nothing more than than,
- even if some of the parties are dishonest.

Various Relations \& Dependencies

Optimal solution being very much application dependent.

Road Map

WHAT is multiparty computation?
\& HOW does multiparty computation work?
© WHERE can/is multiparty computation be/ used?

Timeline from Theory to Practice

First MPC protocols Asymptotic complexity

(Im)possibility results
Practical applicability

Timeline from Theory to Practice

First MPC protocols Asymptotic complexity

(Im)possibility results
Practical applicability
Current state of "practical MPC":

- \exists companies that offer MPC solutions
- \exists software libraries that facilitate "writing MPC code"
- \exists isolated cases of real-life MPC deployment

But: no plug'n'play solution (seems to be inherent)

Timeline from Theory to Practice

First MPC protocols Asymptotic complexity

(Im)possibility results
Practical applicability
Current state of "practical MPC":

- \exists companies that offer MPC solutions
- \exists software libraries that facilitate "writing MPC code"
- \exists isolated cases of real-life MPC deployment

But: no plug'n'play solution (seems to be inherent)

Real-life MPC Example I:Trading Contracts

Application scenario:

- Farmers in Demark wish to trade sugar beet contracts, giving them rights to produce/sell to a certain price.
- Danisco (buying the beets) needs to be involved as well.

Real-life MPC Example I:Trading Contracts

Application scenario:

- Farmers in Demark wish to trade sugar beet contracts, giving them rights to produce/sell to a certain price.
- Danisco (buying the beets) needs to be involved as well.

Problem: Farmers do not want to reveal their bids (as they leak info on economic position and productivity).

[^0]
Real-life MPC Example I:Trading Contracts

Application scenario:

- Farmers in Demark wish to trade sugar beet contracts, giving them rights to produce/sell to a certain price.
- Danisco (buying the beets) needs to be involved as well.

Problem: Farmers do not want to reveal their bids (as they leak info on economic position and productivity).

Solution: Use MPC

- Since 2008, auction runs as a 3-party computation.
- Market clearing price computed in a secure way, i.e., without revealing individual bids.

[^1]
Real-life MPC Example 2: Data Mining

Application scenario:

- Researchers in Estonia wanted to study the correlation between working during university and failing to graduate.
- Required: linking databases from Estonian Tax \& Customs Board and from Ministry of Education \& Research.

Reference: Students and Taxes: A Privacy-Preserving Study Using Secure Computation (PET 2016)

Real-life MPC Example 2: Data Mining

Application scenario:

- Researchers in Estonia wanted to study the correlation between working during university and failing to graduate.
- Required: linking databases from Estonian Tax \& Customs Board and from Ministry of Education \& Research.

Problem: By law, these databases may not to revealed (Estonian Personal Data Protection Act and Taxation Act).

[^2]
Real-life MPC Example 2: Data Mining

Application scenario:

- Researchers in Estonia wanted to study the correlation between working during university and failing to graduate.
- Required: linking databases from Estonian Tax \& Customs Board and from Ministry of Education \& Research.

Problem: By law, these databases may not to revealed (Estonian Personal Data Protection Act and Taxation Act).

Solution: Use MPC

- Statistical analysis was done by a 3-party computation, without revealing the data bases.

[^3]
Real-life MPC Example 3: Password Checkup

Application scenario:

- Have every user name \& password you enter on a site checked against credentials that are known to be unsafe.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)

Real-life MPC Example 3: Password Checkup

Application scenario:

- Have every user name \& password you enter on a site checked against credentials that are known to be unsafe.

Problem: You do not want to reveal your password.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)

Real-life MPC Example 3: Password Checkup

Application scenario:

- Have every user name \& password you enter on a site checked against credentials that are known to be unsafe.

Problem: You do not want to reveal your password.
Solution: Use MPC

- Google offers a Password Checkup extension for Chrome, which uses a 2-party computation to check your credentials, without Google learning your credentials.

Reference: Helping Organisations Do More Without Collecting Data (Google Security Blog)

Potential Future Real-life MPC Example

 [Joint work with CWI Crypto,TNO, UvA - Demonstrator only]
Potential Future Real-life MPC Example

[Joint work with CWI Crypto,TNO, UvA - Demonstrator only]
Application scenario:

- Effective HIV treatment is a very complicated matter.
- Effectiveness of a drug is related to genotype of HIV virus.
- Not well understood: $\exists>10^{1250}$ possible HIV virus strains!
- Having an "experience database" would be very valuable.

Potential Future Real-life MPC Example

[Joint work with CWI Crypto,TNO, UvA - Demonstrator only]
Application scenario:

- Effective HIV treatment is a very complicated matter.
- Effectiveness of a drug is related to genotype of HIV virus.
- Not well understood: $\exists>10^{1250}$ possible HIV virus strains!
- Having an "experience database" would be very valuable.

Problem: - Genotype of HIV virus is very sensitive data.

- Doctors are not willing to share treatment (liability).

Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIVTreatment (arXiv:I8I0.0।.0।I07)

Potential Future Real-life MPC Example

[Joint work with CWI Crypto,TNO, UvA - Demonstrator only]
Application scenario:

- Effective HIV treatment is a very complicated matter.
- Effectiveness of a drug is related to genotype of HIV virus.
- Not well understood: $\exists>10^{1250}$ possible HIV virus strains!
- Having an "experience database" would be very valuable.

Problem: - Genotype of HIV virus is very sensitive data.

- Doctors are not willing to share treatment (liability).

Solution: Use MPC

- We built a MPC prototype for a "experience database" with support for time-to-treatment-failure queries.

[^4]Recap

Recap

\& MPC has its roots in seminal work from the 80's.

Recap

© MPC has its roots in seminal work from the 80 's.
Originally considered to be of theoretical interest only.

Recap

© MPC has its roots in seminal work from the 80 's.
© Originally considered to be of theoretical interest only.
\& Stayed a "hot topic" within the research community.

Recap

© MPC has its roots in seminal work from the 80 's.
Originally considered to be of theoretical interest only.

- Stayed a "hot topic" within the research community.
\& Now at the verge of being practically relevant.

Recap

© MPC has its roots in seminal work from the 80 's.
Originally considered to be of theoretical interest only.

- Stayed a "hot topic" within the research community.

Now at the verge of being practically relevant.
© Several (though still isolated) real-life deployments.

Recap

\& MPC has its roots in seminal work from the 80's.
Originally considered to be of theoretical interest only.
\& Stayed a "hot topic" within the research community.
Now at the verge of being practically relevant.
\& Several (though still isolated) real-life deployments.
\& In principle:Applicable in lots and lots of scenarios.

Recap

\& MPC has its roots in seminal work from the 80's.
Originally considered to be of theoretical interest only.
Stayed a "hot topic" within the research community.
Now at the verge of being practically relevant.
© Several (though still isolated) real-life deployments.
I In principle:Applicable in lots and lots of scenarios.
© Comes with a "price tag": considerable loss in efficiency.

Recap

© MPC has its roots in seminal work from the 80's.
© Originally considered to be of theoretical interest only.

- Stayed a "hot topic" within the research community.

Now at the verge of being practically relevant.
\& Several (though still isolated) real-life deployments.
\& In principle:Applicable in lots and lots of scenarios.
\& Comes with a "price tag": considerable loss in efficiency.
© No plug'n'play: need for tailor-made solution is inherent

Multiparty Computation
 Collaborate Without Compromise(ing Your Data)

Universiteit
Leiden

Serge Fehr

Centrur
Mathen

Thank you for your attention!

On the occasion of the Dijkstra Fellowship being awarded to
© David Chaum, The Spymasters Double Agent Problem, CRYPTO'89.

[^0]: Reference: Secure Multiparty Computation Goes Live (eprint.iacr.org/2008/068)

[^1]: Reference: Secure Multiparty Computation Goes Live (eprint.iacr.org/2008/068)

[^2]: Reference: Students and Taxes: A Privacy-Preserving Study Using Secure Computation (PET 2016)

[^3]: Reference: Students and Taxes: A Privacy-Preserving Study Using Secure Computation (PET 2016)

[^4]: Reference: A New Approach to Privacy-Preserving Clinical Decision Support Systems for HIVTreatment (arXiv:I8I0.0।.0|I07)

