
The Past, Present, and Future of my "Python Optional"
Physics Experiment

David M Beazley

https://www.dabeaz.com

@dabeaz

CWI Lectures, November 21, 2019

https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com

CO-CONSPIRATORS

Peter Lomdahl

Tim Germann

Niels Grønbech-Jensen

Brad Holian

Shujia Zhou

Pablo Tamayo

This one

WHY?!?!?

In 1996, I modified
Python to run on a

supercomputer

0 25 50 75 100

Python Quite Literally Everything Else [1]

PERFORMANCE (FLOPS)

[1] Random Hacker Site Comment

"Surely not"

- Beazley & Lomdahl (1994)

"Unfortunately, it seems that many of the
efforts to develop tools and languages
have sacrificed code performance in
favor of portability or ease of use. [...]
Compromising performance [...] seems
unacceptable."

Debugging and Performance Tuning for Parallel Computing Systems,
IEEE Computer Society, (1996)

SUPERCOMPUTER
CENTERS,

SHIMMERING

PROCESSORS PROCESSING

SERIOUS
SCIENCE

MISSIONS

Nevertheless.... there it was.
Python running on a

supercomputer.

WHO LET THIS HAPPEN?!?!?

$ python
Python 1.3 (Nov 21 1996) [GCC 4.8.4]
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> print "Hello World"
Hello World
>>>

Advanced Computing Laboratory (ACL)

"In 1989, seeing the potential of
new technology for addressing the
"Grand Challenge" computational
programs in science and
engineering, Los Alamos set up the
Advanced Computing Laboratory
as a kind of proving ground for
testing Massively Parallel
Processors (MPPs) on real
problems."

Who uses a "proving ground?"

THEORETICAL
DIVISION

(CONDENSED MATTER PHYSICS GROUP)

MY DESK

THE CODE : SPaSM
•A "greenfield" project started in 1992
•Written in ANSI C
•Goal: Dislocation dynamics in materials

•How? Short-range molecular dynamics

THE PLAYERS

•Peter Lomdahl (Principal).

•David Beazley (Ph.D Student).

•Brad Holian.

•Tim Germann

Background: Electrical engineering, Mathematical Physics.
Was also the Group Unix Systems Administrator

Background: Applied mathematics, numerical analysis
Past job: Writing graphics device drivers in x86 for use in Modula-2

Background: Computational Chemistry

Background: Computer Science, Computational Chemistry
The current "owner" of SPaSM

THE MACHINE

THE MACHINE

SPECIFICATIONS

User Interface

Testing

Testing Hell

Debugging

Tuning

Our Workflow

Batch job

Our Workflow

Batch job

3-6 hours Data Files

Our Workflow

Batch job

3-6 hours

repeat

Data Files

(10-20 GB)

Our Workflow

Batch job

3-6 hours

repeat

Data Files

(10-20 GB)

FTP (10 Mbit/s)

Our Workflow

Batch job

3-6 hours

repeat

Data Files

(10-20 GB)

FTP (10 Mbit/s)

4 GB

NFS

Our Workflow

Batch job

3-6 hours

repeat

Data Files

(10-20 GB)

FTP (10 Mbit/s)

walking 4 GB

NFS

Our Workflow

Batch job

3-6 hours

repeat

Data Files

(10-20 GB)

FTP (10 Mbit/s)

walking 4 GB

NFShours

Our Workflow

Batch job

3-6 hours

repeat

Data Files

(10-20 GB)

FTP (10 Mbit/s)

walking 4 GB

NFShours

Tweak

Our Workflow

Batch job

3-6 hours

repeat

Data Files

(10-20 GB)

FTP (10 Mbit/s)

walking 4 GB

NFShours

Tweak

A Mess!

A Problem: Tools

"Closing the gap between potential and
measured performance of computing systems

is a continuing problem of fundamental
importance. The difficulty of the problem is
exacerbated by the increasing complexity of
systems as they become more parallel, more

heterogeneous, and more distributed."

Debugging and Performance Tuning for Parallel Computing Systems,
IEEE Computer Society, (1996)

A Problem: Tools

"Closing the gap between potential and
measured performance of computing systems

is a continuing problem of fundamental
importance. The difficulty of the problem is
exacerbated by the increasing complexity of
systems as they become more parallel, more

heterogeneous, and more distributed."

Debugging and Performance Tuning for Parallel Computing Systems,
IEEE Computer Society, (1996)

"After investing substantial effort in
developing a program, its execution

may yield only a small fraction of
peak system performance."

1. Make it work fast.
2. Make it work.

Is PERFORMANCE the
actual problem?

1995

(I had finished the first year of a computer science Ph.D.)

Compilers!

Functional
Programming,
Type systems.

Systems

A distracted
supervisor!

????????

Create a
Language

A REPL is born!

Don't worry, all of this is "optional."

Physics

Batch Processing

Physics

Scripting

Physics

•It's just a new "main". Move along...

•It fact, it was better than "optional."

•It was all automagically created!

Automatic Code Generation

The Vision

Physics

Batch Processing

Physics

Scripting

Physics

Physics

Scripting

Analysis Visualization Debugging

https://www.youtube.com/watch?v=d5f9-Y3Wtbc

(Dave describing the system at LLNL in 1996)

The "Visualization" System

Workstation

The "Visualization" System

Workstation Supercomputer

GIF Encoder

Copy/Paste

The "Visualization" System

Workstation Supercomputer

GIF Encoder

Copy/Paste

Graphics
x86 device

driver project
(from 1990)

Adapt &

 Extend

The "Visualization" System

Workstation Supercomputer

GIF Encoder

Copy/Paste

Graphics
x86 device

driver project
(from 1990)

Adapt &

 Extend

SocketsImage "Server"
GIF Images

Internet

polling

The "Visualization" System

Workstation Supercomputer

GIF Encoder

Copy/Paste

Graphics
x86 device

driver project
(from 1990)

Adapt &

 Extend

SocketsImage "Server"
GIF Images

Internet

polling

Visualize "Trackball"
(OpenGL)

Hack

The "Visualization" System

Workstation Supercomputer

GIF Encoder

Copy/Paste

Graphics
x86 device

driver project
(from 1990)

Adapt &

 Extend

SocketsImage "Server"
GIF Images

Internet

polling

Scripting

Users ("us")

Visualize "Trackball"
(OpenGL)

Hack

The "Visualization" System

Workstation Supercomputer

GIF Encoder

Copy/Paste

Graphics
x86 device

driver project
(from 1990)

Adapt &

 Extend

SocketsImage "Server"
GIF Images

Internet

polling

Scripting

Users ("us")

It was
awesome!

Visualize "Trackball"
(OpenGL)

Hack

"Imagine a physics program written in
Fortran, whose user interface is a

programming language (not Fortran, of
course, but imagine something similar).
In this programming language you can
create variables, assign values, loop, if-

test, define functions, and so on."

Other scripting

1996
The stage is set

NUMERICAL PYTHON

Paul F. Dubois, Konrad Hinsen,
and James Hugunin

Department Editor:
Paul F. Dubois
duboisl@llnl.gov

P
)1hon is a small and easy-la-learn hmgl!age with surpris-
ing capabilities. It is an interpreted objecl-orienT.ed script-

ing language and has a full range of sophisticated features
such as first-class functions, garbage collection, and excep-
tion handling. Python has properties that m"ke it especially
appealing for scientific programming:
Python is quite simple and easy to learn, but it is a full and
complete language.
It is simple to extend Python with your own compiled
objects and functions.
Python is portable, from Unix to Windows 95 to Linux to
Macintosh.
Python is free, with no license required e'/en if you make
a commercial product out of it. _
Python has a large user-contributed library of "modules"
These modules cover a wide variety of needs, such as audio.
and image processing, World Wide Web programming,
and graphical user interfaces. In particular, there is an
interface to the popular Tk package for building window-
ing applications.
And now, Python has a high-perfomlance array modL:le
similar to the facilities in specialized array ianguages such
as Matlab, IDL, Basis, or Yorick. This extension also adds
complex numbers to the language. Array operations in
Python lead to the execution ofloops in C, so that most of
the work is done at full compiled speed.
This section introduces the Python language and prest'nts

the new numeric extension. More extensive tutorials and

Paul F. Dubois is a mathematician al Lawrence Livrrmore Na~iolla!

liIborutory, Live/more, CA 94550. Dmai!: duboisI@llnl.gol'

Konrad HinsC/l is a physicisl in the DepartmcIJI of Chemistry. Unimsilyof

Montreal, ,Holllna!. H3C 3J7, Quebec, Canatiu. f-mail· hinsmk@cre.

wnolilreai.ca

James Hug/min is a grodwle student in the LabumloryjorColllpurer Suma,

Massachusetts Institute of Technology, Cambn'dge, AJA 02139. f-flwil:

hugunin@mil.edu

262 COMPUTERS IN PHYSICS, VOL. 10, NO.3. MAYIJUN 1996

benchmarks for the basic language and
the numerical extension are available
on the Python Web site (http://www.
python.org).

The numerical extension is still in
beta test and may therefore change
slightly from this description. In par-
ticular, the beta-test period is needed to
sort out some controversies in naming
and coercion rules. But with this tutorial
as a start and the latest readme file for
the numerical extension, you should be
able to start using it. Note that you will
need to add the extension to the Python
source; every effort is made to keep a
"minimal Python" as small as possible,
as Python is being used for applications
where a small size is important.

Python is extremely well suited to
the development of programmable ap-
plications, as has been advocated on

these pages (CiP S: I, 1994, p. 70). It has a scripting language
as the user interface and compiled code for the compute-in-
tensive portions.

Introducing Python
Python is an interpreter. You can either enter commands

directly into the interpreter Of,more commonly, create a file
containing a script. On Unix, you can invoke Python with the
script as the first argument, or you can use the llsual trick of
starting the script with a comment like this:

!/usr/localibinlpython

Then you give execute permission to the script file. When you
execute it, the Python interpreter is invoked on the script file
itself. Since the above line is a comment as far as Python is
concerned, it is then ignored.

It is usual to make a Python script file have a name ending
in .py. This is required if you \','ish to use the file as a
"module," as explained later. In the examples below, we shall
simply show the script and leave the process of executing it
unspoken.

Python statements can be ent8red interactively at the
Python prompt:

>>>

FollO\ved by the computer response, an interactive exchange
looks like this:

>>> print "Hello, World"

Hello, World

The print command can take a comma-delimited list of items
to print. Python prints them separated by spaces and adds a
"carriage return" unless the command ends in a comma. Fint'f
control of OUtpllt formatting is available. When nmning Py-
thon interactively, you can omit the word print,.and the results
of expressions are printed.

Expressions and assignments. Expressions and assign-
ments for integers and real numbers work just the way yOU

© 1996 AMERICAN INSTITUTE OF PHYSICS 0894_1866/96110(3)126216/$10.00

would II
expreSSl
the co]](
by an in

80 blank
The

lists, die
sociativt'
usually,
tween nn

> AlorT
> AlOfT"
> Atom
> print

{'Carbe

A list is a
objects; s(

firsUivl

The tuple

first_fivE

In many c.
tuple, so tl

first_five

Long JJ
slash. Howe
ct, continUal
to distinguis

Tupl8s
argument lis
a flmction OJ

a, b '" 1,2

a, b '" b, a

The subscrip
01' list. The iJ

»> X '" [1
»> print x
1.0
>>> print xi
hello, worle

»> print xl
[1,2)

>>> print xl
2

NUMERICAL PYTHON

Paul F. Dubois, Konrad Hinsen,
and James Hugunin

Department Editor:
Paul F. Dubois
duboisl@llnl.gov

P
)1hon is a small and easy-la-learn hmgl!age with surpris-
ing capabilities. It is an interpreted objecl-orienT.ed script-

ing language and has a full range of sophisticated features
such as first-class functions, garbage collection, and excep-
tion handling. Python has properties that m"ke it especially
appealing for scientific programming:
Python is quite simple and easy to learn, but it is a full and
complete language.
It is simple to extend Python with your own compiled
objects and functions.
Python is portable, from Unix to Windows 95 to Linux to
Macintosh.
Python is free, with no license required e'/en if you make
a commercial product out of it. _
Python has a large user-contributed library of "modules"
These modules cover a wide variety of needs, such as audio.
and image processing, World Wide Web programming,
and graphical user interfaces. In particular, there is an
interface to the popular Tk package for building window-
ing applications.
And now, Python has a high-perfomlance array modL:le
similar to the facilities in specialized array ianguages such
as Matlab, IDL, Basis, or Yorick. This extension also adds
complex numbers to the language. Array operations in
Python lead to the execution ofloops in C, so that most of
the work is done at full compiled speed.
This section introduces the Python language and prest'nts

the new numeric extension. More extensive tutorials and

Paul F. Dubois is a mathematician al Lawrence Livrrmore Na~iolla!

liIborutory, Live/more, CA 94550. Dmai!: duboisI@llnl.gol'

Konrad HinsC/l is a physicisl in the DepartmcIJI of Chemistry. Unimsilyof

Montreal, ,Holllna!. H3C 3J7, Quebec, Canatiu. f-mail· hinsmk@cre.

wnolilreai.ca

James Hug/min is a grodwle student in the LabumloryjorColllpurer Suma,

Massachusetts Institute of Technology, Cambn'dge, AJA 02139. f-flwil:

hugunin@mil.edu

262 COMPUTERS IN PHYSICS, VOL. 10, NO.3. MAYIJUN 1996

benchmarks for the basic language and
the numerical extension are available
on the Python Web site (http://www.
python.org).

The numerical extension is still in
beta test and may therefore change
slightly from this description. In par-
ticular, the beta-test period is needed to
sort out some controversies in naming
and coercion rules. But with this tutorial
as a start and the latest readme file for
the numerical extension, you should be
able to start using it. Note that you will
need to add the extension to the Python
source; every effort is made to keep a
"minimal Python" as small as possible,
as Python is being used for applications
where a small size is important.

Python is extremely well suited to
the development of programmable ap-
plications, as has been advocated on

these pages (CiP S: I, 1994, p. 70). It has a scripting language
as the user interface and compiled code for the compute-in-
tensive portions.

Introducing Python
Python is an interpreter. You can either enter commands

directly into the interpreter Of,more commonly, create a file
containing a script. On Unix, you can invoke Python with the
script as the first argument, or you can use the llsual trick of
starting the script with a comment like this:

!/usr/localibinlpython

Then you give execute permission to the script file. When you
execute it, the Python interpreter is invoked on the script file
itself. Since the above line is a comment as far as Python is
concerned, it is then ignored.

It is usual to make a Python script file have a name ending
in .py. This is required if you \','ish to use the file as a
"module," as explained later. In the examples below, we shall
simply show the script and leave the process of executing it
unspoken.

Python statements can be ent8red interactively at the
Python prompt:

>>>

FollO\ved by the computer response, an interactive exchange
looks like this:

>>> print "Hello, World"

Hello, World

The print command can take a comma-delimited list of items
to print. Python prints them separated by spaces and adds a
"carriage return" unless the command ends in a comma. Fint'f
control of OUtpllt formatting is available. When nmning Py-
thon interactively, you can omit the word print,.and the results
of expressions are printed.

Expressions and assignments. Expressions and assign-
ments for integers and real numbers work just the way yOU

© 1996 AMERICAN INSTITUTE OF PHYSICS 0894_1866/96110(3)126216/$10.00

would II
expreSSl
the co]](
by an in

80 blank
The

lists, die
sociativt'
usually,
tween nn

> AlorT
> AlOfT"
> Atom
> print

{'Carbe

A list is a
objects; s(

firsUivl

The tuple

first_fivE

In many c.
tuple, so tl

first_five

Long JJ
slash. Howe
ct, continUal
to distinguis

Tupl8s
argument lis
a flmction OJ

a, b '" 1,2

a, b '" b, a

The subscrip
01' list. The iJ

»> X '" [1
»> print x
1.0
>>> print xi
hello, worle

»> print xl
[1,2)

>>> print xl
2

15 of 35Scriptable Scientific Softwarebeazley@cs.uchicago.edu

SWIG
SWIG (Simplified Wrapper and Interface Generator)

• SWIG is a compiler that automatically constructs scripting interfaces given
ANSI C/C++ declarations.
• Can be used to quickly build scripting interfaces from header files.
• Avoids the problem of writing wrapper code by hand.

• Disclaimer : SWIG is not the only approach.

%module SPaSM
%{
#include "SPaSM.h"
%}

void memory(int natoms);
void geometry(double ...
void processors(int ...
void set_boundary_period
...

>>> from SPaSM import *
>>> memory(20000)
>>> geometry(0,0,0,80,80,
 160,2.0)
...

SWIG

SWIG Interface file

Python

SWIG: Convert C declarations to Python wrappers.

Released as open-source in February, 1996

11 of 35

Scriptable Scientific Software

beazley@cs.uchicago.edu

Sample SessionSPaSM: Now Running under Python (1996)

Why
Python?

Syntax
Shock wave problem

nx = 15
ny = 15
nz = 50
shock_velocity = 8.5
temp = 0.01
width = 0.3333 # Width is percent of total z length
r0 = 1.0901733 # Lattice spacing
gap = 0.10 # Gap (% of z length)
cutoff = 2.0 # Interaction cutoff
cvar.Dt = 0.0025 # Timestep
cvar.Benchmark = 1

ic_shock(nx,ny,nz,shock_velocity,width,gap,temp,r0,cutoff)
init_lj(1,1,cutoff)
set_boundary_periodic()

set_path("./Data")

timesteps(10000,25,25,500)

The REPL
Python 3.8.0b4 (default, Sep 2 2019, 12:54:09)
[Clang 9.0.0 (clang-900.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>> print("Hello World")
Hello World
>>> 37 + 42
79
>>>

Interactive Experimentation was Critical

C Extensions

Python could talk to existing C code (via Swig, etc.)

Physics
(ANSI C)

Python

Abstractions
Python was flexible, yet pragmatic

• Imperative
• Functional
• Object-oriented

You could adapt Python to your problem
(as opposed to the other way around).

Loose Coupling
class Bike:
 def __turn__(self):
 ...

Implementation
• Python was written in ANSI C
• Few dependencies
• Avoided advanced implementation "tricks"
• You could actually understand it

Python was easily "hackable", which also meant
"readable", "fixable" and "adaptable." We were often
running on esoteric hardware with basically no support.
If you wanted something to work, you were on your own.

Performance
• Parallel machines had 1000s of processing

nodes, each with limited memory
• Each one had a copy of Python
• Python was relatively small
• Little impact on existing code

This point was critical to selling people on the idea.

It Suited Us
"A scientific program is usually the product
of one or two people, who write it initially to
solve a class of problems faced by
themselves and perhaps a few friends. It is
much rarer for a decision to be made early
to write a large program; rather, the
programs that prove to be useful are added
to, and evolve into, large programs over
time."

-- Paul Dubois

The
Present

SPaSM is still in use (2017)

Alas...

• It does not always use its Python interface
• Supercomputing is a strange world
• Machines often change
• At one point, the CPUs got smaller and the OS

eliminated support for dynamic linking
• Created a build/deployment problem
• Also: Challenges in porting to Python versions

Can I make it work?

Demo

I ported SPaSM from 1998 (Python 1.4) to 2019
(Python 3.8) just for this talk.

It runs on my laptop.

It took about a day.

How was this even
possible?

Modular DIY
The Python environment made us think more about
program structure. Modularity, relationships between
components, portability, and other software matters.

But not in a heavy-handed manner.

Our goal was never to create a "software product."

SPaSM was not developed as software product

Habitability
Think of a farmhouse. It starts as a small home with a barn out

back. As the family grows and the needs of the farm grow, a back
room is added to the house, then a canning room, then a room

for grandma; stables are added to the barn, then a wing for
milking more cows. Finally the house and barn are connected
because it is too difficult to get from the house to the barn in a

blizzard. The result is rambling, but each part is well-suited to its
needs, each part fits well with the others, and the result is

beautiful because it is a living structure with living people inside.
The inhabitants are able to modify their environment because
each part is built according to familiar patterns of design, use,

and construction and because those patterns contain the seeds
for piecemeal growth.

-- Richard Gabriel (Patterns of Software)

The
Future?

"Much of scientific programming is exploratory in
nature, and for that sort of programming the use of

compiled languages will cease. Interpreters will simply
be fast enough for most such calculations. More

computationally intensive programs will be written as
extensions of interpreted environments."

- Paul Dubois (Computers in Physics, Mar. 1997)

Is Python's current ecosystem of "scientific" tools the
realization of that future?

Is Python's current ecosystem of "scientific" tools the
realization of that future?

(honest answer, I don't know)

Is Python's current ecosystem of "scientific" tools the
realization of that future?

(honest answer, I don't know)

(a different talk perhaps...)

Thanks!

• Guido van Rossum
• Peter Lomdahl (LANL)
• Tim Germann (LANL)

Acknowledgments

Me:
• http://www.dabeaz.com
• @dabeaz (Twitter)

