
Python:
an experiment in language

design by community

Guido van Rossum
Principal Engineer, Dropbox (retired)

emeritus Python BDFL

Why are we here?

"Let's Google that."

In other sites' words
• StackOverflow on https://insights.stackoverflow.com/survey/2019:

"For the seventh year in a row, JavaScript is the most commonly
used programming language, but Python has risen in the ranks
again. This year, Python just edged out Java in overall ranking,
much like it surpassed C# last year and PHP the year before.
Python is the fastest-growing major programming language today."

• GitHub on https://octoverse.github.com/ in 2019:

"And for the first time, Python outranked Java as the second
most popular language on GitHub by repository contributors."

https://stackoverflow.com/jobs?sort=i&q=javascript
https://stackoverflow.com/jobs?sort=i&q=python
https://octoverse.github.com/

Blah, blah, data science, blah
• GitHub again:

"Behind Python’s growth is a speedily-expanding community of
data science professionals and hobbyists—and the tools and
frameworks they use every day. These include the many core
data science packages powered by Python that are both lowering
the barriers to data science work and proving foundational to
projects in academia and companies alike."

Blah, blah, AI, blah, blah
• And GitHub again:

"Beyond Python, repositories with topics like “deep learning”,
“natural language processing”, and “machine learning” have
become more popular over the years with growing communities
focused on data science. Among the most popular (based on star
counts) public repositories labelled with the topic, over half of
them are built on numpy, and many of them depend on scipy,
scikit-learn, and TensorFlow. We’ve also seen non-code
contributions from the data science field, including academic
papers."

https://github.com/numpy/numpy
https://github.com/scipy/scipy
https://github.com/scikit-learn/scikit-learn
https://github.com/tensorflow/tensorflow
https://github.com/greenelab/deep-review
https://github.com/greenelab/deep-review

It wasn't always that way!
• Python started with a more modest goal:

Python is a simple, yet powerful programming language that
bridges the gap between C and shell programming, and is thus
ideally suited for "throw-away programming'' and rapid
prototyping.

-- Python 0.9.8 reference manual (1992)

• "In the '90s, our goal was to be more popular than Perl."

-- Jeremy Hylton, core developer since 1995

Early days

ABC
• Before Python, there was ABC

HOW TO PROCRASTINATE:
 FOR i IN {1..1000000000}:
 WRITE "Almost ready!" /

• Project ran from 1981-1987 (I think)

• Lambert Meertens, Leo Geurts, Steven Pemberton
• Timo Krijnen, Frank van Dijk, Guido van Rossum

• Cancelled for lack of impact

Prentice Hall

Amoeba
• Distributed system project, started at Vrije Universiteit
• Andrew Tanenbaum and his crew

• CWI team:
• Dr. Sape Mullender
• Jennifer Steiner, Jack Jansen, Sjoerd Mullender, myself

• We wanted to write a series of utilities and apps

• I got bored writing those in C

Python!
• The way I recall it...

• Sape2 was on a sabbatical in Palo Alto, Calif.

• Starting Xmas 1989 I spent most of my spare time on Python

• Used the UNIX "worse is better" philosophy

• First version was ready to demo in three months

• An early demo to Lambert went less than stellar :-)

wikipedia.org

Three words: "community"*3

• Python spread like an oil slick:

• First Jack and Sjoerd

• Then other programmers and researchers at CWI

• Then USENET (first release on comp.sources 1991)

• Our own newsgroup: comp.lang.python (1994)

• Workshops and conferences (1994 onwards)

python.org

Python Enhancement Proposals (PEPs)
• Modeled after Internet RFC process, seen at IETF meetings

• Championed by Barry Warsaw (2000)

• Strike balance between BDFL and community input

• Anyone can propose, BDFL accepts or rejects...

• ...But only after ample debate!

• BDFL role is primarily review

• (And keeper of Python philosophy)

Intermezzo:
From 'for' to 'async def'

in half a dozen PEPs

The lowly for-loop (1990)
• In the beginning was the for-loop

 for x in a:
 print(x)

• Innovation: x iterates over the values in the sequence; avoid

 for i := 1 to n do ...a[i]...

• The (bytecode) implementation does something like

 for (int i = 0; i < len(a); i++) { x = a[i]; print(x); }

PEP 234: Iteration protocol (2001)
• Goal: allow iteration without a[i];

move iteration state into Iterator object

• for line in file:
 process(line)

• Settled on a.__iter__() and it.next()

• it = file.__iter__()
while True:
 try:
 line = it.next()
 process(line)
 except StopIteration:
 break

• class MyIterator:
 def __init__(self, a):
 self.a = a
 self.i = 0

 def next(self):
 if self.i >= len(self.a):
 raise StopIteration
 x = self.a[self.i]
 self.i += 1
 return x

• class MyList:
 def __iter__(self):
 return MyIterator(self)

 def __getitem__(self, i): ...

PEP 255: Generator functions (2001)
• Goal: avoid clunky iterator objects; allow user to

move iteration state into local variables of a function

• def listiter(a):
 i = 0
 while i < len(a):
 yield a[i]

• class MyList:
 def __iter__(self):
 return listiter(self)

• def fileiter(f):
 while True:
 line = f.readline()
 if not line:
 break
 yield line

PEP 342: Coroutines (2005)
• Goal: support use of generators as coroutines;

allow callers to pass a value into the next iteration

• Also allow throwing exceptions into generators

• Ideas initially developed in PEP 288, PEP 325, PEP 334

• PEP 342 combined those ideas, superseding the PEPs

• Coroutines were adopted by Twisted and Tornado

https://www.xkcd.com/353/

I wrote 20 short programs in Python yesterday. It was wonderful. Perl, I'm leaving you."I wrote 20 short programs in Python yesterday. It was wonderful. Perl, I'm leaving you."

2007

PEP 380: 'yield from' (2009-2011)
• Ostensibly just introduced a shorthand for

 for x in a:
 yield x
-->
 yield from a

• In reality created much more flexible coroutine machinery

• Initially targeted Python 2.7, finally landed in 3.3 (oops)

• Became the basis of PEP 3156: asyncio (2012-2013)

PEP 492: 'async def' (2015)
• Following the success of asyncio, streamline coroutines from

 @coroutine
 def read_text(s):
 data = yield from recv(s)
 return data.encode("utf-8")

-->

 async def read_text(s):
 data = await recv(s)
 return data.encode("utf-8")

Moral
• Je weet nooit hoe een koe een haas vangt

• (A blind man may sometimes hit the crow)

http://ikbenpoeslief.blogspot.com/2012/04/hoe-een-koe-een-paashaas-vangt-2.html

Diversity
• I thought it wasn't an issue

• I didn't discriminate on race, gender, etc. ("meritocracy")

• So how did we end up with mostly white men?

• And what did we do about it?

• Mostly the work of a bunch of
motivated women!

• PyLadies, Django Girls

Python is for Girls!

https://esmithy.net/2016/06/01/pycon-2016-day-2/

Government
• 1995: Python Software Activity (PSA) "user group"

"First Interim Chairman: Mike McLay
First Interim Keepers of python.org: 1st interim board, @CNRI
First Interim Keeper of the Notes: Ken Manheimer
First Interim Keeper of the python.org Materials Index: Paul Everitt
First Interim Treasurer: decision postponed until there's money
First Interim Workshop Coordinator: Paul Everitt
First Interim Benevolent Dicator for Life: Guido van Rossum"

• Most important activity: creation of python.org

• 2001: Python Software Foundation (PSF) incorporated

http://python.org

A new sheriff in town
• 2018: BDFL retirement (over PEP 572)

• 2019: Steering Council elected (5 people, guided by PEP 13)

Note:

• PSF and Steering Council are separate bodies

• PSF is for community in general (e.g. PyCon, licensing)

• SC guides development of language and implementation

The Future

The Zen of Python
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

By Tim Peters

