Big Brother in a Quantum World

Gilles Brassard

Université IU
de Montréal

ChaumFest, CWI, Amsterdam, 22 November 2019

SECURITY WITHOUT IDENTIFICATION: TRANSACTION SYSTEMS TO MAKE BIG BROTHER OBSOLETE

The large-scale automated transaction systems of the near future can be designed to protect the privacy and maintain the security of both individuals and organizations.

October 1985
Vol. 28 No. 10


```
Home / Magazine Archive / October 1985 (Vol. 28, No. 10) / Security without identification: transaction systems... / Abstract
```

COMMUNICATIONS OF THE ACM
Security without identification: transaction systems to make big brother obsolete

By David Chaum
Communications of the ACM, Octobe 1985, /ol. 28 No. 10, Pages 1030-1044
10.1145/4372.4373

Comments

The large-scale automated transaction systems of the near future can be designed to protect the privacy and maintain the security of both individuals and organizations.

THE FULL TEXT OF THIS ARTICLE IS PREMIUM CONTENT

SIGN IN for Full Access

User Name

Password

» Forgot Password?
» Create an ACM Web Account

Crypto 81 , roceedings

Session A: Theory \& Implementation

Ron Rivest, MIT, Chairman

- The Generation or Cryptographically Strong Pseudo-Random Sequences, Adi Shamir, Weitzmann Institute (Israel) (Metadata)
- Mime-Memorv-Processor Tradeofts, Hamid Amirazizi and Martin E Hellman Stantord Univ, (Meta)
- Primility Testing, Leeonard Adleman, USC (Metadata)
- Coin Flipping by Telephone, Manuel Blum, (CC Berkeley (Metadata)
- High-Speed Hardware Implementation of the Knapsack Cipher, Paul S. Henry and R. D. Nash, Bell Labs (Metadata)
- A Polvnomial Time Solution for Compact Knnapsacks, Hamid Amirazizi, Ehud Karnin, and Justin Reyneri, Stanford Univ. (Metadata)
- Variant ot a Public Key Cry.ptosystem based on Goppa codes, John P. Jordan, Bell Labs (Metadata)

Session B: Algorithms, Techniques, \& Funding
Ralph Merkle, ELXSI Int'I, Chairman

- A System for Point-of-Sale or Access User Authentication and ddentification, Gus Simmons, Sandia Corp. (Metadata)
- One-way Sequence for Transaction Verification, Alan G. Konheim, Univ. Calif.,Santa Barbara (Metadata)
- Some Reqular Properties of the DES, Donald W. Dav
- Subtractive Encryptors - Alternatives to the DES, Don R. Morrison, Univ. New Mexico (Metadata)
- Towards a Design Procedure for Cryptosecure Substitution Boxes, J. A. Gordon, Hatieled Polytecchnic (England)) Metadata)
- An Optimally Secure Realitivized Cryytosystem Gilles Srassard, Univ, de Montreal (Metadal
- A Discussion ot NSA Program OCREAE, Larry Hatch, NSA

Session C Computers, Networks, Key Management

Steve Kent, BBN, Chairman

- Memo: A Hybrid Approach to Encrypted Electronic Mail, Srian P. Schanning, and \rfloor. Kowalchuk, Mitre (Metadata)
- Digital Signature Scneme for Computer Communication Networks, Henk Meier and, Selim G. Akk, Queen's University (Metadata)
- Local Network C Crypotosystem Architecture e Thomas A. Berson, Sytek, Inc. (Metadata)
- Software Protection Using "Communal Key Cryptosystems" 保保e B. Purdy, Texas A\&M University, Gustavus J. Simmons, Sandia, James Studier, Univ, Illinois (Metadata)
- A Password Extension for Improved Human Factors Sig Porter, NCR (Metadata)
- Key Management from a Security Viewpoint G. R.B Blakley. Texas A\&M University (Metadata)

Session D Applications and Issues

Steve Weinstein, American Express, Chairman

- Cryptography, the Next Two Decades, Whitifield Diffie, BNR (Metadata)
- Security Mechanisms in Electronic Cards Stephen B. Weinstein, American Express (Metadata)
- Current Market. Products, Costs, Trends, J. Michael Nye, Marketing Consultants Int' (Metadata) Results on Samoling-based Scrambling for Secure Speech Cummunication, in-Shan Lee and, Ger-chin Chow, National Taiwan Univ. (Metadata)
- Some Tnoughts on Speech Encryption A. D. Wyner, Bell Labs (Metadata)
- Evaluating Relative Security of commercial Comsec Devicices, AlbertL. Lang and Janet T. Vaseek, Booz, Allen \& Hamilton (Metadata)
- Limitations on the Use of Encryption to Enforce Mandatory Security, Morrie Gasser, Mitre (Metadata)

Rump Session

Paul S. Henry, Bell Labs, Chairman

- Verification by Anonymous Monitors, David Chaum, Univ. Califorria. Santa Barbara (Metadata)
- A General Public Key SSystem Errst Henze, Univ. Braunschweig (ww. Germany) (Metadata)
- Discussion ot Adleman's Subexponential Algorithm for Computing Discrete Logarithms, Tore Herlestam, Univ. Lund (Sweden) (Metadata)
- Theorem concerring Pseudo-Random Sequences, Adi Shamir (no paper)
- Protocol for Signing Contracts, Shimon Even, Technion (Israel) (Metadata)

Panel Discussion

Wational Security and Commercial Security: Division of Responsibility
Whitieled Diffie, BNR (Moderator).
Mevilie Klein, NSA,
$\frac{\text { Michael L. Dertouzos, MTT, }}{\text { Andrew Gleason, Havvard }}$
$\frac{\text { Dean Smi }}{\text { (Metadata) }}$

International Association for Cryptologic Research

Crypto 81 proceedings

The proceedings of Crypto 81 was published as a UCSB Tech Report. These papers were not refereed, and this predates the existence of IACR. The front matter with preface and table of contents is available here. The cover sheet is also available.

Session A: Theory \& Implementation

Ron Rivest, MIT, Chairman

- The Generation or Cryptographically Strong_Pseudo-Random Sequences, Adi Shamir, Weitzmann Institute (Israel) (Metadata)
- On the Necessity or Exhaustive Search for System-Invariant Cryptanalysis, Martin E. Hellman, Ehud Karnin, and Justin Reyneri, Stanford Univ. (Metadata)
- Time-Memory-Processor Tradeoffs, Hamid Amirazizi and Martin E. Hellman, Stanford Univ. (Metadata)
- Primality Testing, Leonard Adleman, USC (Metadata)
- Coin Flipping by Telephone, Manuel Blum, UC Berkeley (Metadata)
- High-Speed Hardware Implementation of the Knapsack Cipher, Paul S. Henry and R. D. Nash, Bell Labs (Metadata)
- A Polynomial Time Solution for Compact Knapsacks, Hamid Amirazizi, Ehud Karnin, and Justin Reyneri, Stanford Univ. (Metadata)
- Some Comments on the Knapsack Problem, Ingemar Ingemarsson, Univ. of Linkoping (Sweden) (Metadata)
- Variant ot a Public Key Cryptosystem based on Goppa codes, John P. Jordan, Bell Labs (Metadata)

Session B: Algorithms, Techniques, \& Funding

Ralph Merkle, ELXSI Int'I, Chairman

- A System for Point-of-Sale or Access User Authentication and Identification, Gus Simmons, Sandia Corp. (Metadata)
- One-way Sequence for Transaction Verification, Alan G. Konheim, Univ. Calif,,Santa Barbara (Metadata)
- DES '811: An Update, Miles E. Smid, NBS (Metadata)
- Some Regular Properties of the DES, Donald W. Davies, National Physical Lab (England) (Metadata)
- Subtractive Encryptors - Alternatives to the DES, Don R. Morrison, Univ. New Mexico (Metadata)
- Towards a Desian Procedure for Cryntosecure Substitution Boxes, J_A Gordon Hatfield Polytechnic (England) (Metadata)
- An Optimally Secure Relativized Cryptosystem Gilles Brassard, Univ. de Montreal (Metadata)

- A Discussion ot NSA Program OCREAE, Larry Hatch, NSA

Session D Applications and Issues

Steve Weinstein, American Express, Chairman

- Cryptography, the Next Two Decades, Whitfield Diffie, BNR (Metadata)
- Security Mechanisms in Electronic Cards Stephen B. Weinstein, American Express (Metadata)
- Current Market: Products, Costs, Trends, J. Michael Nye, Marketing Consultants Int'l (Metadata)
- Results on Sampling-based Scrambling for Secure Speech Cummunication, Lin-Shan Lee and , Ger-chih Chow, National Taiwan Univ. (Metadata)
- Some Tnoughts on Speech Encryption A. D. Wyner, Bell Labs (Metadata)
- Nonlinear Feedback Shift Register Sequences H. J. Beker, Racal-Milgo (England) (Metadata)
- Evaluating Relative Security of Commercial ComSec Devices, Albert L. Lang and Janet T. Vasek, Booz, Allen \& Hamilton (Metadata)
- Limitations on the Use of Encryption to Enforce Mandatory Security, Morrie Gasser, Mitre (Metadata)
- The Import/Export Dilemma, J. Michael Nye, (Marketing Consultants Int'I (Metadata)

Rump Session

Paul S. Henry, Bell Labs, Chairman

- Verification by Anonymous Monitors, David Chaum, Univ. California. Santa Barbara (Metadata)
- Progress in Public Key Cryptograpny in Great Britân, Martin Kochanski, Telesecurity Ltd. (no paper)
- A General Public Key System Ernst Henze, Univ. Braunschweig (Ww. Germany) (Metadata)
- Discussion ot Adleman's Subexponential Algorithm for Computing Discrete Logarithms, Tore Herlestam, Univ. Lund (Sweden) (Metadata)
- Theorem concerning Pseudo-Random Sequences, Adi Shamir (no paper)
- Protocol for Signing_Contracts, Shimon Even, Technion (Israel) (Metadata)
- III-Formed Tuoughts Concerning Oblivious Transfer, Ron Rivest, MIT (no paper)

Panel Discussion

National Security and Commercial Security: Division of Responsibility, Whitfield Diffie, BNR (Moderator),
Melville Klein, NSA,
Michael L. Dertouzos, MIT,
Andrew Gleason, Harvard
Dean Smith
(Metadata)

International Association for Cryptologic Research

Crypto 81 proceedings

The proceedings of Crypto 81 was published as a UCSB Tech Report. These papers were not refereed, and this predates the existence of IACR. The front matter with preface and table of contents is available here. The cover sheet is also available.

Session A: Theory \& Implementation

Ron Rivest, MIT, Chairman

- The Generation or Cryptographically Strong_Pseudo-Random Sequences, Adi Shamir, Weitzmann Institute (Israel) (Metadata)
- On the Necessity or Exhaustive Search for System-Invariant Cryptanalysis, Martin E. Hellman, Ehud Karnin, and Justin Reyneri, Stanford Univ. (Metadata)
- Time-Memory-Processor Tradeoffs, Hamid Amirazizi and Martin E. Hellman, Stanford Univ. (Metadata)
- Primality Testing, Leonard Adleman, USC (Metadata)
- Coin Flipping by Telephone, Manuel Blum, UC Berkeley (Metadata)
- High-Speed Hardware Implementation of the Knapsack Cipher, Paul S. Henry and R. D. Nash, Bell Labs (Metadata)
- A Polynomial Time Solution for Compact Knapsacks, Hamid Amirazizi, Ehud Karnin, and Justin Reyneri, Stanford Univ. (Metadata)
- Some Comments on the Knapsack Problem, Ingemar Ingemarsson, Univ. of Linkoping (Sweden) (Metadata)
- Variant ot a Public Key Cryptosystem based on Goppa codes, John P. Jordan, Bell Labs (Metadata)

Session B: Algorithms, Techniques, \& Funding

Ralph Merkle, ELXSI Int'I, Chairman

- A System for Point-of-Sale or Access User Authentication and Identification, Gus Simmons, Sandia Corp. (Metadata)
- One-way Sequence for Transaction Verification, Alan G. Konheim, Univ. Calif,,Santa Barbara (Metadata)
- DES '811: An Update, Miles E. Smid, NBS (Metadata)
- Some Regular Properties of the DES, Donald W. Davies, National Physical Lab (England) (Metadata)
- Subtractive Encryptors - Alternatives to the DES, Don R. Morrison, Univ. New Mexico (Metadata)
- Towards a Design Procedure for Cryptosecure Substitution Boxes, J. A. Gordon, Hatfield Polytechnic (England) (Metadata)
- An Optimally Secure Relativized Cryptosystem Gilles Brassard, Univ. de Montreal (Metadata)
- Scramblinq and Randomization Subhash C Kak Louisiana State Univ. (Metadata)
- A Discussion ot NSA Program OCREAE, Larry Hatch, NSA

ADVANCES IN CRYPTOLOGY Proceedings of Crypto 82

Edited by
David Chaum, Ronald L. Rivest, and Alan T. Sherman

Charles H. Bennett, ${ }^{1}$ Gilles Brassard, ${ }^{2}$
Seth Breidbart ${ }^{3}$ and Stephen Wiesner ${ }^{4}$

1. IBM Research, Yorktown Heights, NY 10598
2. Université de Montréal, Département d'I.R.O., C.P. 6128, Succ. "A", Montréal, Québec H3C 3J7
3. P.O. Box 1526 , Wall Street Station, New York, NY 10268
4. MIT Research Laboratory of Electronics, MIT, Cambridge, MA 02139

4. CRYPTO 1984: Santa Barbara, California, USA

G. R. Blakley, David Chaum (Eds.): Advances in Cryptology, Proceedings of CRYPTO '84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings. Lecture Notes in Computer Science 196 Springer 1985, ISBN 3-540-15658-5

Public Key Cryptosystems and Signatures
 Cryptosystems and Other Hard Problems
 Randomness And Its Concomitants

Analysis and Cryptoanalysis
Protocols and Authentication

Impromptu Talks

Shafi Goldwasser, Silvio Micali, Ronald L. Rivest: A "Paradoxical" Solution to the Signature Problem (Abstract). 467
A. K. Leung, Stafford E. Tavares: Sequence Complexity as a Test for Cryptographic Systems. 468-474

Charles H. Bennett, Gilles Brassard: An Update on Quantum Cryptography. 475-480
David Chaum: How to Keep a Secret Alive: Extensible Partial Key, Key Safeguarding, and Threshold Systems. 481-485

AN INTRODUCTION TO MINIMUM DISCLOSURE (1988)

OPEN OACCESS

- Main

Save publication

Title
Published in
Author
Date issued Access

An introduction to minimum disclosure
CWI Quarterly, Vol. 1, No. 1, p.3-18. ISSN 0922-5366.
G. Brassard (Gilles), D. Chaum (David), C. Crépeau

1988-03-01
Open Access

Minimum Disclosure Proofs of Knowledge

Gilles Brassard*
Département d'informatique et de R.O., Université de Montréal, C.P. 6128, Succursale "A," Montréal, Québec, Canada H3C $3 J 7$

David Chaum

Centre for Mathematics and Computer Science (CWI), Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

AND

Claude Crépeau ${ }^{\dagger}$

Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, Massachusetts 02139

Received July 3, 1987

Protocols are given for allowing a "prover" to convince a "verifier" that the prover knows some verifiable secret information, without allowing the verifier to learn anything about the secret. The secret can be probabilistically or deterministically verifiable, and only one of the prover or the verifier need have constrained resources. This paper unifies and extends models and techniques previously put forward by the authors, and compares some independent related work. © 1988 Academic Press, Inc.

Big Brother in a Quantum World

Gilles Brassard

Université IU
de Montréal

ChaumFest, CWI, Amsterdam, 22 November 2019

BIG BROTHER

Cryptography

Ongoing battle between

 Codemakers Codebreakers(cryptographers)
(cryptanalysts)

Who will win?

Codemakers

or

Codebreakers

?

Edgar Allan Poe (1809-1849)

EDGAR ALLAN POE

THE GOLD BUG

Al-Kindi

Lived 801-873

Wrote 290 books

Abu Yusuf Ya'qub ibn Is-haq ibn as-Sabbah ibn Oòmran ibn Ismaïl Al-Kindi
 How
 ven, x^{4}
 <, thur, ecilltheral

Ox O ,
 Se in :
Manuscript on Deciphering Cryptographic Messages Rediscovered in 1987!

Who will win?

Codemakers

or

> Codebreakers

Who will win?

«It may be roundly asserted that human ingenuity cannot concoct a cipher which human ingenuity cannot resolve »

Edgar Allan Poe

(Graham's Lady's and Gentleman's Magazine, July 1841)

Blaise de Vigenère

DESCHIFFRES,

OV SECRETES
MANIERES
D'ESCRIRE:

Bo.veronnois.,

2295

Chez Abel l'angelier, au premier pillier de la grand' Salle du Palais.
2H. D. LXXXVI. 1586
\mathcal{L} / l AVEC PRIVILEGE DV KOY.

Who will win?

«It may be roundly asserted that human ingenuity cannot concoct a cipher which human ingenuity cannot resolve "

Edgar Allan Poe

(Graham's Lady's and Gentleman's Magazine, July 1841)
Blaise de Vigenère, 1586
Giovan Battista Belasso, 1553
Charles Babbage, 1854 (1846?)

Who will win?

«It may be roundly asserted that human ingenuity cannot concoct a cipher which human ingenuity cannot resolve "

Was he right?

Key Establishment

How can Alice and Bob establish a secret key?

Trusted third party
Computational security
Quantum physics

Key Establishment

How can Alice and Bob establish a secret key?

Trusted third party
Computational security
Cannot be unconditionally secure

Key Establishment Problem

Computational Security

James Ellis (1970)

Clifford Cocks (1973) Ralph Merkle (1974)
Diffie et Hellman (1976)
Rivest, Shamir, Adleman (1977)
Robert McEliece (1978)

The Big Question

We live in a quantum world

Is this a blessing or a curse
for codemakers?

Various Scenarios

Codemakers
Classical Quantum
Codebreakers
Classical Quantum
Communication Channels Classical

Quantum

Classical Scenario

Codemakers

Classical
Quantum
Codebreakers
Classical
Quantum
Communication Channels Classical

Quantum

Key Establishment

James Ellis (1970)

Clifford Cocks (1973)
Ralph Merkle (1974)
Diffie and Hellman (1976)
Rivest, Shamir, Adleman (1977)
Robert McEliece (1978)

Post-Quantum Crypto

Codemakers

Classical

Quantum
Codebreakers
Classical Quantum
Communication Channels
Classical
Quantum

Shor's algorithm

Can factor large numbers efficiently

Can extract discrete logarithms efficiently even in elliptic curves

on a quantum computer

Grover's Algorithm

Problem: find unique x such that $f(x)=1$ Classical: requires $N / 2$ calls to f on average Grover: about \sqrt{N} quantum calls to f suffice!

IBM's new 53-qubit quantum computer is its biggest yet

The system will go online in October.

Stephen Shankland \ddagger September 18, 2019 5:00 AM PDT
$\theta \quad 9$

A close-up view of the IBM Q quantum computer. The processor is in the silvercolored cylinder.

Fig. 1 |The Sycamore processor. a, Layout of processor, showing a rectangular array of 54 qubits (grey), each connected to its four nearest neighbours with couplers (blue). The inoperable qubit is outlined. \mathbf{b}, Photograph of the Sycamorechip.

Key Establishment in a Quantum World

Post-Quantum Crypto

James Ellis (1970)

Clifford Cocks (1973)
RolpheMerkte (1974)
Diffie et Hellmmon(1976)
Rivest, Shamir, Adllemon(1977)
¿ Robert McEliece (1978)?

Post-Quantum Crypto

James Ellis (1970)

CliffordGocks (1973)

> Ralph Merkle (1974)

Rivest, Shamir, Adleman (1977)
¿ Robert McEliece (1978)?

Classical Merkle Secure Against Quantum Eve [BHKKLS]

Alice needs exactly N calls to each oracle

Bob finds 国 after $2 N+2$ expected calls

This requires $\sim N^{7 / 6}$ quantum expected calls!

Quantum against Quantum

Codemakers

Classical Quantum
Codebreakers
Classical Quantum

Channels

Classical

Quantum

Key Establishment in a Quantum World

All Quantum World [BBHKKLS]

$$
\text { key }=(4,10,14)
$$

$$
\text { key }=(4,10,14)
$$

Bob finds key after
Alice needs exactly N calls to each oracle
$3 \times O\left(\sqrt{\frac{N^{3}}{N}}\right)=O(N)$
calls using BBHT

This requires $\sim N^{7 / 4}$ quantum expected calls

Summary with Classical Channels

UNPROVED security in the computational model

In a classical world, RSA and Diffie-Hellman seem to be secure, but we can't prove it.

In a quantum world, RSA and Diffie-Hellman (even using elliptic curves) are known to be insecure, but McEliece / New Hope / Frodo might be secure.

It seems that Quantum Mechanics is a curse for codemakers!

Summary with Classical Channels

PROVABLE security in the black box model When the legitimate parties work in time $\sim N . .$.

In a classical world, the eavesdropper must work in time $\sim \mathrm{N}^{2}$ to learn their key.

In a quantum world, the eavesdropper can learn their key in time $\sim N^{7 / 4}$ against the best scheme discovered so far.

It seems that Quantum Mechanics is again a curse for codemakers!

Quantum Cryptography

Codemakers
Classical Quantum
Codebreaker
Classical Quantum

Channels

Classical Quantum

Quantum Cryptography

Codemakers

(almost) Classical
Quantum
Codebreaker
Classical Quantum
Channels
Classical Quantum

Quantum Cryptography

> Conjugete coding

Stephen Wiesner

Columbia University, New Yorkr N.Y. Department of Physics

Written 1968
Published 1983!

A quantum banknote, containing particles in a secret set of quantum states, cannot be copied by counterfeiters, who would disturb the particles by attempting to observe them.

No one understands my idea!

Wiesner

Quantum Information Theory
Conversation wi Steve Wiesuen, who till me that:
A variation on the Einstein - Rosen-Podslsky Gedankenexproment can be wed to send, though a chased wittia nominal capacity of one bit, tho bite of information; subject however to the constraint that, Whichever bit the
other bit is destroyed.

Start with a two-electuon system in a singlet state. Separate the electors and send one of then, A, to the receiver for later lose as ant of a key. The sending of A do ed not constitute a massage, since the transmitter hor excenised no choice in preparing A, Tale the other election, B, and apply to it, af the senders choice, one of the four operational $, R_{x}^{\pi}, R_{y}^{\pi}, R_{z}^{\pi}$; where I leaves it unchanged, R_{x}^{π} states it 180° about the x-axis, ot Now send B to the receives. The receive n is asked re razaker me
 to select one spin component, y or z, and retuse thin same component for both elections $A \& B$. In either cave the receiver recovers se bit of the two bit message encoded into B the senders of the operators $\left\{\tau, R_{3}, R_{4}, R_{2}\right\}$.

S: same spin component
$0=A b B$ hear offsite values of the measured spin composed.

Late October 1979

A quantum banknote, containing particles in a secret set of quantum states, cannot be copied by counterfeiters, who would disturb the particles by attempting to observe them.

No measurement can distinguish all four kinds.

Encode the classical key on

Photon gun

No one can steal the key! Yeah!

These states cannot be distinguished reliably

Eavesdropping \rightarrow Errors \rightarrow Detection

These states cannot be distinguished reliably

Eavesdropping \rightarrow Errors \rightarrow Detection

Use quantum channel to send random key

+ classical one-time-pad to send message
\rightarrow eavesdropping prevention

Bangalore

By Sheldon Li

regardless of eavesdropper's technology and computing power

Who will win?

Codemakers

or

> Codebreakers

Who will win?

«It may be roundly asserted that human ingenuity cannot concoct a cipher which human ingenuity cannot resolve»

Poe was wrong!

1989: Bennett, Bessette, Brassard, Salvail, Smolin

 flashes of polarized light, providing a secure way to transmit
information [see illustration on pages 56 and 57]. On average each flash consists of one tenth of a photon.

Redefining Security!

IDQ is a leading supplier of high-performance multi-protocol NETWORK ENCRYPTION solutions and QUANTUM KEY DISTRIBUTION equipment.

CENTAURIS CN8000 ENCRYPTOR: SWISS QUANTUM SECURITY
The Centauris CN8000 multi-link encryptor is designed to cost-effectively protect traffic on large-scale data networks. It delivers the performance capabilities of ten 10Gbps Centuaris encryptors in one compact chassis, encrypting up to 100 Gbps of multiprotocol layer 2 network traffic with no overhead and minimum latency.
The CN8000 is Swiss-manufactured and quantum powered for high security.

CBCnews |Technology \& Science

Home	World	Canada	Politics	Business	Health	Arts \& Entertainment	Technology \& Science

China launches world's 1st quantum satellite

QUESS satellite designed to establish 'hack-proof' quantum communications
Thomson Reuters Posted: Aug 16, 2016 9:00 AM ET \| Last Updated: Aug 16, 2016 11:56 AM ET

China launches revolutionary quantum satellite

China on Tuesday launched the world's first quantum satellite, which will help it establish "hack-proof' communications between space and the ground, state media said, the latest advance in an ambitious space programme.

AUSTRIAN AND CHINESE ACADEMIES OF SCIENCES SUCCESSFULLY CONDUCTED FIRST INTER-CONTINENTAL QUANTUM VIDEO CALL

The two Academy presidents Chunli Bai and Anton Zeilinger tested quantum encrypted communication between Beijing and Vienna in a live-experiment. The quantum key was transmitted via the Chinese quantum satellite Micius.

QKD missions, present and future
Overview of several current and future airborne
and space missions with a QKD focus (discussed in text). Narrower end of pink path shows OKD source; broader end shows receiver.

Italy

Who will win?

«It may be roundly asserted that human ingenuity cannot concoct a cipher which human ingenuity cannot resolve»

Poe warivrong!

$$
\Phi
$$

Établissement de clef dans un monde quantique

(10)
 Quantum Hacking

Who will win?

«It may be roundly asserted that human ingenuity cannot concoct a cipher which human ingenuity cannot resolve»

Was Poe right after all?

The Big Question

We live in a quantum world

Is this a blessing

 or a curse for codemakers?The jury is still out!

"About your cat, Mr. Schrödinger-I have good news and bad news."

QCRYPT 2018
History of Quantum Cryptography

