
ABC vs. Python

Lambert Meertens

CWI Lectures on Programming

21 November 2019

ABC is the precursor of Python

Nick Heath, “Python is eating the world”.

ZDnet, August 6, 2019

Which Python features come from ABC?

● The infamous colon
● The equally infamous indentation
● The prompt (>>>)
● and …?

Thesis:

All good things in Python come from ABC.

Corollary:

All bad things in Python come from Guido.

Differences and commonalities

The divergence between ABC and Python stems
mainly from differences in their design objectives.

I’ll come to these differences. But let me focus
first on the commonalities.

Commonalities

The commonality between ABC and Python
stems mainly from the commonality in their design
philosophy and design rules.

(Aside:

Language design is not an exact science.

That is why I prefer the term “design philosophy ”
over “design methodology ”.)

Design philosophy

A designer needs to make hundreds of design
decisions, choosing from an ocean of possibilities.
How to choose judiciously from this plethora?
● Awareness of the design space and willingness

to explore it.
● Awareness of trade-offs and the need to strike a

balance.
● Recognizing the value of consistency (but not a

foolish consistency...).

Design rules

The design rules governing the design of ABC
crystallized out during the design process.

To understand and appreciate these design rules,
it is essential to understand the design objectives.

To explain the design objectives, I need to go
back to the origins of the ABC project.

Origins of the ABC project

Dramatis personae:

Leo Geurts, programmer

Lambert Meertens, junior researcher

Location:

Mathematical Centre

Period:

1968–1975

Computer art exploration

1968: Lambert Meertens

String quartet No. 1 in C major

1970: Louis Andriessen, Leo Geurts,

Lambert Meertens

Sonata Opus 2 No. 1

Computer art exploration (continued)

1970: Leo Geurts, Lambert Meertens

Kristalstructuren

Computer Arts Society

1968: Founded in London

1970: Dutch branch (CASH)

Activities:
● newsletter (PAGE)
● meetings
● conferences
● exhibitions
● practical courses

Practical courses

● Most participants had never used a computer.
● We taught TELCOMP II, very similar to BASIC.
● The participants used teletypes, which were

hooked up to a time-sharing service.
● The number of available teletypes was rather

limited, so participants had to take turns.

Report on a
1970 course

BASIC in the 60s and 70s

We could teach the language in half a day.

However, the language was unstructured;
programs became spaghetti code.

Most participants struggled with even the simplest
programs.

The ABC design objectives

This explains why, back in 1975, Leo and I started
the ABC project (then named B project).

Aim: to design a new “beginners’ programming
language” as a replacement of BASIC. This new
language was to be:
• simple to learn and to use ;
• suitable for conversational use (interactive) ;
• suitable for structured programming.

What is a “beginner”?

• Basic assumption: someone who does not know
any programming language and is not familiar
with even basic programming concepts

• To serve such users:
– hide low-level implementation details;
– instead, provide powerful high-level (task-

oriented) features;
– make the implementation interactive.

Simplicity clarified

● Users need to learn only a small number of
constructions.

● The concrete syntax of these constructions is
suggestive of their meanings, making them easy
to read and easy to remember.

● The semantics of each construction is as
straightforward as can be.

● Learning more complicated concepts can be
postponed until the simpler ones are
understood.

Suitability for conversational use
clarified
● The system signals errors as soon as possible,

rather than wait for the program to be
completed.

● It displays one face to the user, not a suite of
subsystems (editor, file system, compiler), each
having their own conventions and reactions.

● It does not leave the user uncertain whose turn it
is but prompts promptly whenever user input is
required.

On the importance of interactiveness

A quote from the first Python paper (1991):

One of Python’s strengths is the ability for the user to type in
some code and immediately run it: no compilation or linking is
necessary. Interactive performance is further enhanced by
Python’s concise, clear syntax, its very-high-level data types,
and its lack of declarations (which is compensated by run-time
type checking). All this makes programming in Python feel like
a leisure trip compared to the hard work involved in writing and
debugging even a smallish C program.

Interactively testing remote servers using the Python programming language
 Guido van Rossum en Jelke de Boer

Suitability for structured programming
clarified

• The language allows you to write programs in
such a way that it is easy to understand the
functionality of the program by looking at the
program text. In particular:

– the various constructions faithfully embody
intuitive task-oriented abstractions;

– the language makes it easy to subdivide a
task into subtasks;

– the language allows the user to define
problem-oriented abstractions.

Design by iteration

1975:

1978:

1979:

1985: = ABC

1982: Two new faces on the team

• Steven Pemberton (1 September, attracted as a
guest researcher for one year)

• Guido van Rossum (1 December)

The design of the language at the time (B2) was
already fairly advanced; apart from the inbuilt data
types, it was very close to ABC, but we still did a
lot of polishing to give it a high gloss.

Each proposed language change was extensively
discussed by the whole team.

The ABC design rules

The design rules governing the design of ABC
crystallized out during the design process.

These rules are “rules of thumb” rather than a set
of principles that can be followed blindly. There
are trade-offs, and finding good solutions often
requires creativity.

The aim of the rules is to keep the language both
simple to learn and simple to use.

The list of design rules

● Economy-of-Tools Rule
● Fair-Expectation Rule
● Uniformity Rule
● Logic-Error Rule
● One-Concept-at-a-Time Rule
● Semantic-Distance Rule

Economy-of-Tools Rule

The number of concepts (functions, features etc.)
is small, but the concepts themselves are
powerful and on the appropriate, task-oriented,
abstraction level.

For example: ABC has only five types:
● number
● text (string)
● compound (tuple)
● list
● table (dictionary)

generality influenced
by SETL

Fair-Expectation Rule

If a concept may be lawfully used in context X,
and the same concept is (conceptually) applicable
in context Y, then it may be lawfully used in
context Y, with the expected meaning.

Example of violation in ALGOL 60:

procedure P(i); integer i; …

P(123);

integer i;

i := 123;

procedure Q(s); string s; …

Q(‘hello’);

string s;

s := ‘hello’;a r

Uniformity Rule

Similar concepts are embodied (invoked) in a
similar way.

similar things should be said in similar ways

Signal and noise in programming language.

 P. J. Plauger

Logic-Error Rule

The embodiments of the concepts are such that errors cannot
arise if this can be prevented by choosing the right
embodiment. Insofar this is impossible, making errors is made
hard. Errors are signalled, if possible, on concept invocation
before anything else happens. If this is impossible, they are
signalled before disaster strikes, and the action leading to
disaster is aborted.

Therefore:
● No dangling ELSE problem and suchlike
● Static checks where possible
● Dynamic checks otherwise

Errors should never pass silently.

PEP 20 – The Zen of Python Tim Peters

One-Concept-at-a-Time Rule

Concepts do not mutually depend on each other
to fully understand them.

(Only important for learning, not for use.)

Semantic-Distance Rule

No two concepts of the system are almost the
same.

Corollary:

There should be one-- and preferably only
one --obvious way to do it.

Although that way may not be obvious at
first unless you're Dutch.

PEP 20 – The Zen of Python Tim Peters

different things should be said differently.

Signal and noise in programming language.

P. J. Plauger

Comparison of design objectives

ABC Python

target users beginners Guido*

target use learning to
program

scripting

——————————————

* and people like Guido

(And Python started life as a one-person
skunkworks project.)

The essential Guido nature

Guido may be an ex-BDFL, but he was, is and
remains a BHFL.

Unfortunately, no one understands the original
use of the term hacker anymore.

Another similarity: design by iteration

Difference:

For Python, the process is driven by the user
community.

Extra: The origins of indentation

● ISWIM (Landin 1966, an expression-oriented
“paperware” language) introduced indentation
for grouping, similar to the conventions of
“mathematical communication”, which “require
no explanation”.

● SASL (Turner 1972, a variant of the applicative
subset of ISWIM) implemented this.

The origins of indentation (continued 1)

Signal and noise in programming language (1975)

P. J. Plauger

The origins of indentation (continued 2)

Plauger’s argument is essentially one about the
improved readability of the program text: the
layout of the text faithfully represents its meaning.

Readability, rather than the convention in
mathematical communication, was also the
motivation for adopting this in ABC.

After all, as we all know:

Readability counts,

PEP 20 – The Zen of Python Tim Peters

The origins of indentation (continued 3)

The syntax of B0 is such that a new line where

forbidden or no new line (but a space) where
obligatory, never changes a valid program into
another valid program. As a consequence, a B0

editor that is aware of the syntax and
automatically indents at each new line, may also
automatically increase the indentation level at
each new line which is not obligatory, thus
indicating continuation of the running statement.
Similarly, at the end of each statement the editor
can restore the old indentation level. As a
result, B0 programs always have a reasonable

layout.

Designing a beginners’ programming language (1976)

Leo Geurts and Lambert Meertens

© The New Yorker 1993 – with apologies to Peter Steiner

	Slide 1
	Slide 2
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

