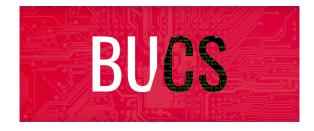
# **Rigorous Foundations for Statistical Data Privacy**



Adam Smith Boston University

CWI, Amsterdam November 15, 2018

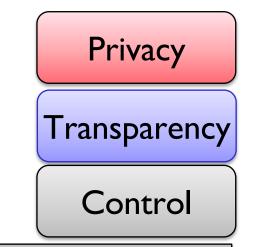
## "Privacy" is changing

- Data-driven systems guiding decisions in many areas
- Models increasingly complex

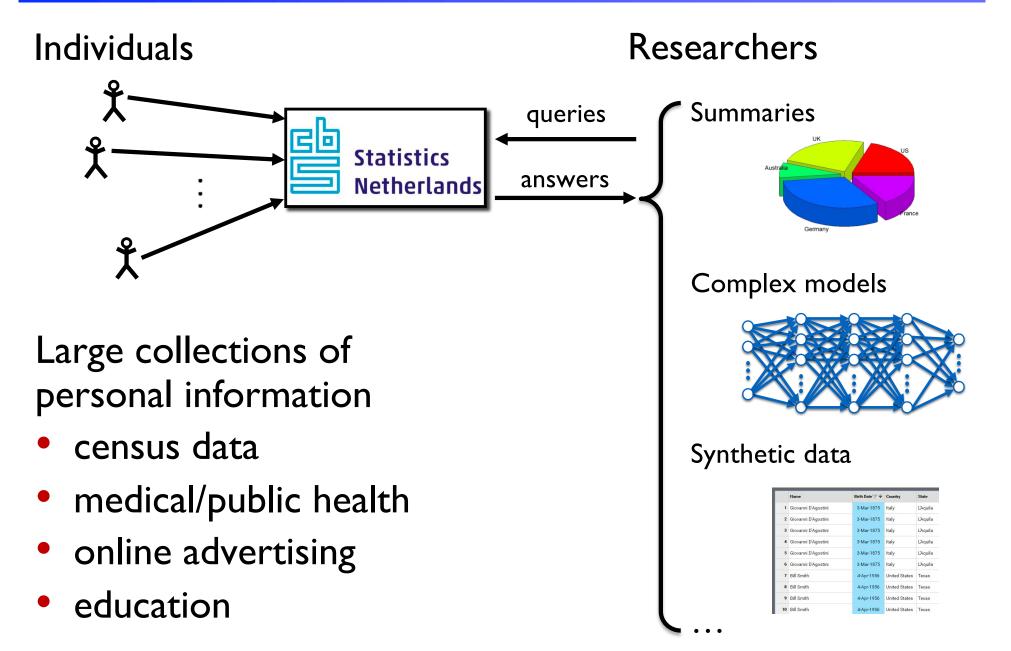


PredPol provides targeted, real-time crime prediction designed for and successfully tested by officers in the field.



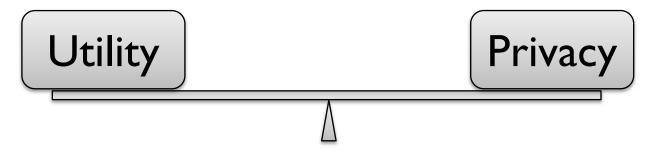


## Privacy in Statistical Databases



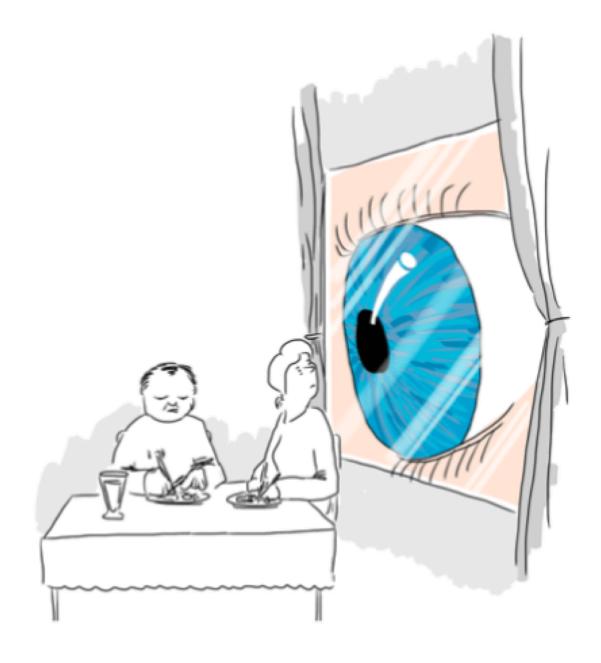
## Two conflicting goals

- Utility: release aggregate statistics
- **Privacy**: individual information stays hidden



## How do we define "privacy"?

- Studied since 1960's in
  - $\succ$  Statistics
  - Databases & data mining
  - Cryptography
- This talk: Rigorous foundations and analysis



"Relax – it can only see metadata."

### This talk

### Why is privacy challenging?

Anonymization often fails

> Example: membership attacks, in theory and in practice

### Differential Privacy [DMNS'06]

"Privacy" as stability to small changes

Widely studied and deployed

The "frontier" of research on statistical privacy
 Three topics

## First attempt: Remove obvious identifiers

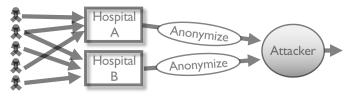


#### Everything is an identifier

"Al recognizes blurred faces" [McPherson Shokri Shmatikov '16]







[Ganta Kasiviswanathan S '08]

Images: whitehouse.gov, genesandhealth.org, medium.com

## Is the problem granularity?

What if we only release aggregate information?

Statistics together may encode data

- Example: Average salary before/after resignation
- More generally:

### Too many, "too accurate" statistics reveal individual information

Reconstruction attacks [Dinur Nissim 2003, ..., Cohen Nissim 2017]

Membership attacks [next slide]

Cannot release everything everyone would want to know

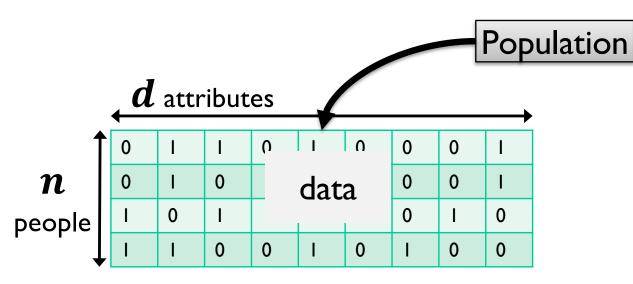
## A Few Membership Attacks

 [Homer et al. 2008]
 Exact high-dimensional summaries allow an attacker to test membership in a data set

> Caused US NIH to change data sharing practices

- [Dwork, S, Steinke, Ullman, Vadhan, FOCS '15]
   Distorted high-dimensional summaries allow an attacker to test membership in a data set
- [Shokri, Stronati, Song, Shmatikov, Oakland 2017] Membership inference using ML as a service (from exact answers)

## Membership Attacks



### Suppose

• We have a data set in which membership is sensitive

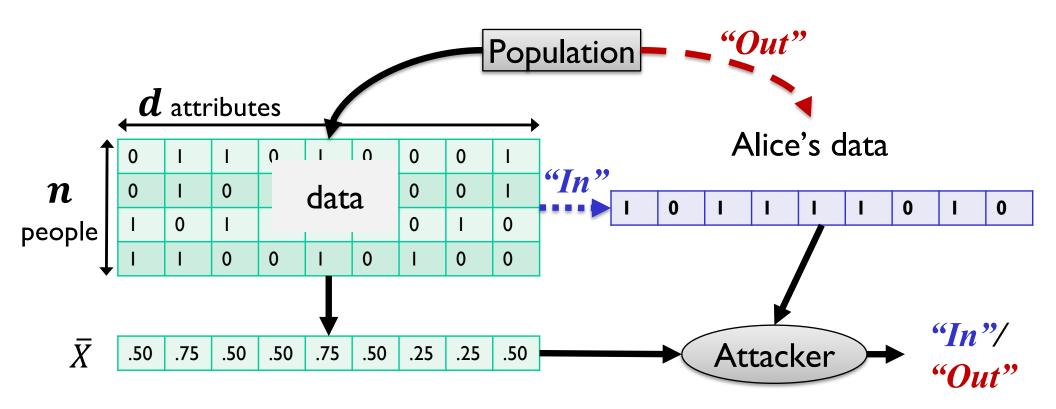
> Participants in clinical trial

Targeted ad audience

Data has many binary attributes for each person

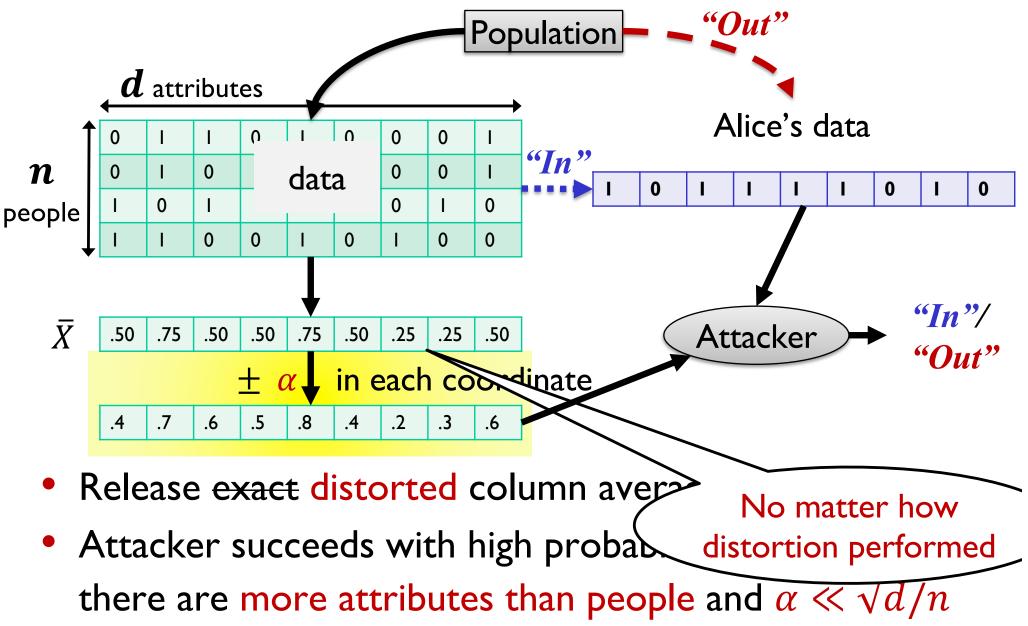
> Genome-wide association studies  $d = 1\ 000\ 000$  ("SNPs"), n < 2000

## Membership Attacks

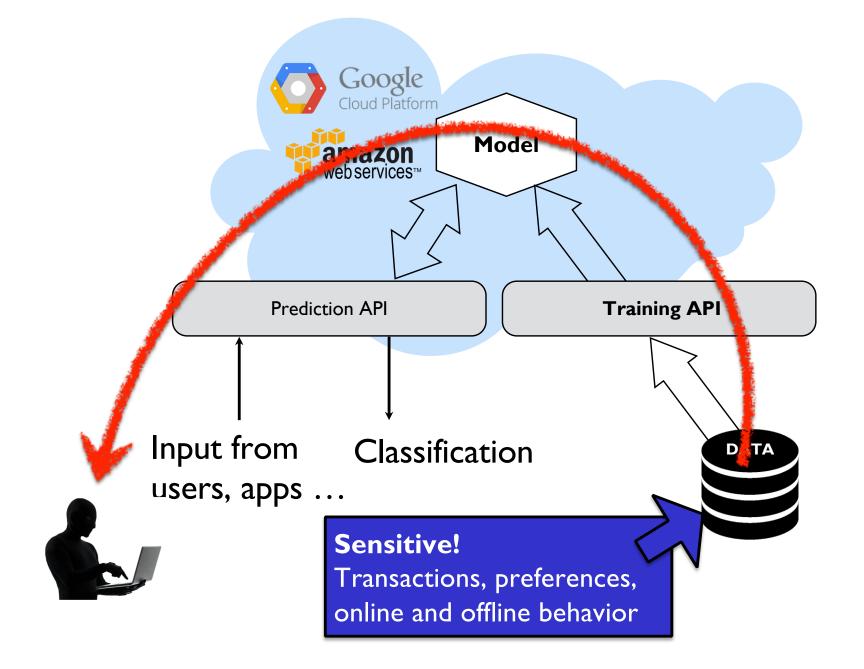


- Release exact column averages
- Attacker succeeds with high probability when there are more attributes than people

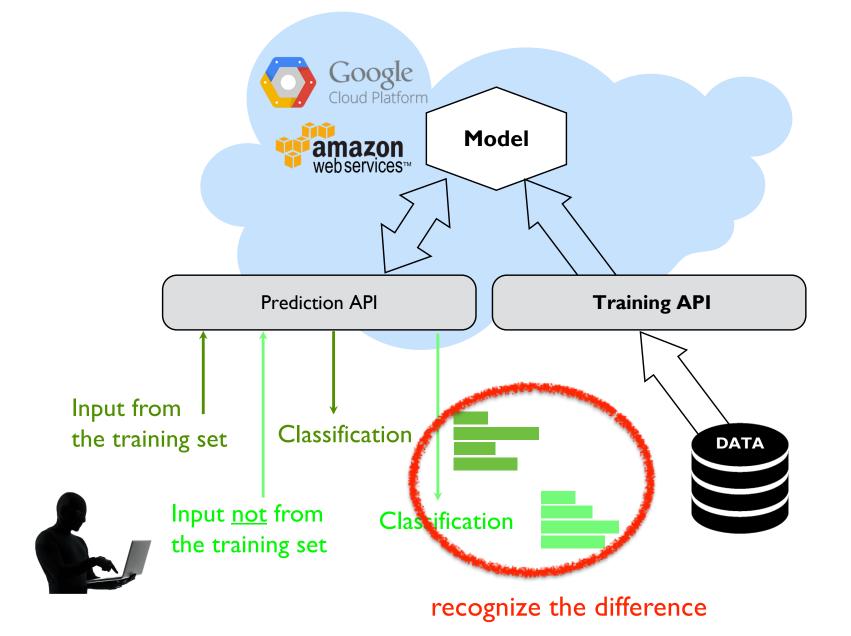
## Membership Attacks



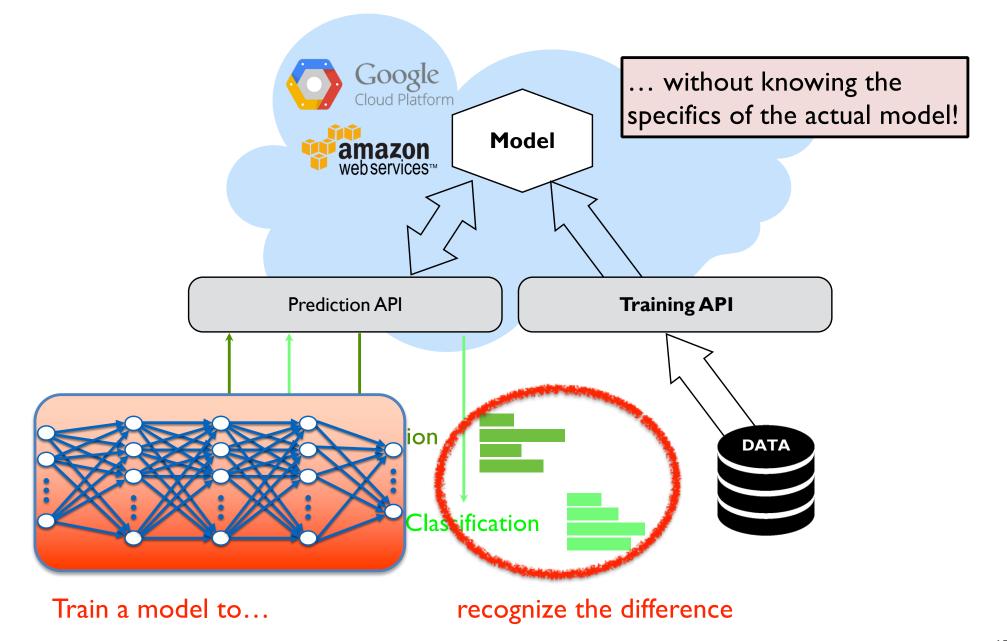
## Machine Learning as a Service



## **Exploiting Trained Models**



## **Exploiting Trained Models**



### This talk

### • Why is privacy challenging?

Anonymization often fails

> Example: membership attacks, in theory and in practice

### Differential Privacy [DMNS'06]

"Privacy" as stability to small changes

Widely studied and deployed

The "frontier" of research on statistical privacy
 Three topics

## **Differential Privacy**

Several current deployments



Apple



Google



#### US Census

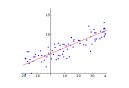
• Burgeoning field of research



Algorithms



Crypto, security



Statistics, learning



Game theory, economics

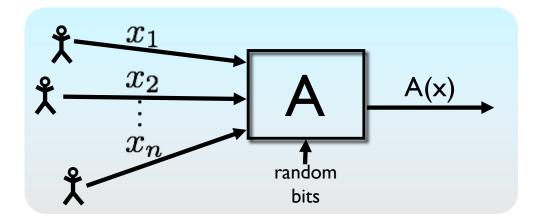


Databases, programming languages



Law, policy

**Differential Privacy** 



• Data set  $x = (x_1, ..., x_n) \in D^n$ 

Domain D can be numbers, categories, tax forms

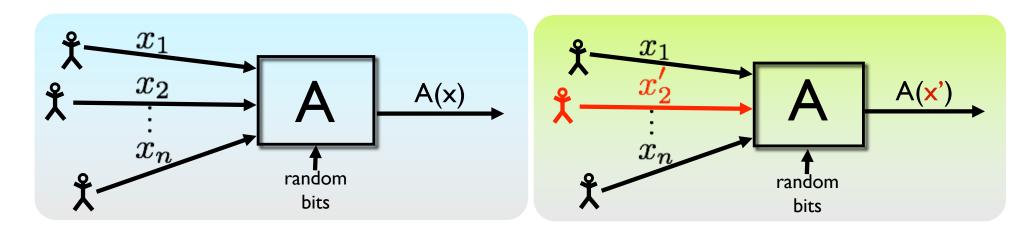
Think of x as fixed (not random)

#### • A = randomized procedure

> A(x) is a random variable

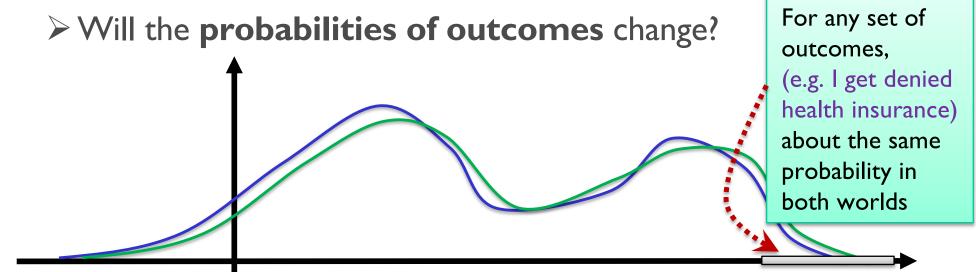
> Randomness might come from adding noise, resampling, etc.

## **Differential Privacy**

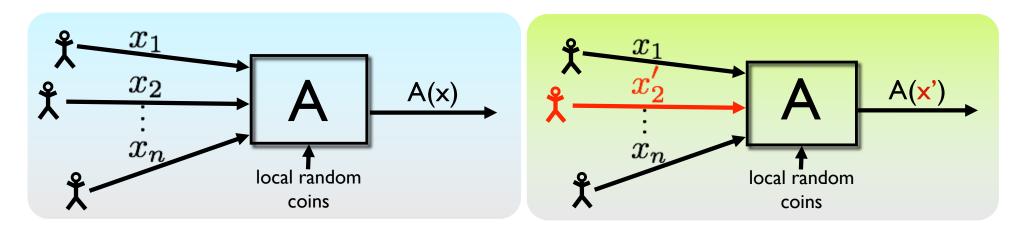


### A thought experiment

> Change one person's data (or add or remove them)



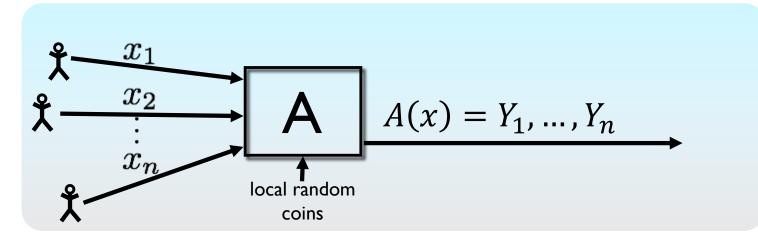
## **Differential Privacy**



x' is a neighbor of x if they differ in one data point

**Definition:** A is  $\epsilon$ -differentially private if, for all neighbors x, x', for all subsets S of outputs  $Pr(A(x) \in S) \leq (1 + \epsilon) Pr(A(x') \in S)$ 

## Randomized Response [Warner 1965]



 Say we want to release the proportion of diabetics in a data set

 $\succ$  Each person's data is | bit:  $x_i = 0$  or  $x_i = 1$ 

• Randomized response: each individual rolls a die

 $\succ$  I, 2, 3 or 4: Report true value  $x_i$ 

 $\succ$  5 or 6: Report opposite value  $\overline{x_i}$ 

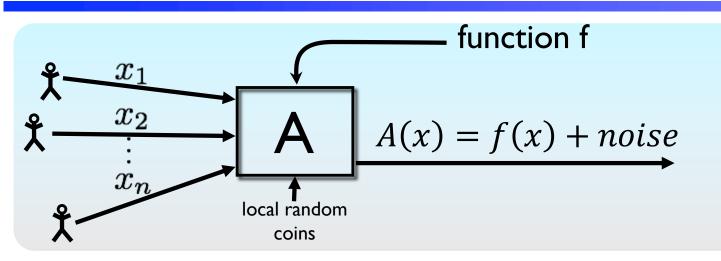
• Output is list of reported values  $Y_1, \dots, Y_n$ 

 $\succ$  Satisfies our definition when  $\epsilon \approx 0.7$ 

 $\succ$  Can estimate fraction of  $x_i$ 's that are 1 when n is large



## Laplace Mechanism

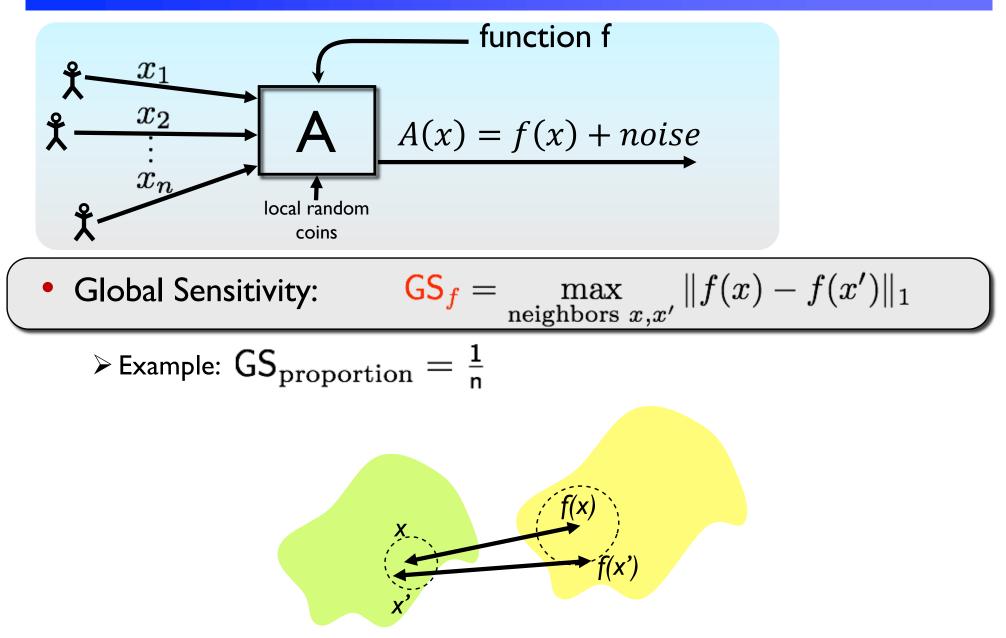


- Say we want to release a summary  $f(x) \in \mathbb{R}^d$  $\succ$  e.g., proportion of diabetics:  $x_i \in \{0,1\}$  and  $f(x) = \frac{1}{n} \sum_i x_i$
- Simple approach: add noise to f(x)

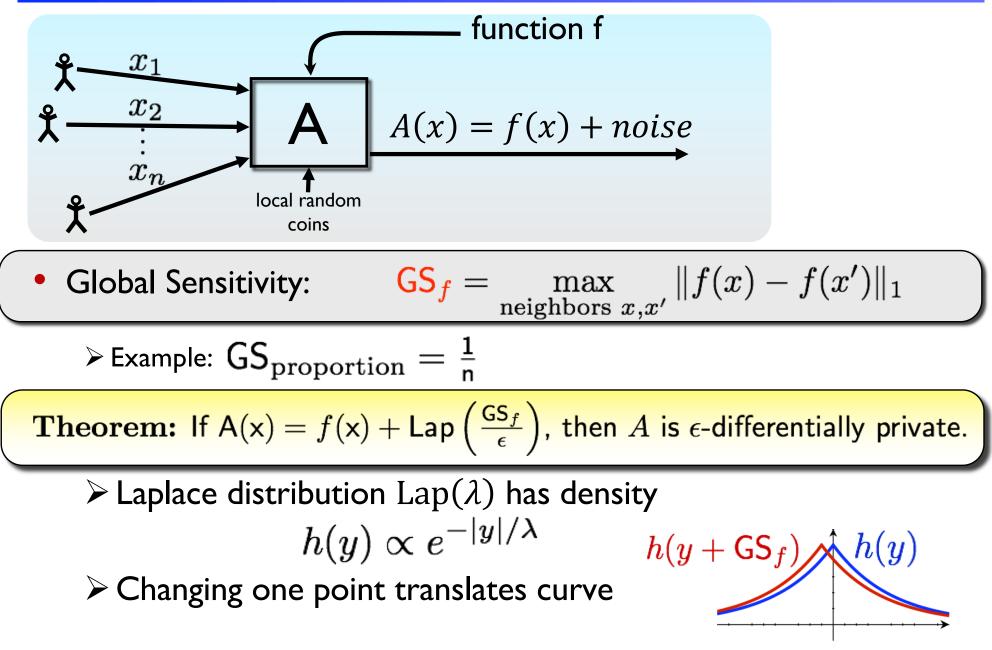
> How much noise is needed?

 $\succ$  Idea: Calibrate noise to some measure of f's volatility

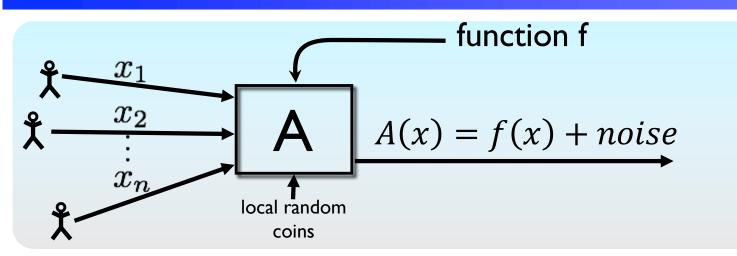
## Laplace Mechanism



## Laplace Mechanism



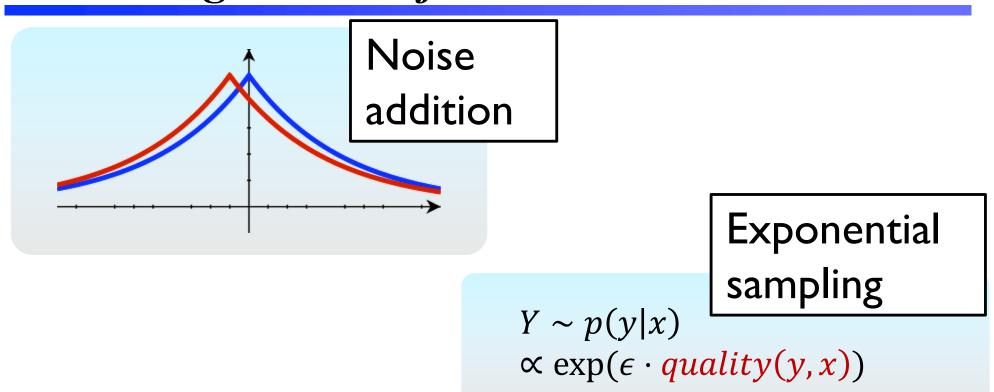
## Attacks "match" differential privacy

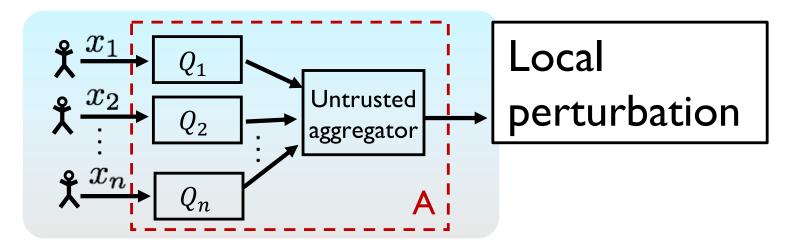


- Can release d proportions with noise  $\approx \frac{\sqrt{d}}{\epsilon n}$  per entry
- Requires "approximate" variant of DP



## A rich algorithmic field





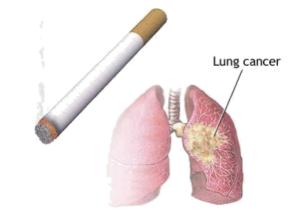
## Interpreting Differential Privacy

A naïve hope:

Your beliefs about me are the same after you see the output as they were before

#### Impossible

- Suppose you know that I smoke
- Clinical study: "smoking and cancer correlated"
- You learn something about me
  - Whether or not my data were used



 Differential privacy implies: No matter what you know ahead of time,

You learn (almost) the same things about me whether or not my data are used

Provably resists attacks mentioned earlier

## Research on (differential) privacy

- Definitions
  - Pinning down "privacy"
- Algorithms: what can we compute privately?
  - Fundamental techniques
  - Specific applications
- Usable systems
- Attacks: "Cryptanalysis" for data privacy
- Protocols: Cryptographic tools for large-scale analysis
- Implications for other areas
  - >Adaptive data analysis
  - $\succ$  Law and policy

### This talk

### • Why is privacy challenging?

Anonymization often fails

> Example: membership attacks, in theory and in practice

### Differential Privacy [DMNS'06]

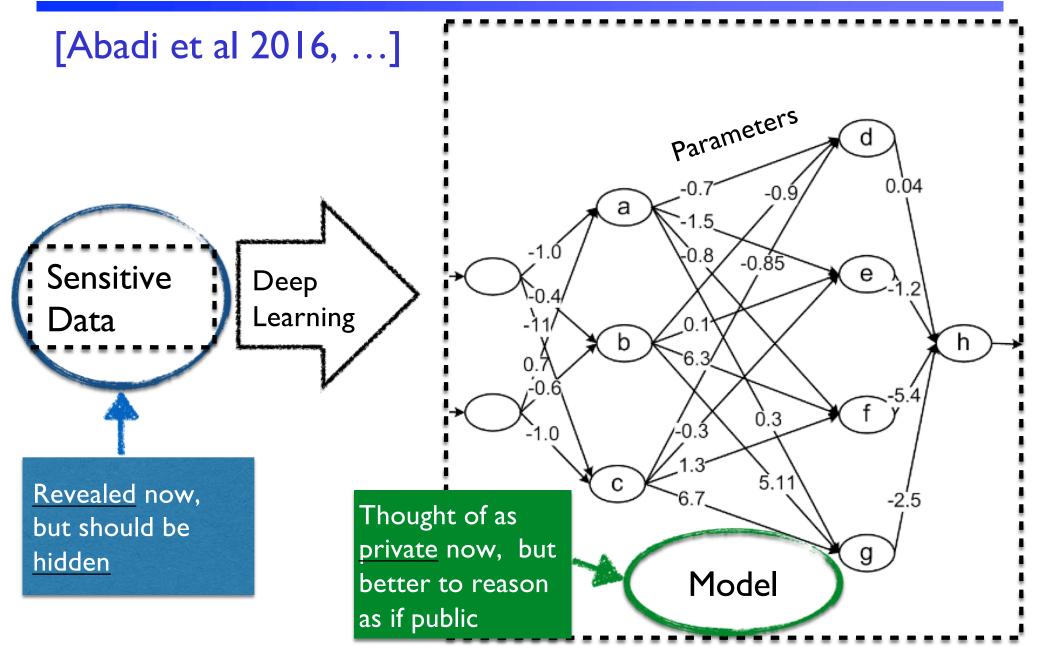
"Privacy" as stability to small changes

Widely studied and deployed

#### The "frontier" of research on statistical privacy

Three topics

## Frontier 1: Deep Learning with DP



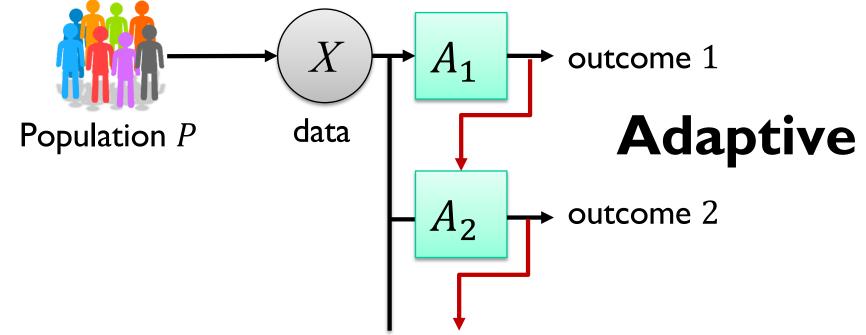
### Frontier 2: From Law to Technical Definitions

Two central challenges

- I. Given a body of law and regulation, what technical definitions comply with that law?
  - E.g., what suffices to satisfy GDPR?
- 2. How should we write laws and regulations so they make sense given evolving technology?
  - $\blacktriangleright$  E.g., Surveillance  $\neq$  physical wiretaps
- Technical research must inform these questions
  - E.g. "personally identifiable information" is meaningless
- [Nissim et al. 2016] When tradeoffs are inherent, mathematical formulations play an important role
  - E.g. formal interpretation of FERPA (a US law) mirrors DP
  - "Singling out" in GDPR is challenging to make sense of

## Frontier 3: Privacy and overfitting

- Problem: In modern data analysis, data are re-used across studies
  - Choice of what analysis to perform can depend on outcomes of previous analyses



 Differentially private algorithms help prevent overfitting due to adaptivity

### This talk

### • Why is privacy challenging?

Anonymization often fails

Example: membership attacks, in theory and in practice

#### Differential Privacy [DMNS'06]

"Privacy" as stability to small changes

Widely studied and deployed

The "frontier" of research on statistical privacy
 Three topics

## **Beyond privacy**

- Data increasingly used to automate decisions
   > E.g.: Lending, health, education, policing, sentencing
- Traditional security: controlling intrusion
- Modern security must include trustworthiness of data-driven algorithmic systems
- Differential privacy formalizes

   one piece of modern security
   What other areas need such scrutiny?

