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“Privacy” is changing
• Data-driven systems guiding 

decisions in many areas

• Models increasingly 
complex

2

Benefits of data
(better diagnoses,

lower 
recidivism…) Control

Transparency

Privacy



Privacy in Statistical Databases

Large collections of 
personal information
• census data
• medical/public health
• online advertising
• education
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Two conflicting goals
• Utility: release aggregate statistics
• Privacy: individual information stays hidden

How do we define “privacy”?
• Studied since 1960’s in 

ØStatistics
ØDatabases & data mining
ØCryptography

• This talk: Rigorous foundations and analysis 
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Utility Privacy
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“Relax – it can only 
see metadata.”



This talk

• Why is privacy challenging?
ØAnonymization often fails
ØExample: membership attacks, in theory and in practice

• Differential Privacy [DMNS’06]
Ø “Privacy” as stability to small changes
ØWidely studied and deployed

• The “frontier” of research on statistical privacy
ØThree topics
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First attempt: Remove obvious identifiers

Everything is an identifier

7Images: whitehouse.gov, genesandhealth.org, medium.com
[Ganta Kasiviswanathan S ’08]

“AI recognizes blurred faces”
[McPherson Shokri Shmatikov ’16]

Name:Ethnicity:

[Gymrek McGuire Golan 
Halperin Erlich ’13]

[Pandurangan ‘14]



Is the problem granularity?
What if we only release aggregate information?

Statistics together may encode data
• Example: Average salary before/after resignation

• More generally:
Too many, “too accurate” statistics 

reveal individual information
ØReconstruction attacks [Dinur Nissim 2003, …, Cohen Nissim 2017]

ØMembership attacks [next slide]
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Cannot release everything 
everyone would want to know



A Few Membership Attacks
• [Homer et al. 2008]

Exact high-dimensional summaries 
allow an attacker 
to test membership in a data set

Ø Caused US NIH to change data sharing practices

• [Dwork, S, Steinke, Ullman, Vadhan, FOCS ‘15] 
Distorted high-dimensional summaries
allow an attacker 
to test membership in a data set

• [Shokri, Stronati, Song, Shmatikov, Oakland 2017]
Membership inference using ML as a service 
(from exact answers)
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! attributes

"
people

Membership Attacks
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data
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Suppose 
• We have a data set in which membership is sensitive

ØParticipants in clinical trial
ØTargeted ad audience

• Data has many binary attributes for each person
ØGenome-wide association studies 
# = 1 000 000 (“SNPs”), ' < 2000
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Membership Attacks
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Alice’s data
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Population

“In”

“Out”

“In”/
“Out”

• Release exact column averages
• Attacker succeeds with high probability when 

there are more attributes than people and % ≪ '/)



• Release exact distorted column averages (± ")
• Attacker succeeds with high probability when 

there are more attributes than people and " ≪ %/'

( attributes

)
people

Membership Attacks
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No matter how 
distortion performed

Population



Machine Learning as a Service
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Model

Training API

DATA

Prediction API 

Input from 
users, apps …

Classification

Sensitive!
Transactions, preferences, 
online and offline behavior



Exploiting Trained Models
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Model

Training API

DATA

Prediction API

Input from 
the training set

Input not from 
the training set

Classification

Classification

recognize the difference



Exploiting Trained Models
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Model

Training API

DATA

Prediction API 

Input from 
the training set

Input not from 
the training set

Classification

Classification

recognize the differenceTrain a model to…

… without knowing the
specifics of the actual model!



This talk

• Why is privacy challenging?
ØAnonymization often fails
ØExample: membership attacks, in theory and in practice

• Differential Privacy [DMNS’06]
Ø “Privacy” as stability to small changes
ØWidely studied and deployed

• The “frontier” of research on statistical privacy
ØThree topics
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• Several current deployments

• Burgeoning field of research
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Apple Google US Census

Algorithms Crypto,
security

Statistics,
learning

Game theory,
economics

Databases,
programming

languages

Law,
policy

Differential Privacy



Differential Privacy

• Data set  !
ØDomain D can be numbers, categories, tax forms
ØThink of x as fixed (not random)

• A = randomized procedure
ØA(x) is a random variable
ØRandomness might come from adding noise, resampling, etc.
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random 
bits

A A(x)



• A thought experiment
ØChange one person’s data (or add or remove them)
ØWill the probabilities of outcomes change?
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A A(x’)A A(x)

For any set of 
outcomes, 
(e.g. I get denied 
health insurance)
about the same 
probability in 
both worlds

Differential Privacy

random 
bits

random 
bits
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local random 
coins

A A(x’)

!’ is a neighbor of !
if they differ in one data point

local random 
coins

A A(x)

Definition:  A is #-differentially private if, 
for all neighbors $, $’, 
for all subsets S of outputs

Pr ' $ ∈ ) ≤ (1 + #) Pr ' $/ ∈ )

Neighboring databases 
induce close distributions 
on outputs

Differential Privacy

# is a leakage measure
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Randomized Response [Warner 1965]

• Say we want to release the proportion of diabetics in a data 
set
Ø Each person’s data is 1 bit: !" = 0 or !" = 1

• Randomized response: each individual rolls a die
Ø 1, 2, 3 or 4: Report true value !"
Ø 5 or 6: Report opposite value &!"

• Output is list of reported values '(,… , '+
Ø Satisfies our definition when , ≈ 0.7
Ø Can estimate fraction of !" ’s that are 1 when 0 is large
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local random 
coins

A 1 ! = '(,… , '+



Laplace Mechanism

• Say we want to release a summary ! " ∈ ℝ%
Øe.g., proportion of diabetics: "& ∈ 0,1 and ! " = +

,∑& "&

• Simple approach: add noise to !(")
ØHow much noise is needed?
Ø Idea: Calibrate noise to some measure of !’s volatility
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local random 
coins

A

function f

0 " = ! " + 23456



Laplace Mechanism

• Global Sensitivity: 

Ø Example:   
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local random 
coins

A

function f

x

x’

f(x)

f(x’)

! " = $ " + &'()*



Laplace Mechanism

• Global Sensitivity: 

Ø Example:   

ØLaplace distribution Lap $ has density 

ØChanging one point translates curve
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local random 
coins

A

function f

% & = ( & + *+,-.



• Can release ! proportions with noise ≈ #
$% per entry

• Requires “approximate” variant of DP 

Attacks “match” differential privacy
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local random 
coins

A

function f

& ' = ) ' + +,-./

1/ +
Reconstruction
attacks

2
34

Differential
privacy

Sampling  error

Robust
membership attacks

2
4



A rich algorithmic field
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! ∼ # $ %
∝ exp(+ ⋅ -./012$ $, % )

Exponential 
sampling

Noise 
addition

Untrusted 
aggregator

A

56
57

58

Local 
perturbation



Interpreting Differential Privacy
• A naïve hope:

Your beliefs about me are the same 
after you see the output as they were before 

• Impossible
Ø Suppose you know that I smoke
Ø Clinical study: “smoking and cancer correlated”
Ø You learn something about me

• Whether or not my data were used

• Differential privacy implies:
No matter what you know ahead of time,

You learn (almost) the same things about me 
whether or not my data are used

Ø Provably resists attacks mentioned earlier
28



Research on (differential) privacy

• Definitions
ØPinning down “privacy”

• Algorithms: what can we compute privately?
ØFundamental techniques
ØSpecific applications

• Usable systems
• Attacks: “Cryptanalysis” for data privacy
• Protocols: Cryptographic tools for large-scale analysis
• Implications for other areas

ØAdaptive data analysis
ØLaw and policy
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This talk

• Why is privacy challenging?
ØAnonymization often fails
ØExample: membership attacks, in theory and in practice

• Differential Privacy [DMNS’06]
Ø “Privacy” as stability to small changes
ØWidely studied and deployed

• The “frontier” of research on statistical privacy
ØThree topics
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Frontier 1: Deep Learning with DP 
[Abadi et al 2016, …]
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Sensitive 
Data

Param
eters

Model

Revealed now, 
but should be 
hidden

Thought of as 
private now,  but 
better to reason 
as if public

Deep 
Learning



Frontier 2: From Law to Technical Definitions
Two central challenges

1. Given a body of law and regulation, what technical definitions 
comply with that law?
Ø E.g., what suffices to satisfy GDPR?

2. How should we write laws and regulations so they make sense 
given evolving technology?
Ø E.g., Surveillance ≠ physical wiretaps

• Technical research must inform these questions
Ø E.g. ”personally identifiable information” is meaningless

• [Nissim et al. 2016] When tradeoffs are inherent, mathematical 
formulations play an important role
Ø E.g. formal interpretation of FERPA (a US law) mirrors DP
Ø “Singling out” in GDPR is challenging to make sense of
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Frontier 3: Privacy and overfitting
• Problem: In modern data analysis, data are re-used 

across studies
ØChoice of what analysis to perform can depend on outcomes 

of previous analyses

• Differentially private algorithms help prevent overfitting 
due to adaptivity
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Adaptive
X !"

Population # data

outcome 1

!% outcome 2
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ØAnonymization often fails
ØExample: membership attacks, in theory and in practice

• Differential Privacy [DMNS’06]
Ø “Privacy” as stability to small changes
ØWidely studied and deployed

• The “frontier” of research on statistical privacy
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Accountability

• Data increasingly used to automate decisions
ØE.g.: Lending, health, education, policing, sentencing

• Traditional security: controlling intrusion

• Modern security must include 
trustworthiness of 
data-driven algorithmic systems

• Differential privacy formalizes 
one piece of modern security
ØWhat other areas need such scrutiny?

Beyond privacy
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Privacy 

Fairness 

Resistance to manipulation


