'
. D a-a o
wl **, o '
. "W '-‘ : » .’ -
-
.

-
=4

t\"' ;., SHIE L . ’

-~

e Ps and Future .

of my "Python Optional"

Physics Ex eriment

T e s
: Y, PR ‘{ﬁ*h“"

. v

https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com
https://www.dabeaz.com

A

-~
-Jensen

l1anl

S

Zhou

3'!; .
>
\

)
B
¥ o
S AL A N
J“‘:‘.‘ &

R e
»

Niels Grgnbech

Shujia,

In 1996, I modified
Python to run on a
supercomputer i,

WHY?!?19

B Python " Quite Literally Everything Else [1]

0 25 50 75 100
PERFORMANCE (FLOPS)

[1] Random Hacker Site Comment

"Surely not"

"Unfortunately, it seems that many of the
efforts to develop tools and languages
have sacrificed code performance in
favor of portability or ease of use. [...]
Compromising performance [...] seems
unacceptable.”

- Beazley & Lomdahl (1994)

Debugging and Performance Tuning for Parallel Computing Systems,
IEEE Computer Society, (1996)

E
SUPERCOMPUTER
CENTERS,
SHIMMERING

, ~

Through the Computing G, d Challenge Pro
| MISSIONS |]

gram, participants:
arness wor/d-/eading Supercomputing and science to advanc;_ .
scientific discovery and Laboratory missions.

5 -: \— =B T
L-’\ o :
-\

Nevertheless.... there it was.
Python running on a
supercomputer.

$ python
Python 1.3 (Nov 21 1996) [GCC 4.8.4]

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> print "Hello World"

Hello World
>>>

WHO LET THIS HAPPEN®?1?1?

e LOS Alamos

NATIONAL LABORATORY
EST.1943

A — L —),m-_-—i-i L ia oA ek A

e LOS Alamos

NATIONAL LABORATORY

- EST.1943

Nick Metropolis and John von

as parallel proce

ssing
itecture,

and cluster arch

Dhenomena i
climate change,

Los Alamos

Y
NATIONAL LABORATOR |
- EST.1943

VECTOR SUPERCOMPUTER

Los Alamos acquired jts first vector supercomputer. Such supercomputers used vector
Processors that greatly improved performance ON numerica| Simulations important to
Nuclear Weapons research.

Supercharged Simulations

Vector Supercomputers use one-

the vector led way to the
microprocessor.

e Los Alamos

Y
NATIONAL LABORATOR
- EST.1943

VECTOR SUPERCOMPUTER

Los Alamos acquired jts first vector supercomputer. Such supercomputers used vector

High-performance paralle] interface

Our high—performance paralle|

gigabit” Standard for network data
transmission.

By 1995, HIPPI was linked to A
Synchronoys Optical network (SONET)
highway that transmitted Computer
data cross-country at 800 million bits

Advanced Computing Laboratory (ACL)

"In 1989, seeing the potential of
new technology for addressing the
"Grand Challenge" computational
programs in science and
engineering, Los Alamos set up the
Advanced Computing Laboratory
as a kind of proving ground for
testing Massively Parallel
Processors (MPPs) on real
problems."

Who uses a "proving ground®"

THEORETICAL
DIVISION

(CONDENSED MATTER PHYSICS GROUP)

- MY DESK

)\

THE CODE : SPaSM

o A "greenfield" project started in 1992
e Written in ANSI C

® (Goal: Dislocation dynamics in materials

[
Transmission electron micrograph &~ Top right: edge dislocation. =
of dislocations Bottom right: screw dislocation.

e How® Short-range molecular dynamics

THE PLAYERS

e Peter Lomdahl (Principal).

Background: Electrical engineering, Mathematical Physics.
Was also the Group Unix Systems Administrator

¢ David Beazley (Ph.D Student).

Background: Applied mathematics, numerical analysis
Past job: Writing graphics device drivers in x86 for use in Modula-2

® Brad Holian.

Background: Computational Chemistry

¢ Tim Germann

Background: Computer Science, Computational Chemistry
The current "owner" of SPaSM

THE MACHINE

Fat-Tree-Based Connection Machine 5

Data
Network A
2
o'l
S
S
K/
AN N
Pllp||P P||P
M| n| v M| M
\

Up to 16K
Processmg Nodes

-

CP| | CP P 1O 10O

M M M
\ . v]

ome or more
C'ontrol Procesgors
HIPPI or VME
Interface

Graphics
Qutput

THE MACHINE

: Memory : Memory Memory Metmory
... 2
Vector Unit
: Pipelined pdll— 24 y
: AL egwter
: j File '
: Vector | | Vector : Vector T ’
Unit Unit Unit Memory
Instr. Decod4 Control
|
Bus Interfacd
64-Bit Bus
SPARC Network
Processor Interface
Data : : Control
Network Network

SPECIFICATIONS

IS MARCH 199]

139

PHYSICAL REVIEW A VOLUME 43, NUMBER 6

Effects of pairwise versus many-body forces on high-stress plastic deformation

' . -
- B. L. Holian,* A. F, Voter, N. J, Wagner, R.J. Ravelo, and S. P. Chen
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

W. G. Hoover and C. G. Hoover
Lawrence Livermore National Laboratory, Livermore, California 550

1. E. Hammerberg
Applied Theoretical Physics Division, Los Alamos National Laboratory, Los Alamas, New Mexico 87545

I. D. Dontje
IThinking Machines Corporation, Cambridge, Massachusetts 02142
{Received 29 October 1990)

We propose a model embedded-atom (many-body) potential and test 1t against an cffective,
density-independent, pairwisc-additive potential in 2 vanety of nonequilibrnium molecular-dynamics
simulations of plastic deformation under high stress. Even though both Kinds of interactions have
nearly the same equilibrium equation of state, the defect energies (1.e., vacancy formation and sur-
face energies) are quite different. As a result, we observe significant qualitative differences in flow
behavior between systems characterized by purely pairwise interactions versus higher-order many-

body forces

INTRODUCTION If the embedding function is linear in the local embed-

ding density, then obviously its contnbution will be sim-

Only in the case of noble gases can the interactions be-
tween atoms be described reahsucally by density-
independent, pairwise-additive forces. The repulsive and
attractive forces arise from spherical electron clouds that
stick close to the nuclel. In metals, however, the elec-
trons are not all localized about the nucletr and 1in fact

ply pairwise additive, but if 7 is not linear in p, then
higher-order many-body contributions result,

One significant consequence of the nonlinearity of the
embedding function is that the energy E . required to
form a vacancy in a solid can be made to be much smaller

than tha kil croabhacive anarav K mar narfscrlae (tha e

MODEL EMBEDDED-ATOM POTENTIAL

Our proposed EAM is constructed from simple analyt-
ical functions for the pair-potential contribution ¢, the
localization function w, and the embedding function 7,
One motivation for employing analytical functions is
that, at this stage of their development, massively parallel
computers, which are extremely useful for large-scale
MD simulations, can have communication or memory
limitations that make large tables of interactions unfeasi-
ble. Since the principal bottleneck in MD simulations is
the calculation of forces on atoms due 1o their local envi-
ronment, computation time is minimized when ¢ and w
are made as short-ranged as possible. To this end, we
employ a cubic spline at the point of maximum attractive
force in ¢, which makes ¢ go smoothly to zero for sepa-
rations r > r, . likewise, w is smoothly truncated at r .

Within the nearest-neighbor approximation, we can
rather easily specify the normal density p, at zero pres-
sure and temperature (or equivalently, the equilibrium
nearest-neighbor separation rg), the cohesive energy E_,,
and the bulk modulus B, First, we insist that the
minimum well depth ye of the pair potential occur at ry,
where y is the fractional pair-potential contribution to
the total cohesion, Second, we require that, at normal
density, the embedding function exhibit a minimum that
contributes the remaining fraction 1=y to the cohesive
energy; thus, in the nearest-neighbor approximation,

E n=4did+1k, (3)
where d is the dimensionality of the system, i.e, 1, 2, or
3, and the factor d (d + 1) is the number of nearest neigh-
bors in the d-dimensional close-packed solid. If y=1,
one obtains only the pair-potential part, without any
many-body embedding. We choose the value of y to be
approximately equal to the ratio of vacancy energy to
cohesive energy, E_ /E_ ., which for metals is typically
between 0.2 and 0.4. Finally, the bulk modulus can be
adjusted by varying the choice of pair potential (as is pos-
sible with a flexible form such as the Morse potential); in

A% s e . ans ot ol actess = ol st s ' ‘-‘n-—A,'AnM

2

Sri,~rl,.
a, L = ! ‘bb'
Br,,(r -—r,"!
3rl X
0’"‘ .. -~ o (&)

er*,(r,‘“ —r., B

For the Llspl potential (in units of ¢ and o),
Pt ™= 1.244455, r. = 1711238, a,=0.542449 4y, and
@y=0.09350527y. (This L)spl potential differs from
the Holun Evans potential® only in that the spline here is
in r’ rather than r. As a result, no square root or division
by 7 is required in the MD force calculation.) In Fig. 1,
we show the L)-spl potential.
For the embedding (many-body part of our EAM, the
local weighting function w is given by

2yt P |
wir)s ————— ~ N
did +1e r.’u.—-ra

where ¢ is the base of the natural logarithms. The
weighting of neighbors looks qualitatively like a Gauss-
ian; beyond r,.. it is zero (see Fig. 2). At the normal
bulk density (r =r,) the local embedding density, as
given by the nearest-neighbor approximation, is p, = 1 /e.

2 T | r
‘ u— -d
-
~
e \ spline2
ob \ spline l,/,,-...,,._
\\.
LJ 6-12
= 1 1 -4

0.6 1.0 1.4 1.8

User Interface

#!/bin/csh
#+JSUB-notty —exact proc .
#JSUB—nproc 1024 Y;”nbf - 23\§¢r”

#JSUB—-dedicated
#JSUB-project matl-p
#JSUB—-cpu 30min
#JSUB—mem 16G
#JSUB-interruptable

setenv CMMD HEAP SIZE 512000

SPaSM —-il -B -m30000 -p8:8:16 -r0:0:0:80:80:80 —c4:4:2 -C0.25 < in >>& junk e~ of
SPaSM —il -B —m30000 —p8:8:16 —-r0:0:0:80:80:160 —c4:4:4 —-C0.25 < in >>& junk Lo& 2
SPaSM —il -B -m30000 —-p8:8:16 —r0:0:0:80:80:320 ~-c4:4:8 -C0.25 < in >>& junk Leey 3
SPaSM —il -B -m30000 -p8:8:16 —r0:0:0:160:160:160 —c8:8:4 —C0.25 < in >>& junk (,x
SPaSM —il -B -m30000 -p8:8:16 -r0:0:0:80:80:640 —c4:4:16 —C0.25 < in >>& junk {ee; g{
SPaSM -1l -B -m30000 -p8:8:16 -r0:0:0:160:160:320 -c8:8:8 ~C0.25 < in >>& junk Les
SPaSM —il -B -m30000 -p8:8:16 -r0:0:0:160:80:640 —c8:4:16 —C0.25 < in >>& junk (247
SPaSM -il -B -m60000 -p8:8:16 —-r0:0:0:160:160:640 —c8:8:16 —-C0.25 < in >>& junk Les%

SPaSM —-il -B -m120000 —p“ 8:16 -r0:0:0:320:320:320 —c16:16:8 -C0.25 < in >>& junk Lec, 2.0
SPaSM -il -B -m120000 -p8:8:16 -r0:0:0:320:160:640 —cl16:8:16 —-C0.25 < in >>& junk (es2f
SPaSM —-il -B -ml130000 -p8:8:16 -r0:0:0:320:320:640 —cl6:16:16 —-C0.20 < in >>& junk (es 22
SPaSM —il =B -m30000 —p1l6:16:4 -r0:0:0:80:80:80 —c2:2:8 -C0.25 < in >>& junk Lﬁﬂlz3
SPaSM —il -B -m30000 -pl6:16:4 -r0:0:0:80:80:160 —c2:2:16 -C0.25 < in >>& junk (eq2Y
;SPaSM -1l -B -m30000 -pl6:16:4 -r0:0:0:80:80:320 -c2:2:32 -C0.25 < in >>& junk Leq 28
(SPaSM —-il -B -m30000 -pl16:16:4 -r0:0:0:160:160:160 —c4:4:16 -C0.25 < in >>& junk ch‘zé
! SPaSM —-il -B —m30000 -pl6:16:4 -r0:0:0:80:80: 640 -C2:2:64 -C0.25 < in >>& junk L;§27?
| SPaSM —il -B -m30000 -pl16:16:4 -r0:0:0:160:160:320 —c4:4:32 —C0.25 < in >>§ junk Leey2%
| SPaSM —il -B -m30000 -pl6:16:4 ~r0:0:0:160:80: 640 —C4:2:64 —-C0.25 < in >>& junk 229
| SPaSM —-il -B -m60000 —-pl6:16:4 -r0:0:0:160:160:640 —-c4:4:64 -C0.25 < in >>& junk Leg 3o

{ SPaSM —-il -B -m120000 -pl6:16:4 -r0:0:0:320:320:320 —c8:8:32 —CO. 25 < in >>& junkl;3?|
| SPaSM —-il -B -m120000 —-pl6:16:4 -r0:0:0:320:160:640 —c8:4:64 —C0.25 < in >>& junk Le«2
[SPaSM —-il -B -m130000 —-pl6:16:4 -r0:0:0:320:320:640 -c8:8:64 —C0.20 < in >>& junk(xgigg

SPaSM -1l -B -m30000 -p8:8:16 —r0:0:0:80:80:80 —c4:4:2 —C1.00 < in >>& -unk (.. 24

O O = NN W A O

O = N W & OO OO N

Testing

i I
°
< o L] -
® " b L
< <
/’
[
>
L 2
~ o
® > -
»
| -
=3

10 171 g2y 13- 7148 10 « 16

s)) \/ € /S (en i e
€5:36:46 .

Parallel Memory

e | (] ('l:_ C1 1+ |C1
— . - i
czlfjez1|jcz2y | (c2
Serial i] i
Memory N S———— et SRR
: | vuo| vur| vuz| vu
..... f": - "f - | C) |- | C) _A
Cljcz 1 1 1 1 =
----- {5-...-5 I s ‘ '- ; ‘..‘ : '.' : ‘..
----- S S U (N AP B O O (@
8 B 8 : 8 : 8
{ 2 - (2 - { 2 (2
Fl Fl Fl Fl
4 + +
F2 2 F2 F2
Fig. 3. Calculating forces on the VUs
| (©)
o Cached Cells
Serial Memory Pal
Replication L!
-+ * [cell na | |cell na | Teell n, cell n;
Cells - * | cell n, cell n, cell n, cell n;
cell n, cell n, cell n, cell n,
X[Ssage
P-H-‘H =" | bulfler - buffer buffer buffer buffer
Assing
I’nrvv K(‘l‘llt'l

Fig. 4. Parallel Memory Caching Lavout

- 4.0 9 -
] R T 30+ |
2
gaor -
i: 3
(b) L 1.0 ' 7
. - 0.0 A ' ' I}
0 20 40 60 80 100
0] 20 40 60 80 100
% memory cached
< =la
S

(d)
J Saved Cells

Number of cache loads and time per timestep
| particles on 1024 PNs. 512 cells per PN.

-

Fig. 5. Caclung at different stages of force calculation

Tuning

Batch job

setenv CMMD_HEAP SIZE 512000

SPaSM -il -B -m120000 -p8:8
SPaSM -il -B -m120000 -p :
SPaSM —-il -B -m130000 —-p8:8:

SPaSM =il -B -m30000 -p8:8:16 -r0:0
SPasM -il -B -m30000 -p8:8:16 —xr0:(
SPaSM -il -B -m30000 -p8:8:16 —r0:0
SPasM -il -B -m30000 -p8:8:16 -r0:0
SPaSM —-il -B -m30000 -p8:8:15 -r0:0:
SPaSM -il -B -m30000 -p8:8: q
SPaSM -il -B -m30000 -p8:8

SPaSM -il -B -m60000 -p8:8

:80:80:80 -c4:
:80:
:80:
:160:160:160
:80:
:160:160:320 -
:160:80:640
:160:160:640 -

):160 —c4
0:320 -c4

640 -c4

Our Workflow

Our Workflow

.I 3-6 hours\‘ Data Files

Batch job

setenv CMMD_HEAP SIZE 512000

SPaSM -il -B -m30000 -p8:8:16 -r0:0:
SPasSM -il -B -m30000 -p8:
SPasM -il -B -m30000 -p8:
SPaSM —-il -B -m30000 -p8:
SPasSM -il -m30000 -p8:8:
SPasSM -il - m30000 -p8:8:
SPaSM -il -m30000 -p8:
SPaSM -1l - m60000 -p8: :160:160:640 -
SPasSM -il -B -ml120000 -p8:8:16 :0 320:320
SPaSM -il -B -m120000 -p :16 -r0:0:0:320:160
SPaSM -il -B -m130000 -p8:£:16 -r0:0:0:320:320:

:80:80:80 -c4:
:80:80:160 -c4
:80:80:320 -c4
:160:160:160

:80:80:640 -c4
:160:160:320 -
:160:80:640 —c¢

1= ..
w w w

w

w

W w

Our Workflow

3-6 hours Data Files
I

repeat

Batch job

setenv CMMD_HEAP SIZE 512000
SPaSM =il -B -m30000 -p8:
SPasM -il -B -m30000 -p8:
SPaSM -il -B -m30000 -p8:
SPaSM —-il -B -m30000 -p8:
SPaSM —-il -B -m30000 -p8:
SPaSM -il -B -m30000 -p8:
SPaSM -il -B -m30000 -p8:
SPaSM -il -B -m60000 -p8:
SPaSM -il -B -ml120000 -p8:8:16

SPaSM -il -B -m120000 -p8:8:16 -
SPaSM =il -B -m130000 -p8:£:16

:80:80:80 -c4:
:80:80:160 -c4
:80:80:320 -c4
:160:160:160

:80:80:640 -c4
:160:160:320 -
:160:80:640 —c¢
:160:160:640 -
i 0:320:320:32

r0:0:0:320:160:
=r0:0:0:320:320:640

Batch job

Our Workflow

3-6 hours

repeat

SPaSM
SPasSM
SPasSM
SPaSM
SPaSM
SPasSM
SPaSM

SPaSM
SPaSM

SPasSM

-il
-il
-il
b B K
-il
-il

-B
-3
-3
-B
-B
-B
-B
-B
-B

-B

-m30000 -p8:
-m30000 -p8:
-m30000 -p8:
-m30000 -p8:
m30000 -p8:
-m30000 -p8:
-m60000 -p8:

-m120000 -p
-m120000 -p

-m130000 —p8:&:

setenv CMMD_HEAP SIZE 512000
SPaSM =il -B -m30000 -p8:

8:16 -x0:
8:16 —-r0:
8:16 —r0:
:18:16 —-x0:
8:16 -r0:
8:16 -r0:
8:16 -r0
8:16 —-r0:

:80:80:640 -c4

0:0:80:80:80 —-c4:

0:0:80:80:160 —-c4

:0:0:80:80:320 -c4

0:0:160:160:160
:0

:160:160:320 -

0:0
:0:0:160:80:640 —c¢
0:0

:160:160:640 -

0:0:0:320:320:320

:0:320:160:640

r0:0:0:320:320:640

Data Files

|y oo

" FTP (10 Mbit/s)

Sun SPARCstation IPX 0

Our Workflow

3-6 hours Data Files

e

repeat - |
Batch job -, FTP (10 Mbit/s

°
°
L]
setenv CMMD_HEAP_SIZE 512000 ®
SPaSM -il -B -m30000 -p8:8:16 -r0:0:0:80:80:80 —-c4: *
SPaSM -il -B -m30000 -p8:8:16 —r0:0:0:80:80:160 —c4
SPaSM -il -B -m30000 -p8:8:16 —-r0:0:0:80:80:320 -c4
SPasM -il -B -m30000 -p8:8:16 —-r0:0:0:160:160:160
SPaSM —-il -B -m30000 -p8:8:15 -r0:0:0:80:80:640 -c4
SPasSM -il -B -m30000 -p8:8:16 ~r0:0:0:160:160:320 -
SPaSM -il -B -m30000 -p8:8:16 -r0:0:0:160:80:640 —c
SPaSM —il -B -m60000 -p8:8:16 —r0:0:0:160:160:640 - S SPARCEtationlIEX (0
SPasM —il -B -m120000 -p8:8:16 -r0:0:0:320:320:320
SPaSM -il -B —-ml120000 -p - -r0:0:0:320:160:640
SPaSM -il -B -m130000 -p8:8&: =r0:0:0:320:320:640

Batch job

Our Workflow

3-6 hours

repeat

SPaSM
SPasSM
SPasSM
SPaSM
SPaSM
SPasSM
SPaSM

SPaSM
SPaSM

SPasSM

-il
-il
-il
b B K
-il
-il

-B
-3
-3
-B
-B
-B
-B
-B
-B

-B

-m30000 -p8:
-m30000 -p8:
-m30000 -p8:
-m30000 -p8:
m30000 -p8:
-m30000 -p8:
-m60000 -p8:

-m120000 -p
-m120000 -p

-m130000 —p8:&:

setenv CMMD_HEAP SIZE 512000
SPaSM =il -B -m30000 -p8:

8:16 -x0:
8:16 —-r0:
8:16 —r0:
:18:16 —-x0:
8:16 -r0:
8:16 -r0:
8:16 -r0
8:16 —-r0:

:80:80:640 -c4

0:0:80:80:80 —-c4:

0:0:80:80:160 —-c4

:0:0:80:80:320 -c4

0:0:160:160:160
:0

:160:160:320 -

0:0
:0:0:160:80:640 —c¢
0:0

:160:160:640 -

0:0:0:320:320:320

:0:320:160:640

r0:0:0:320:320:640

Data Files

|y oo

" FTP (10 Mbit/s

Sun SPARCstation IPX 0

Our Workflow

3-6 hours Data Files
| \\ \\\(10-20 GB)

repeat - |
Batch job FTP (10 Mbit/s)

°
°
L]
setenv CMMD_HEAP_SIZE 512000 °
SPaSM -il -B -m30000 -p8:8:16 -r0:0:0:80:80:80 —-c4: ®
SPasM -il -B -m30000 -p8:8:16 -r0:0:0:80:80:160 —c4
SPaSM -il -B -m30000 -p8:8:16 —-r0:0:0:80:80:320 -c4
SPaSM -il -B -m30000 -p8:8: :0:0:160:160:160
SPaSM —-il -B -m30000 -p8:8: :0:0:80:80:640 —c4
SPaSM -il -B -m30000 -p8:8: :0:0:160:160:320 -
SPaSM -il -B -m30000 -p8:8 :0:0:160:80:640 —c 1 ——
SPaSM -il -B -m60000 -p8:8: :0:0:160:160:640 - Sun SPARCstation IFX 0
SPaSM -il -B -m120000 -p8:8 r0:0:0:320:320:320
SPaSM -il -B -m120000 -p8:8: :0:0:320:160:640
SPaSM -il -B -m130000 -p8:8&: r0:0:0:320:320:640

Batch job

Our Workflow

3-6 hours

repeat

SPaSM
SPaSM
SPasSM
SPasSM
SPaSM
SPasM
SPasSM
SPaSM

SPaSM
SPaSM

SPaSM -

=1
-il
-il
-il
-11
-il
-il
-il

-B
-B
-B
-3
-3
-B
-B
-B
-B
-B
-B

-m30000 -p8:
-m30000 -p8:
-m30000 -p8:
-m30000 -p8:
-m30000 -p8:
m30000 -p8:
-m30000 -p8:
-m60000 -p8:
-m120000 -p
-m120000 -p

-m130000 -p8:¢&:

setenv CMMD_HEAP SIZE 512000

8:16 -r0:0:0:80:80:80 -c4:
8:16 -r0:0:0:80:80:160 -c4
8:16 —-r0:0:0:80:80:320 ~c4
8:16 -r0:0:0:160:160:160
8:15 ~r0:0:0:80:80:640 —-c4
8:16 -r0:0:0:160:160:320 -
8:16 -r0:0:0:160:80:640 —c
8:16 -r0:0:0:160:160:640 -
8:16 =r0:0:0:320:320:320
:16 —r0:0:0:320:160:640
:16 -r0:0:0:320:320:640

Data Files

\\ \\\(10-20 GB)

“. FTP (10 Mbit/s)

Sun SPARCstation IPX 0

Batch job

Our Workflow

3-6 hours

repeat

SPaSM
SPaSM
SPasSM
SPasSM
SPaSM
SPasM
SPasSM
SPaSM

SPaSM
SPaSM

SPaSM -

=1
-il
-il
-il
-11
-il
-il
-il

-B
-B
-B
-3
-3
-B
-B
-B
-B
-B
-B

-m30000 -p8:
-m30000 -p8:
-m30000 -p8:
-m30000 -p8:
-m30000 -p8:
m30000 -p8:
-m30000 -p8:
-m60000 -p8:
-m120000 -p
-m120000 -p

-m130000 -p8:¢&:

setenv CMMD_HEAP SIZE 512000

8:16 -r0:0:0:80:80:80 -c4:
8:16 -r0:0:0:80:80:160 -c4
8:16 —-r0:0:0:80:80:320 ~c4
8:16 -r0:0:0:160:160:160
8:15 ~r0:0:0:80:80:640 —-c4
8:16 -r0:0:0:160:160:320 -
8:16 -r0:0:0:160:80:640 —c
8:16 -r0:0:0:160:160:640 -
8:16 =r0:0:0:320:320:320
:16 —r0:0:0:320:160:640
:16 -r0:0:0:320:320:640

Data Files

A Mess!

\\ \\\(10-20 GB)

“. FTP (10 Mbit/s)

Sun SPARCstation IPX 0

walking B

A Problem: Tools

"Closing the gap between potential and
measured performance of computing systems
IS a continuing problem of fundamental
importance. The difficulty of the problem is
exacerbated by the increasing complexity of
systems as they become more parallel, more
heterogeneous, and more distributed.”

Debugging and Performance Tuning for Parallel Computing Systems,
IEEE Computer Society, (1996)

A Problem: Tools

measured performance

"After investing substantial effort in
developing a program, its execution

may Yyield only a small fraction of
peak system performance.”

Debugging and Performance Tuning for Parallel Computing Systems,
IEEE Computer Society, (1996)

1. Make it work fast.
2. Make it work.

Is PERFORMANCE the

actual problem?®

(I had finished the first year of a computer science Ph.D.)

Compilers

Principles, Techniques,

Alfred V. Aho
Ravi Sethi

Jeffrey D. Ullman ¥5 & C om Pi I ers !

ML97 EDITION

Compilers ELEMENTS OF
Principles, Techmques, ML PROGRAMMING

and Tools)
JEFFREY D. ULLMAN

L Wi Functional
Alfred VAo B Programming,

Ravi Sethi

Jeffrey D. Ullman : Type systems.

Com llers

Principles, Techmques,
and Tools

Alfred V.Aho _#
RaviSethi &

Jeffrey D. Ullman

NETWORK

PROGRAMMING

Systems

ML97 EDITION

ELEMENTS OF
ML PROGRAMMING

JEFFREY D. ULLMAN

Com llers

Principles, Techmques, |
and Tools |

Alfred V.Aho _#¥
Ravi Sethi 4

Jeffrey D. Ullman

NETWORK

PROGRAMMING

ML97 EDITION

ELEMENTS OF
ML PROGRAMMING

JEFFREY D. ULLMAN

A distracted ", &

supervisor!

ML97 EDITION

" Compilers ELEMENTS OF
Prmaples,Techmques, : ML PROGRAMMING

and Tools
JEFFREY D, ULLMAN

Alfred V.Aho _#
RaviSethi &
Jeffrey D. Ullman

20222207

NETWORK

PROGRAMMING

ML97 EDITION

" Compilers ELEMENTS OF
Principles, Techmques, ML PROGRAMMING

and Tools
JEFFREY D. ULLMAN

Alfred V.Aho _#&
R?? Segﬁuu .
Jettrey D. Ullman
; Create a
Language

NETWORK

PROGRAMMING

SPaSM Users Guide 2.0

4.2 Arithmetic Expressions

Almost any C-syntax arithmetic expression can be used within the SPaSM interface. In add
to the standard arithmetic operations, the <math.h> library is also available.

SPaSM [10] > i = 2+(3%4);
SPaSM [10] > f = sqrt(x*x + y*y + z¥z)/3.5; .
SPaSM [10] > r = sin(cos((3+(4+(5+7.3))))); <— A REPL is bOI‘n!

4.3 Function Evaluation

Functions can be called as in C. Functions may take parametery/which may be constants, bui
variables, user-defined variables, or arithmetic expressions.

SPaSM [10] > init 1j¢1.0,1.0,2.5);

SPaSM [10] > timesteps(nsteps, energy_n, output_n, checkp_n);
SPaSM [10] > x = sqrt(y);

SPaSM [10] > total_particles = count_particles();

FFunctions may return ints, reals, or no value at all. The return values of functions can be use
arithmetic expressions.

4.4 Displaying and printing values

4.8 Scripts

The following shows a sample scriptfile :

! A sample SPaSM input script

! Dave Beazley
! July 31, 1995

totaltime = 10.0;
energy_interval =
output_interval =
checkp_interval
Benchmark=1,;
MovieMode=1

= O O
O U -

-

How long to run this simulation (in time)
How often to calculate energy (in time)

! How often to dump data (in time)

How often to checkpoint (in time)
! Report timings
Output frame numbers for visualization

FllePath-"/sda/sda2/beazley/test"

! Initial condition parameters

exdot = 0.0;
eydot = 0.001;
ezdot = 0.0;
1x = 80;
ly = 40;
1z = 10;
lc = 20;
gapx = 5.0;
gapy = 25.0;
gapz = 5.0;
alpha = 7;
cutoff= 1.7;

! Only set up initial conditions if not restarting.

if (Restart == 0)

ic_crack(lx,ly,1z,1c, gapx, gapy, gapz, alpha, cutoff);
set_initial_strain(0,0.017,0);

endif;

Don't worry, all of this is "optional."

Batch Processing Scripting

Physics Physics Physics

® [t'sjust anew "main". Move alonsg...

e It fact, it was better than "optional."

e It was all automagically created!

6.4 Interface files

The functions available to the interpreter are defined in special interface files (which have a .1i
suffix). An example interface file is shown below :

/**

* SPaSM.1
*

¥ Main SPaSM user interface file.
*

¥ This file describes the SPaSM variables and functions

* that should be available on all versions of SPaSM.
*

**/

%init spasm_interface_init;

%{
6.4.8 The translator

The files trans_cmb and trans_t3d are the translator functions for converting .1i files to .c files
(the translator is easily compiled for any machine however). The syntax for using these translators
is as shown :

% trans_cm5 spasm <SPaSM.i

This will create a file called spasm wrap.c. The interface file should be directed into stdin. See
the Makefile for more details.

6.4 Interface files

The functions available to the interpreter are defined in special interface files (which have a .i
suffix). An example interface file is shown below :

/**

* SPaSM.1

*

¥ Main SPaSM user interface file.
%

* This file describes the SPaSM variables and functions

* that should be available on all versions of SPaSM.
*
3k 3k 3k ok ok ok sk ok ok sk sk ok ok sk ok sk ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok sk ok sk ok ok ke sk ok ok ok ok 3k ok ok ok Kk ok sk o ok ok ok sk ok ok /

%init spasm_interface_init;

%{
6.4.8 The translator

The files trans_cmb and trans_t3d are the translator functions for converting .i files to .c files
(the translator is easily compiled for any machine however). The syntax for using these translators
is as shown :

— Automatic Code Generation

%4 trans_cm5 spasm <SPaSM.i <

This will create a file called spasm wrap.c. The interface file should be directed into stdin. See
the Makefile for more details.

Batch Processing

Scripting

Physics Physics Physics

https://www.youtube.com/watch?v=d5f9-Y3Wtbc

(Dave describing the system at LLNL in 1996)

The "Visualization" System

Workstation

Register

The "Visualization" System

Workstation Supercomputer

©
p—

~

e B e

— .-'7"‘" g
PR o T

Copyright 1994 by John Bradley ighte Reasrved C O py/ P aste
Y 94

The "Visualization" System

Workstation Supercomputer

Copy/Paste

| GIF Encoder | Adapt &

Extend x86 device

(from 1990)

The "Visualization" System

Workstation

polling

Image "Server"

Supercomputer

Copy/ Paste -

o
GIF Images

x86 device

driver project
(from 1990)

The "Visualization" System

Workstation Supercomputer

——

(.

Tt [P b

Copy/Paste

Adapt &
Extend x86 device

driver project

polling

Internet
<
GIF Images

(from 1990)

: : Hack
Visualize < "Trackball"

A

(OpenGL)

The "Visualization" System

Workstation Supercomputer

——

(.

Tt [P b

Copy/Paste

Adapt &
Extend x86 device

< driver project
(from 1990)

polling

Internet
<
GIF Images

: : Hack
Visualize < "Trackball"

(OpenGL)

Users ("us")

The "Visualization" System

Workstation Supercomputer

Copy/Paste

Adapt &
Extend x86 device

polling < driver project

Internet
<
GIF Images

(from 1990)

: : Hack
Visualize < "Trackball"
(OpenGL)

Users ("us")

It was

awesome!

|

SCIENTIFIC PROGRAMMING

70 COMPUTERS IN PHYSICS, VOL. 8, NO. 1, JAN/FEB 1994

MAKING APPLICATIONS

PROGRAMMABLE
Paul F. Dubois

magine a physics program written in Fortran, whose user

interface is a programming language (not Fortran, of
course, but imagine something similar). In this program-
ming language you can create variables, assign values, loop,
if-test, define functions, and so on. Additionally, the major
variables and functions in the Fortran modules are known to
this interface language, so that through the user interface
you can assign values to variables, execute Fortran mod-
ules, print out the values of variables, plot them, and so on.
The Fortran variables and functions are accessible in the
user interface language, as if they were built in to it. I call
this a “programmable application.” This article will explain
the general principles behind programmable applications
and the benefits of using this approach to scientific pro-
gramming.

Over the last nine years my team and I have developed
and used The Basis System, a collection of software for
creating programmable applications. It has been used 1n
over 100 applications and is currently used in some of
Lawrence Livermore National Laboratory’s most important
programs. This experience is the basis for this article, but
thic article 18 not about Basis per se.

Department Editor:
Paul F. Dubois

duboisl@linl.gov

That is. after initializing, input is obtained that describes a
problem from various sources. When the input is complete,
the input values are used to calculate the initial value of all
the remaining state variables. Then a calculational phase
ensues, often the evolution of a time-dependent calculation
or an iteration to steady state. Finally, some criterion is
satisfied, and the calculation is over. Calculations and other
activities may ensue to assist the user in drawing some
conclusion about the problem.

At the end of each of these stages there can be various
activities such as edits or postprocessing dumps. Some-
times, if the calculation is simple enough, there is a loop
around most of the program so that the user can do param-
eter studies.

When a one- or two-person team develops such a pro-
gram, it may have an input section that is done with
“namelist’”” input (see below), and the main program often
directly reflects the model, possibly with a user-dialog
thrown in to control the iteration and examine things as they
go along. A namelist input might be used to set flags called
revealing names such as iedit or iplot to select a level
of verbosity or types of plots to be done. Often, little output

[

70 COMPUTERS IN PHYSICS, YOL. 8, NO. 1, JAN/FEB 1994

SCIENTIFIC PROGRAMMING

MAKING APPLICATIONS ~
PROGRAMMABLE

Paul F. Dubois

I magine a physics
interface 1s a prg
course, but imagine
ming language you ¢
if-test, define functio
variables and functio
this interface langua
you can assign valu
ules, print out the va
The Fortran variablg
user interface langua
this a “programmabl
the general principl
and the benefits of
gramming.

Over the last niy

Department Editor:
Paul F. Dubois

duboisl@linl.gov

and used The Basis
creating programma

"Imagine a physics program written in
Fortran, whose user interface is a
programming language (not Fortran, of
course, but imagine something similar).
In this programming language you can
create variables, assign values, loop, if-
test, define functions, and so on."

over 100 applications and is currently used in some of TATOWN 1 10 CONTTOT UE TTCTAtTON AT CXATTTTITe TSSO ey
Lawrence Livermore National Laboratory’s most important go along. A namelist input might be used to set flags called
programs. This experience is the basis for this article, but revealing names such as iedit or iplot 10 \cku a level

thic article 18 not about Basis per se. of verbosity or types of plots to be done. Often little output

Other scripting

Weakingg Fasy Things Fasy
& Fiard Thinggs Possatve

Learnmg ’ %il%&‘)illl{l}f

John K. Ousterhoul

L
- . . e .
— - — l

» “ .::-.

!

.- —
N -
e -
-

R e R

Randad I. Schuwantz,

O'REILLY" brian d foy & Tom Phoenix

1996

The stage is set

dithy Intiernational
o . ; i 4 -
Rystihom Conflenence:

B ‘G Tl G S

This is a gathering of the Python community, users, developers, and language designers, to discuss the
Python programming language’s present and future. Welcome!

Included in your registration packet you will find:
@ Your payment receipt
@ If you prepaid: a badge for the conference - to be worn with the LLNL badge
® The Agenda
® A List of Attendees
@ Information about Accomodations and Social Activities
@ Directions and Maps to the conference and accomodatons

@ Directions to the Social Activities

@ The proceedings

Credit is due our gracious hosts, [awrence Livermore National Laboratory, and the Corporation for
National Research Initiatives for helping (o sponsor and organize the conference and the Python

Software Actvity.

For an on-line version of this document, sec:
<http://www.python. org/workshops/ 1996-06/packet.html>

ity Imyter;
Rysthon €0

This is a gathering of the Python community, users, ¢
Python programming language’s present and future. '

Included in your registration packet you will find:
@ Your payment receipt
@ If you prepaid: a badge for the conference - 10
® The Agenda
® A List of Attendees
@ Information about Accomodations and Social

@ Directions and Maps to the conference and ac

B FOURT
H INTERNATIONAL PYTHON CONFE
RENCE =m

@ Directions to the Social Activities

@ The proceedings

Credit is due our gracious hosts, Lawrence Livermc
National Research Initiatives for helping to sponsor

Software Acuvity.

For an on-line versiol
<http:l/www.pylhon.org/wo

WEDNESDAY, JUNE 5TH
CONFERENCE PROGRAM
CONTINUED

SYSTEMS & INTEGRATIONS

9:00 -9:30 Using Emacs OO-Browser with Python

Harri Pasanen

9:30 - 10:00 Python Interface with Narcisse Graphics
Zane Motteler

10:00 - 10:30 Gist: A Scientific Graphics Package for Python
Lee Busby

10:30 - 11:00 Building a Programmable Interface for Physics Codes Usin
Numeric Python >

Tser-Yuan (Brian) Yang, P. F. Dubois, Zane Motteler
11:00 - 11:30 Building Ariel - OpenGL GUI and Python to C

Jim Hugunin
12:00 - 2:00 Luncheon at Retzlaff Winery

STATE OF THE ART

2:00 - 2:30 Extensibility in Python
Manus Hand
2:30-3:00 Using SWIG to Control, Prototype, and Debug C Programs
with Python
David M. Beazley

|
FOURTH INTEBR

THO
N CONFERENCE
||

——

Apstract
Munro of Lawrence Live

¢ graphics Jibrary written by David H.
_ It features support for three common graphiCs
hics Metafiles (CGM) The library 1s small (written

Y plots with "good” tick

Computer Grap
directly to X1ib), portable, efficient, and full-featured. It produces X versus
ctor fields, or pseudo

marks and tick labels, 2-dimensional quadrilateral mesh plots with contours, V€
color maps on such meshes, with 3_dimensional plots on the way.

"Gist" 1s a scientifi
b for Python

Laboratory (LLNL)
postScript, and ANSIISO Standard

for Physics Codes Using

thers. It 1S therefore

the new "Numeric" module due to J. Hugunin and O
¥ Windows event dispatcher which

ts. The Gist mo
importing 4 dynarnically loaded module) to the on interpreter
This makes fast mouse-controlled zoom, pan,

to the Python core.
hile maintaining the usual Python

bis, Zane Motteler

The Python Gist module utilizes

fast and able t0 handle large datase
can be dynamically added (e.g., vial

after a simple two-line modification
and other grap able to the researcher W

command-liné

hic operations avail
interface.

STATE OF THE ART

@ The proceedings
2:00 - 2:30 Extensibility in Python

Iq\’;l;:onal Ichcarch Initiatives for helping Lo sponso1
Software Acuvily. in
2:30-3:00 Usi
: Sing SWIG to Control
ith Python , Prototype, and Debug C Programs

} For an on-line versiol
<http://www.python.org/wo David M. Beazley

® FOURTH INTEGRQY
THON CONFERENCE m

Abstract ,
: Sh Op;
"Gist" 1s & SCiiilIt\}E N] Cts I Grah‘Ob‘
Laboratory (LLNL. o JECES | Plotrar oo
PostScript, and £ Arcisse ~Class [nareren
dgirectly to X1ib) B ——Module | Exam
ick lag arcy . e—
mz;:ks;:dsﬂocé SS img{?se 1S a graphjes les
color map oo ;I;rVaIe ton of Péckage develo g —
3 ~, ee_ ~ > pe b
The Python Gistf - Value o o 390 four.imen T1S52riat d*Eneygra 4 7e0Ch coly
fast and able to (h .~ 4n ar 10n 1e Ato Cagueg
: dndy jf netj PlOts (the que A ’
can be dynamY harg . Zou sh on) can atter me drcisse Etudeg d
after a simple t® Opy). OW the bog 1 0pen ap send 08 that q Compre ¢
and other grapmc operatons Dice plot | tvo Plo c olore S1Ve; it o q
ommand-line interface- don’t X d €Ording ¢, tho
Al Ver to b ﬂdi.stant mach,e 5
MUDIQ.serieS he Social Activities STATE OF THE ART ding With

@ The proceedings

Credit is due our gracious hosts, Lawrence Livermc
National Research Initiatives for helping to sponsor

Software Acuvity.

For an on-line versio!
<http://www.python org/wo

2:00 - 2:30 Extensibility in Python
Manus Hand
2:30-3:00 Using SWIG to Control, Prototype, and Debug C Programs
with Python
David M. Beazley

B FOURTH INTERZ.

THON CONFERENCE o

Building a Programmable Interface for
Physics Codes Using Numeric Python

T.-Y. B. Yang, P. F. Dubois, and Z. C. Motteler

Lawrence Livermore National Laboratory

1.0 Introduction

an do
to the
Hachine
th a

Our goal is to create a “‘plug and play”’ programmable interface that gives the users flexi-
bility to run the applications in the way appropriate for their physics problems, and also
allows the code developers to query and to change, from the Python interpreter, variables
buried in the physics modules, which for speed reasons are implemented in C, C++, and
Fortran, and to execute compiled modules. Some of the philosophy behind such program-

Credit i mable applications was presented elsewhere.! The programmable applications with
Nationa Python interface, from the bottom up as shown in Fig. 1, consists of the following four it
Softwar

levels:

<http://www.python.org/wo

- COMPUTERS IN PHYSICS, VOL. 10, NO. 3, MAY/JUN 1996

NUMERICAL PYTHON

Paul F. Dubois, Konrad Hinsen,
and James Hugunin

Department Editor:

Paul F. Dubois
duboisl @]lInl.gov

ython is a small and easy-to-learn language with surpris-
ing capabilities. It is an interpreted object-oriented script-
ing language and has a full range of sophisticated features
such as first-class functions, garbage collection, and excep-
tion handling. Python has properties that make it especially
appealing for scientific programming:
+ Python is quite simple and easy to learn, but it is a full and
complete language.
« It is simple to extend Python with your own compiled
objects and functions.
+ Python is portable, from Unix to Windows 95 to Linux to
Macintosh.
+ Python is free, with no license required even if you make
a commercial product out of 1t. i
« Python has a large user-contributed library of “modules.”
Theee madiiles cover a wide varietv of needs. such as audio

© 1996 AMERICAN INSTITUTE OF PHYSICS (894-1866/96/10(3)/262/6/510.00

benchmarks for the basic language and
the numerical extension are available
on the Python Web site (http://www.
python.org).

The numerical extension 1s still in
beta test and may therefore change
slightly from this description. In par-
ticular, the beta-test period is needed to
sort out some controversies in naming
and coercion rules. But with this tutonal
as a start and the latest readme file for
the numerical extension, you should be
able to start using it. Note that you will
need to add the extension to the Python
source; every effort is made to keep a
“minimal Python” as small as possible,
as Python is being used for applications
where a small size 1s important.

Python is extremely well suited to
the development of programmable ap-
plications, as has been advocated on

these pages (CIP 8:1, 1994, p. 70). It has a scrnipting language
as the user interface and compiled code for the compute-in-
tensive portions.

Introducing Python

Python is an interpreter. You can either enter commands
directly into the interpreter or, more commonly, create a file
containing a script. On Unix, you can invoke Python with the
script as the first argument, or you can use the usual trick of
starting the script with a comment like this:

#l/usr/local/bin/python

Then you give execute permission to the script file. When you
execute it, the Python interpreter is invoked on the script file
itself. Since the above line is a comment as far as Python is
concerned. it is then 1enored.

SWIG: Convert C declarations to Python wrappers.

SWIG Interface file
gmodule SPaSM

3 {

#include "SPaSM.h"

s}

void memory(int natoms);
void geometry(double ...
void processors(int ...

void set boundary period

Python

>>> from SPaSM import *

>>> memory(20000)

>>> geometry(0,0,0,80,80,
160,2.0)

Released as open-source in February, 1996

SPaSM: Now Running under Python (1996)

=

xv 3.10a: AmpAimgtemp2.gif <unregistereds

=

T aE—
@ KIMNETIC ENMERGY

THU OCT 9 Z2:57:08 19397
UM 4

2R

IMG4E_&A. A2 GTF

THU OCT 9 22:52:55 1997

hm¢4

-1

v 3.10a: fimpimgtemp3.gif <unregistered=

EE
VELOCITY PROFILE

1. 5005 27 . aa1F EE.EQzs T4 2a2d4

@

92,5043

IMG4_1.0021 .GIF

Compositing. ..

Integrating

10

Compositing. ..
Compositing. ..

Integrating

10

Compositing. ..
Compositing. ..

Integrating

10

Compositing. ..
Compositing. ..

Integrating

10

Compositing. ..

Compositing.

SPasM [4] >
SPasM [4] >

Compositing.

SPasM [4] >

Compositing.

SPasM [4] >

Qé.rutd(iﬂj
ke . show()

zaom(110)

zoom(110)

Compositing. ..
SPasM [4] > []

timesteps. ..

timesteps. ..

timesteps. ..

timesteps. ..

T SEE—
-1 SHOCK VELOCITY
THU OCT 9 ZZ:5Z:5e 1997
FUr 4
|

I —

Syntax

Shock wave problem

nx = 15

ny = 15

nz = 50

shock_velocity = 8.5

temp = 0.01

width = 0.3333 # Width 1s percent of total z length
ro = 1.0901733 # Lattice spacing

gap = 0.10 # Gap (% of z length)
cutoff = 2.0 # Interaction cutoff
cvar.Dt = 0.0025 # Timestep
cvar.Benchmark =1

ic_shock(nx,ny,nz,shock_velocity,width,gap,temp, r@,cutoff)
init_1j(1,1,cutoff)
set_boundary_periodic()

set_path("./Data")

timesteps(10000,25,25,500)

The REPL

Python 3.8.0b4 (default, Sep 2 2019, 12:54:09)

[Clang 9.0.0 (clang-900.0.39.2)] on darwin

Type "help", "copyright", "credits" or "license" for more
information.

>>> print("Hello World")

Hello World

>>> 37 + 42

79

>>>

Interactive Experimentation was Ciritical

C Extensions

Physics

(ANSI C)

Python could talk to existing C code (via Swig, etc.)

Abstractions

Python was flexible, yet pragmatic

®* |mperative
® Functional
® Object-oriented

You could adapt Python to your problem
(as opposed to the other way around).

Loose Coupling

class Bike:
def _ _turn__(self):

Implementation

Python was written in ANSI C

Few dependencies

Avoided advanced implementation "tricks"”
You could actually understand it

Python was easily "hackable", which also meant
"readable”, "fixable” and "adaptable." We were often
running on esoteric hardware with basically no support.
If you wanted something to work, you were on your own.

Performance

e Parallel machines had 1000s of processing
nodes, each with limited memory

e Each one had a copy of Python

¢ Python was relatively small

o Little impact on existing code

This point was critical to selling people on the idea.

It Suited Us

"A scientific program is usually the product
of one or two people, who write it initially to
solve a class of problems faced by
themselves and perhaps a few friends. It is
much rarer for a decision to be made early
to write a large program; rather, the
programs that prove to be useful are added
to, and evolve into, large programs over

time."

-- Paul Dubois

A wide range of applications have been studied with
SPaSM: 1993-2012 covers '

OMPUTATIONAL
~ A lamos SCIENCE & ENGINEERING
Science |

DMPUTATIONAL
SCIENCE & ENGINEERING

-

Advancing

g Interactive
Visualization

‘).‘

~C-—vm~b-a-h~n

" - X - m

R PHILOSOPHICAL ¢; —
P TRANSACTIONS |

'._.!j_, —_ Ot ,
d prapsmsl THE ROYALAQ\ i
e S()(IFTY i

Terbas mairg and beyond

Scientific Grand Challenges \ A

for National Security:

Controlling Data Glut
mpersary Book Reviews

Intervention simulations for

U.S. influenza pandemic
5 o Fe > ‘&

, 9

ASSESSING THE RELIABILITY
OF COMPLEX MODELS

Mrantn w0 Jnorcs Fascsooe
- t

Vs s Yasws n we

" . i e vrnse Dss o awm
e Yo
W, o

T
. "

SPaSM is still in use (2017)

Acta Materialia 126 (2017) 313-328

journal homepage: www.elsevier.com/locate/actamat

by |

Contents lists available at ScienceDirect
ACHa MATERIALIA

Acta Materialia

Full length article

On the ultimate tensile strength of tantalum

@ CrossMark

Eric N. Hahn " ", Timothy C. Germann °, Ramon Ravelo ¢, James E. Hammerberg ,

Marc A. Meyers

* Materials Science and Engineering Program, University of California San Diego, La jolla, CA, 92093, USA
® Theoretical Division, Los Alamos Nationa! Laboratory, Los Alamos, NM, 94550, USA

© X-Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM, 94550, USA

“ Physics Department and Materials Research Institute, University of Texas, El Paso, TX, 79968, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 14 September 2016
Received in revised form

9 December 2016

Accepted 14 December 2016
Available online 10 January 2017

Keywords:

Tensile strength

Spall

Non-equilibrium molecular dynamics
Tantalum

Strain rate, temperature, and microstructure play a significant role in the mechanical response of ma-
terials. Using non-equilibrium molecular dynamics simulations, we characterize the ductile tensile
failure of a model body-centered cubic metal, tantalum, over six orders of magnitude in strain rate.
Molecular dynamics calculations combined with reported experimental measurements show power-law
kinetic relationships that vary as a function of dominant defect mechanism and grain size. The maximum
sustained tensile stress, or spall strength, increases with increasing strain rate, before ultimately satu-
rating at ultra-high strain rates, i.e. those approaching or exceeding the Debye frequency. The upper limit
of tensile strength can be well estimated by the cohesive energy, or the energy required to separate
atoms from one another. At strain rates below the Debye frequency, the spall strength of nanocrystalline
Ta is less than single crystalline tantalum. This occurs in part due to the decreased flow stress of the grain
boundaries; stress concentrations at grain boundaries that arise due to compatibility requirements; and
the growing fraction of grain-boundary atoms as grain size is decreased into the nanocrystalline regime.
In the present cases, voids nucleate at defect structures present in the microstructure. The exact makeup

maensd sesnbuaicaataman nb Habmats s cncundtcmallasd Twas ddes Sentteml suesomasnhoenasciacsma mendd Sles selmmbes ool mousmdeans et D

It does not always use its Python interface
Supercomputing is a strange world

Machines often change

At one point, the CPUs got smaller and the OS
eliminated support for dynamic linking
Created a build/deployment problem

Also: Challenges in porting to Python versions

Can | make it work?

Demo

| ported SPaSM from 1998 (Python 1.4) to 2019
(Python 3.8) just for this talk.

It runs on my laptop.

It took about a day.

How was this even
possible?

Modular DIY

The Python environment made us think more about

brogram structure. Modularity, relationships between

components, portability, and other software matters.
But not in a heavy-handed manner.

Our goal was never to create a "software product.”

SPaSM was not developed as software product

Habitability

Think of a farmhouse. It starts as a small home with a barn out
back. As the family grows and the needs of the farm grow, a back
room Is added to the house, then a canning room, then a room
for grandma; stables are added to the barn, then a wing for
milking more cows. Finally the house and barn are connected
because it is too difficult to get from the house to the barn in a
blizzard. The result is rambling, but each part is well-suited to its
needs, each part fits well with the others, and the result is
beautiful because it is a living structure with living people inside.
The inhabitants are able to modify their environment because
each part is built according to familiar patterns of design, use,
and construction and because those patterns contain the seeds
for piecemeal growth.

-- Richard Gabriel (Patterns of Software)

"Much of scientific pbrogramming is exploratory in
nature, and for that sort of programming the use of
compiled languages will cease. Interpreters will simply
be fast enough for most such calculations. More
computationally intensive programs will be written as
extensions of interpreted environments."

- Paul Dubois (Computers in Physics, Mar. 1997)

Is Python's current ecosystem of "scientific” tools the
realization of that future?

Is Python's current ecosystem of "scientific” tools the
realization of that future?

(honest answer, | don't know)

Is Python's current ecosystem of "scientific” tools the
realization of that future?

(honest answer, | don't know)

(a different talk perhaps...)

Thanks!

Acknowledgments

¢ Guido van Rossum

® Peter Lomdahl (LANL)
® Tim Germann (LANL)

Me:

® http://www.dabeaz.com
® (@dabeaz (Twitter)

