

Reliable Decision Support using Counterfactual Models

Suchi Saria

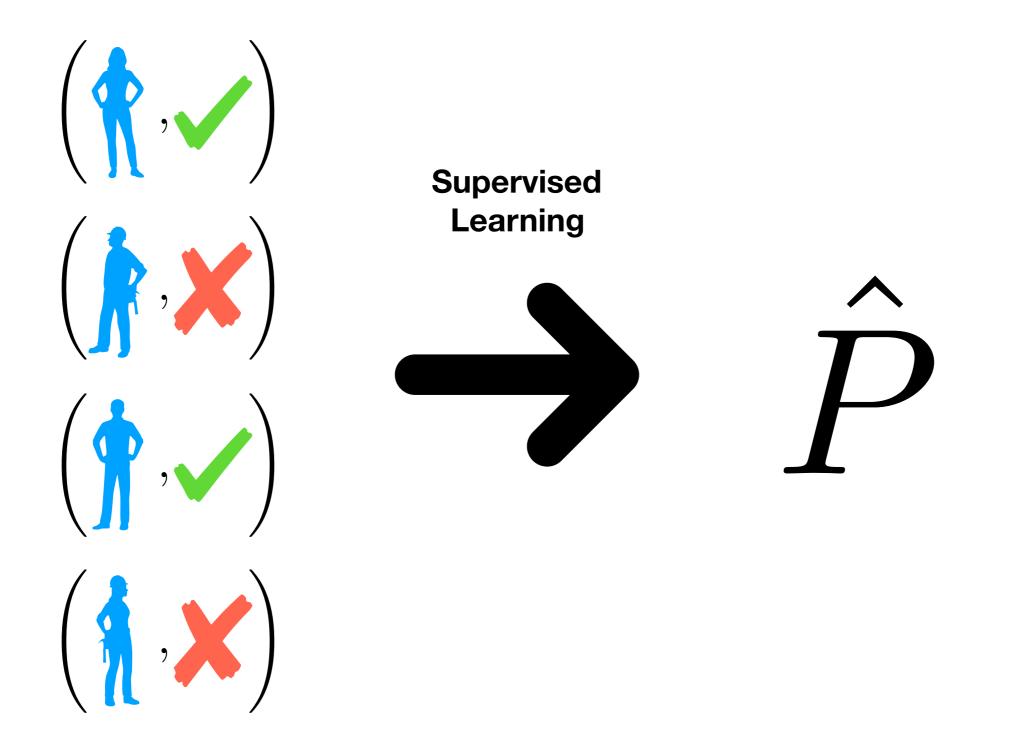
Assistant Professor Computer Science, Applied Math & Stats and Health Policy Institute for Computational Medicine

w/ Peter Schulam, PhD candidate

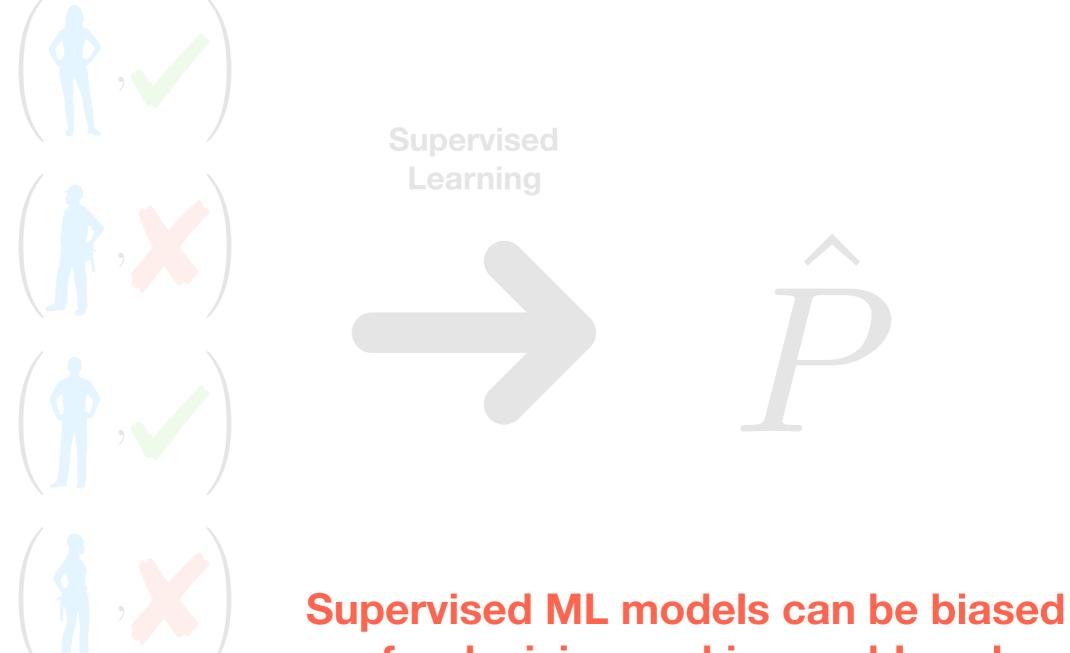
Example: Customer Churn

$P\left(\text{Cancels Account} \mid \mathbf{\hat{\rho}}\right)$

Example: Customer Churn

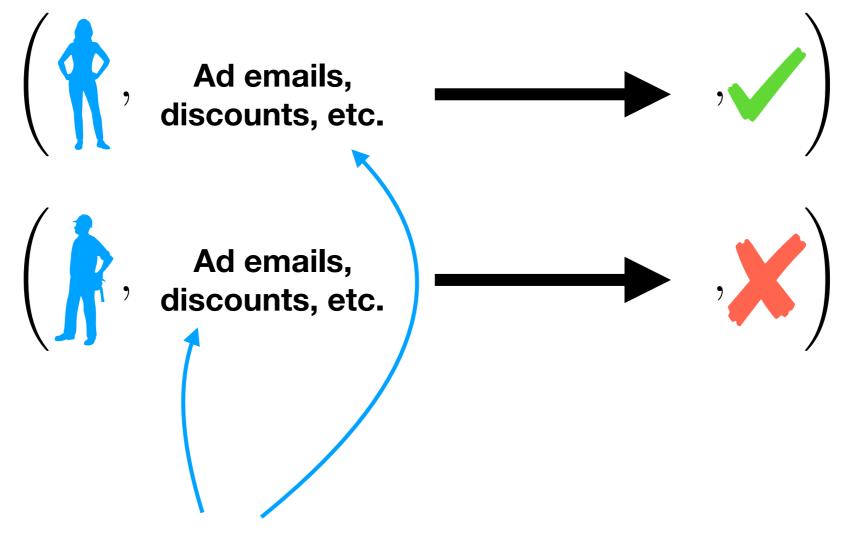


Example: Customer Churn



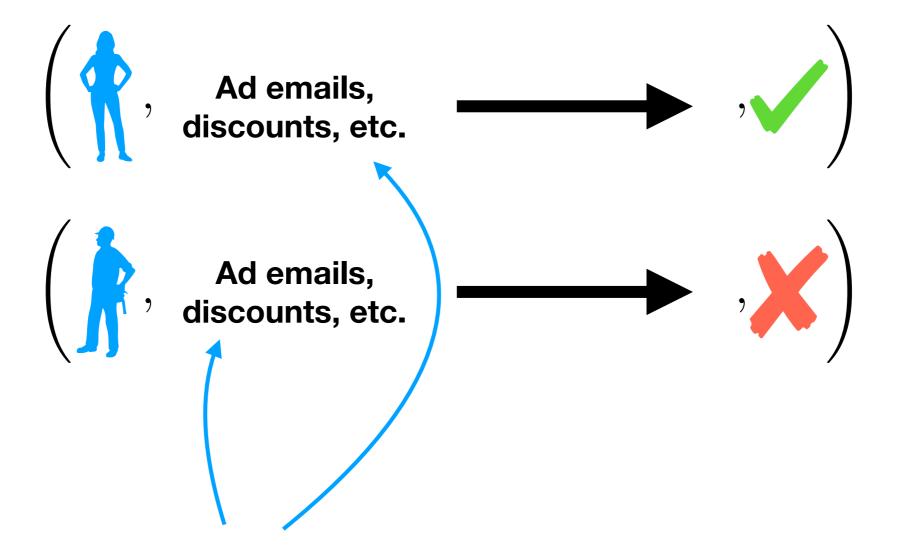
for decision-making problems!

Why?

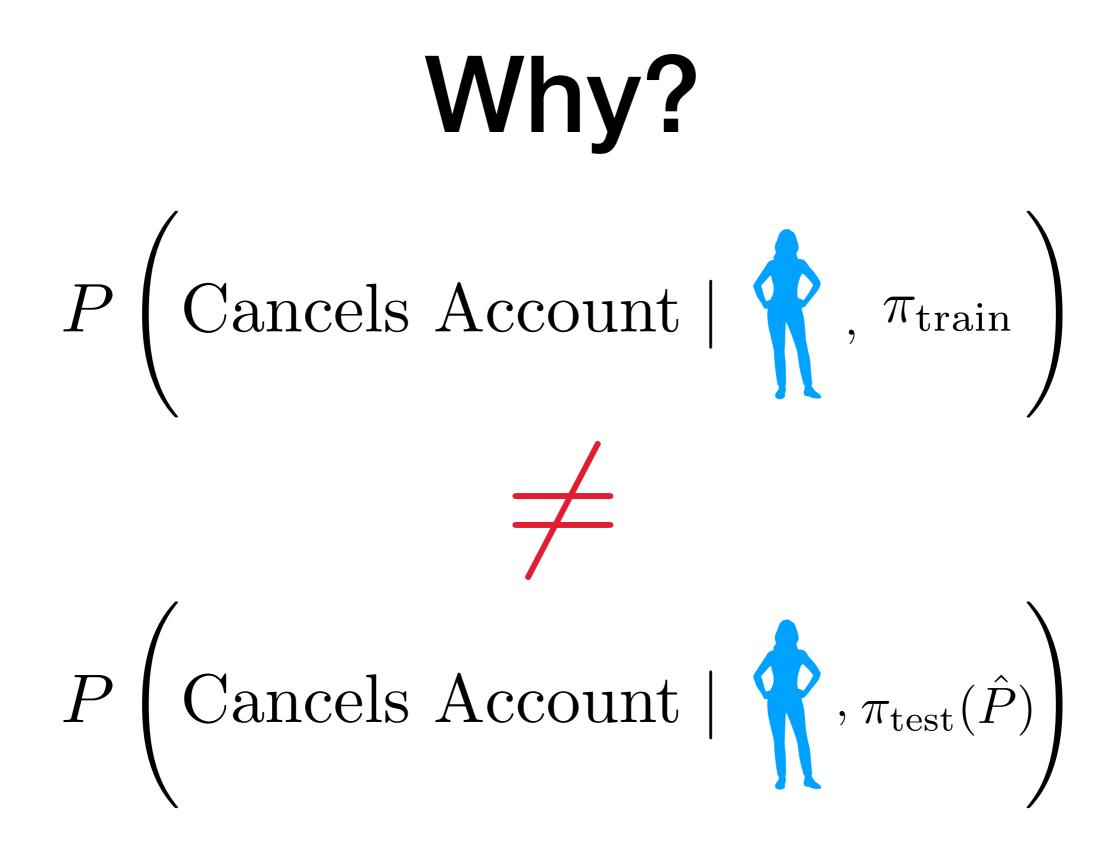


Past actions determined by some policy.

Why?

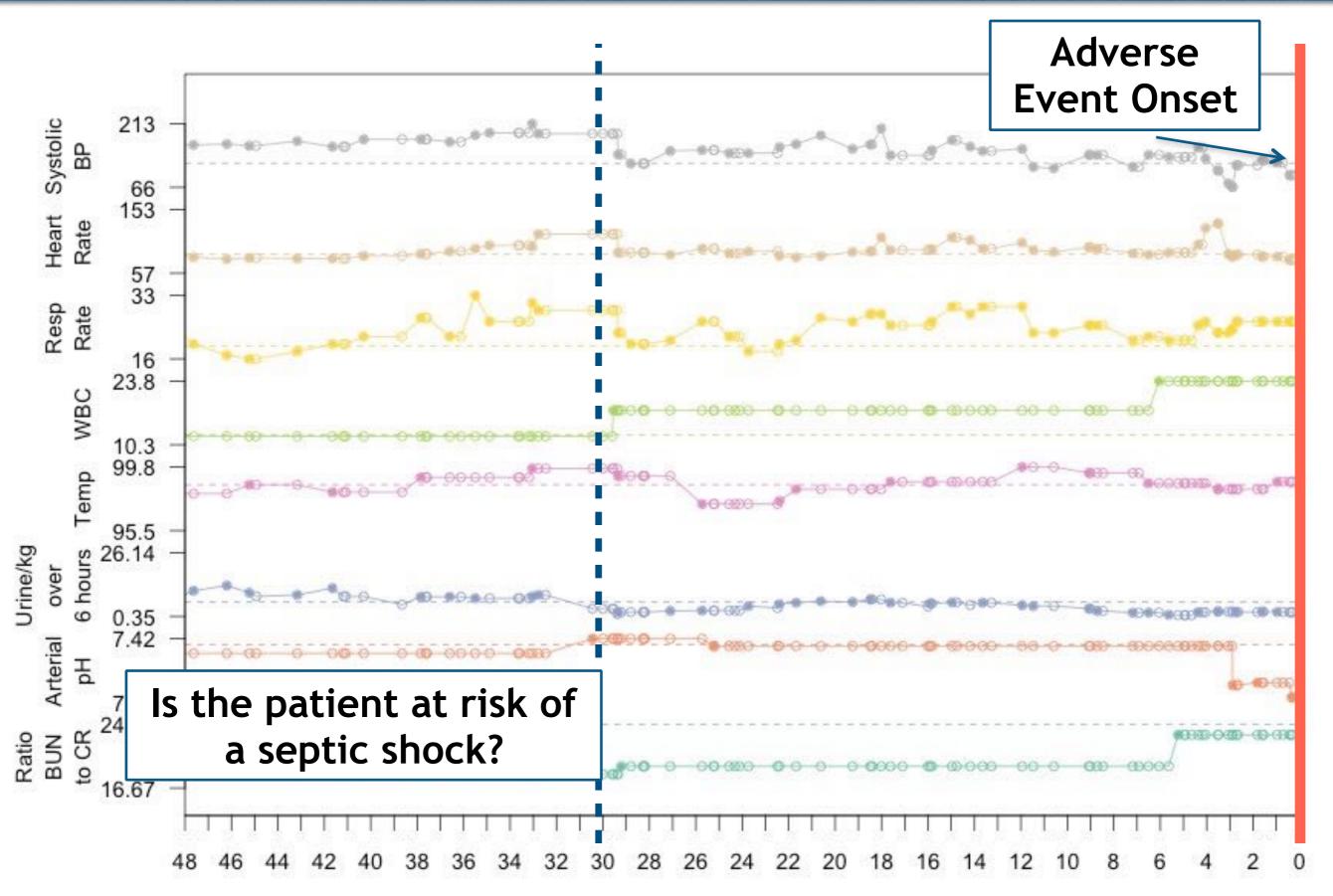


Actions determined by a policy \hat{P} based on your learned model \hat{P}

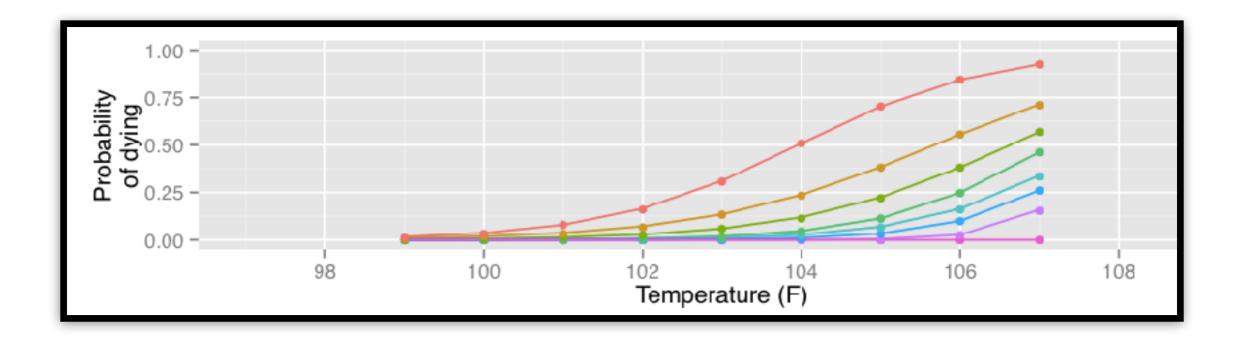


Supervised ML leads to models that are **unstable** to shifts in the policy between the train and test

Example: Risk Monitoring



- Rise in Temperature and Rise in WBC are indicators of sepsis and death
- But, doctors in H1 aggressively treat patients with high temperature
- As doctors treat treat more aggressively, supervised learning model learns high temperature is associated with low risk.



Dyagilev and Saria, Machine Learning 2015

Treat based on temp WBC

Scenario	$ ho_{\mathrm{T}}^{\mathrm{train}}$	$ ho_{ m WBC}^{ m train}$	$ ho_{\mathrm{T}}^{\mathrm{test}}$	$ ho_{ m WBC}^{ m test}$	Logistic Regression
#1	0	0	0	0	0.974
#2	0.1	0	0.1	0	0.978
#3	0.1	0	0	0	0.963
#4	0.3	0	0	0	0.769
#5	0.3	0	0	0.3	0.510

Increasing **discrepancy** in physician prescription behavior in train vs. test **environment**

Predictive model trained using classical supervised ML creates unsafe scenarios where sick patients are overlooked.

Dyagilev and Saria, Machine Learning 2015

Run an experiment: observe outcome under diff scenarios

- Clone the customer; give a 10% and 20% discount code to each clone
- Choose the outcome that has the better outcome

$$\left\{ Y(d_{10}), Y(d_{20}) \right\}$$

Outcome under 10% discount.

Run an experiment: observe outcome under diff scenarios

- Clone the customer; give a 10% and 20% discount code to each clone
- Choose the outcome that has the better outcome

$$\left\{ Y(d_{10}), Y(d_{20}) \right\}$$

Outcome under 20% discount.

Can we learn models of these outcomes from observational data?

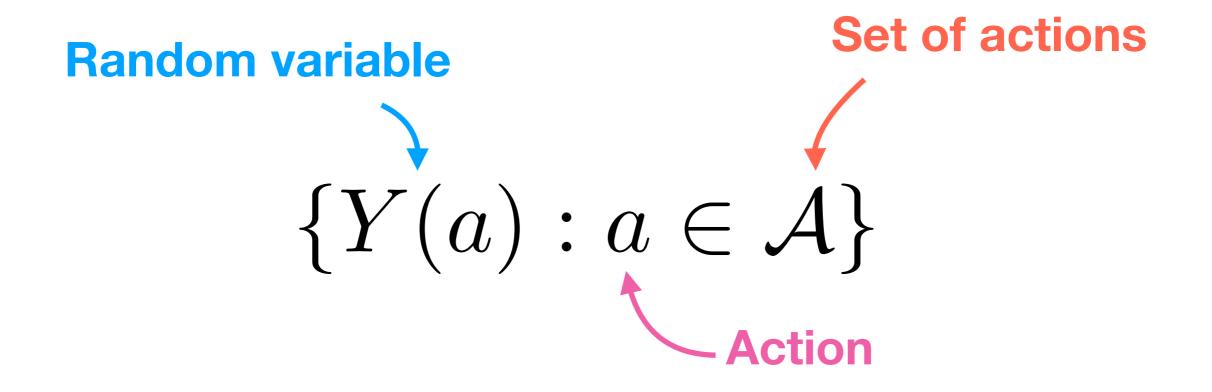
Factual: outcome observed in the data

VS.

Counterfactual: outcome is unobserved

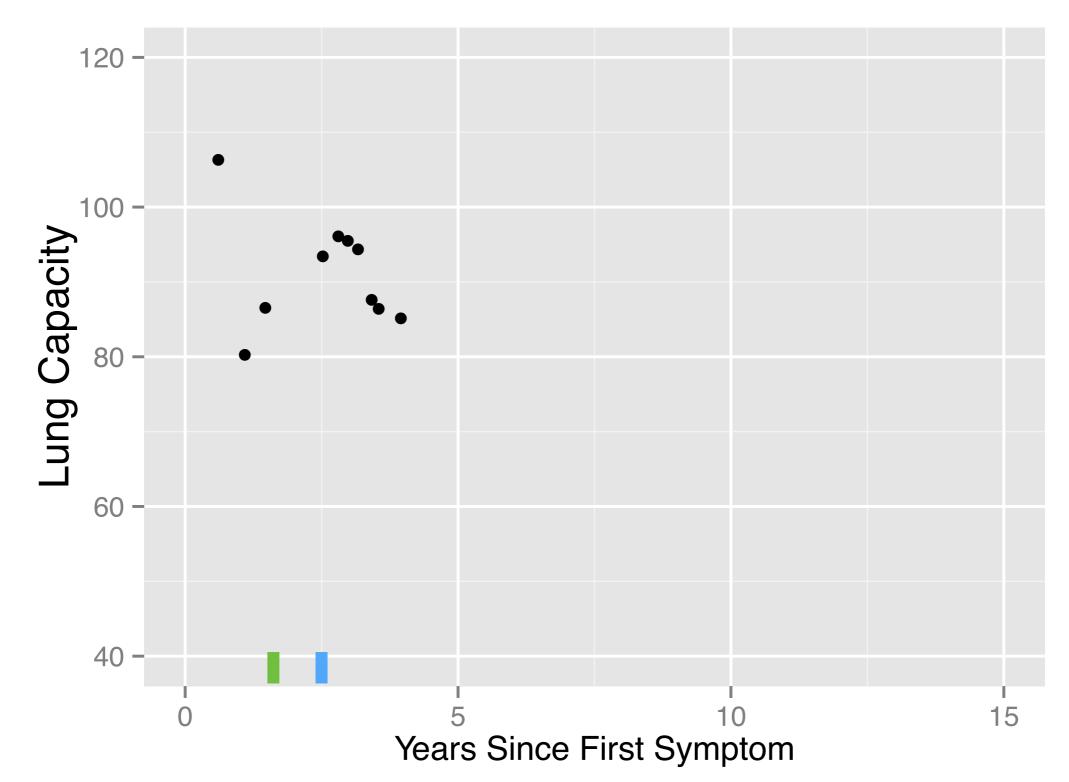
$$\left\{ Y(d_{10}), Y(d_{20}) \right\}$$

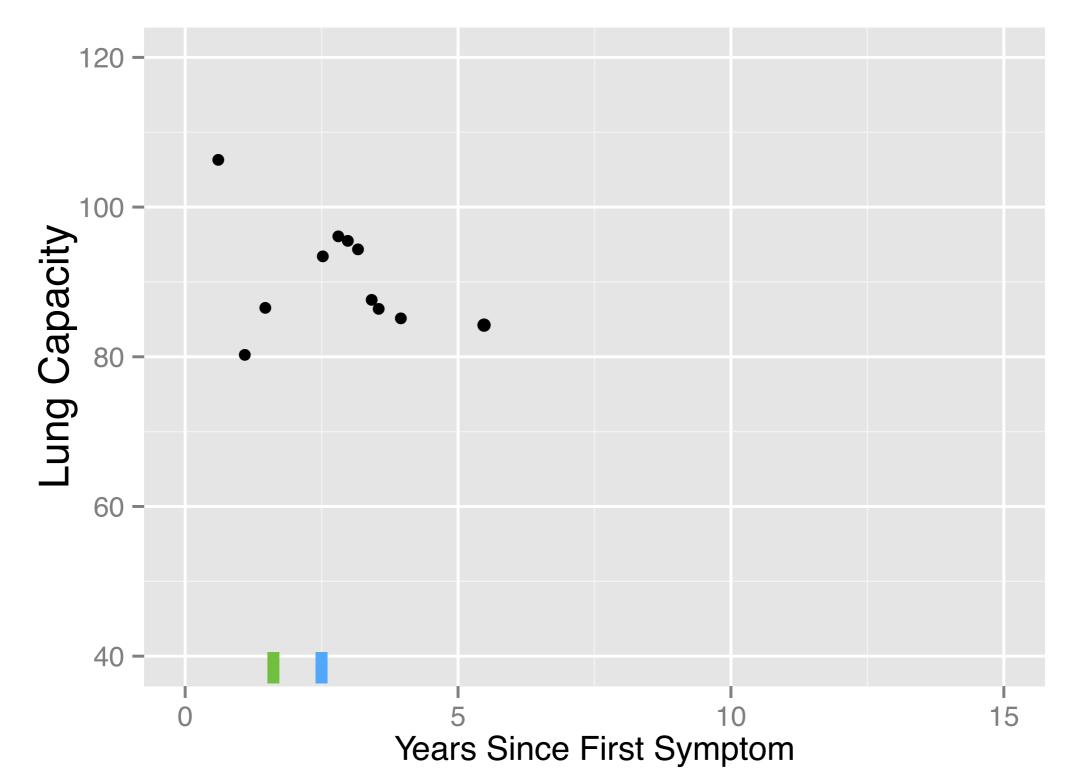
Potential Outcomes

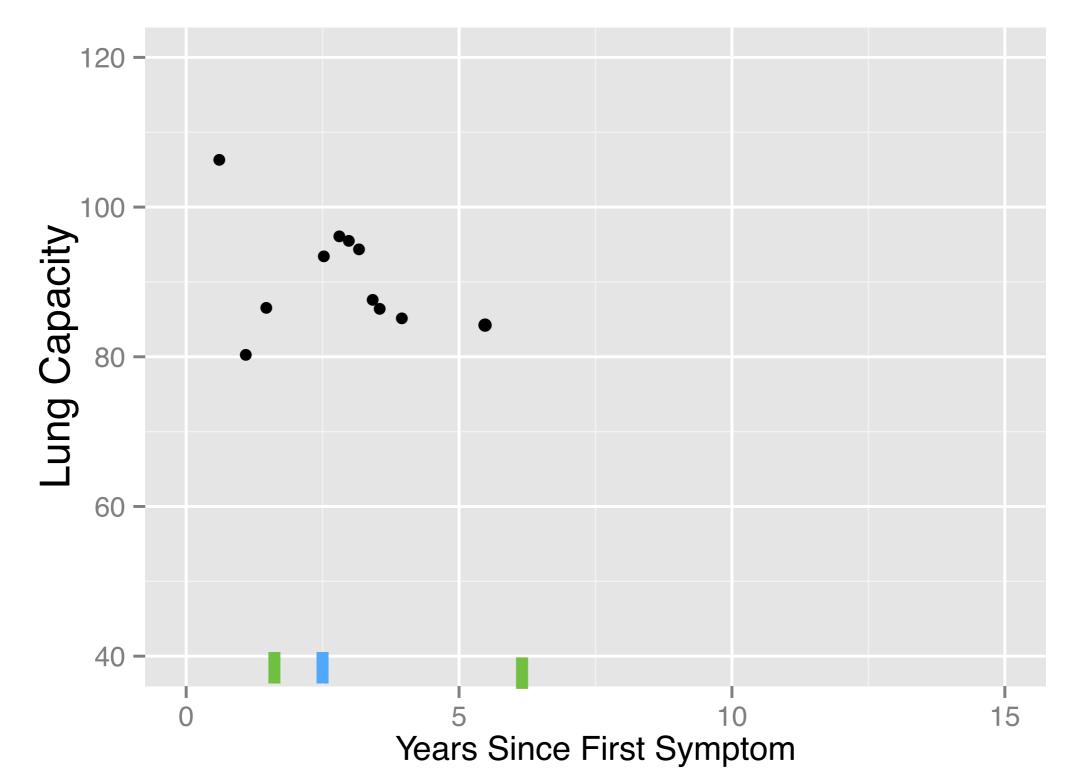


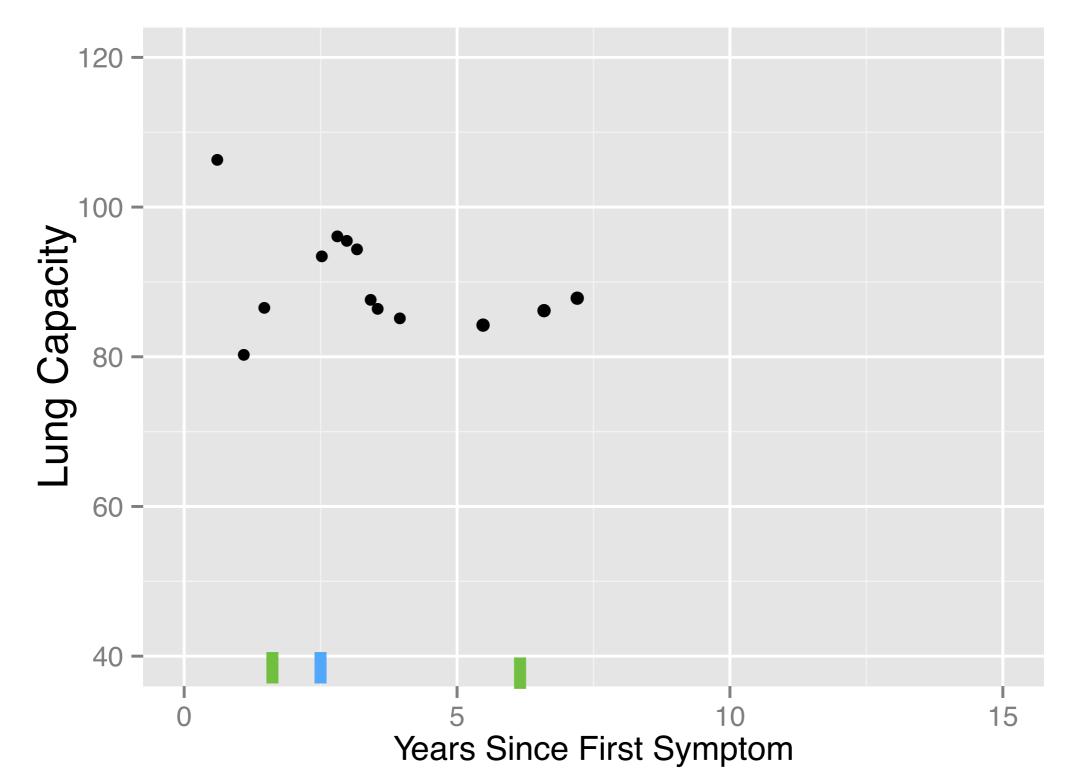
Potential outcomes model the observed outcome under each possible action (or intervention)

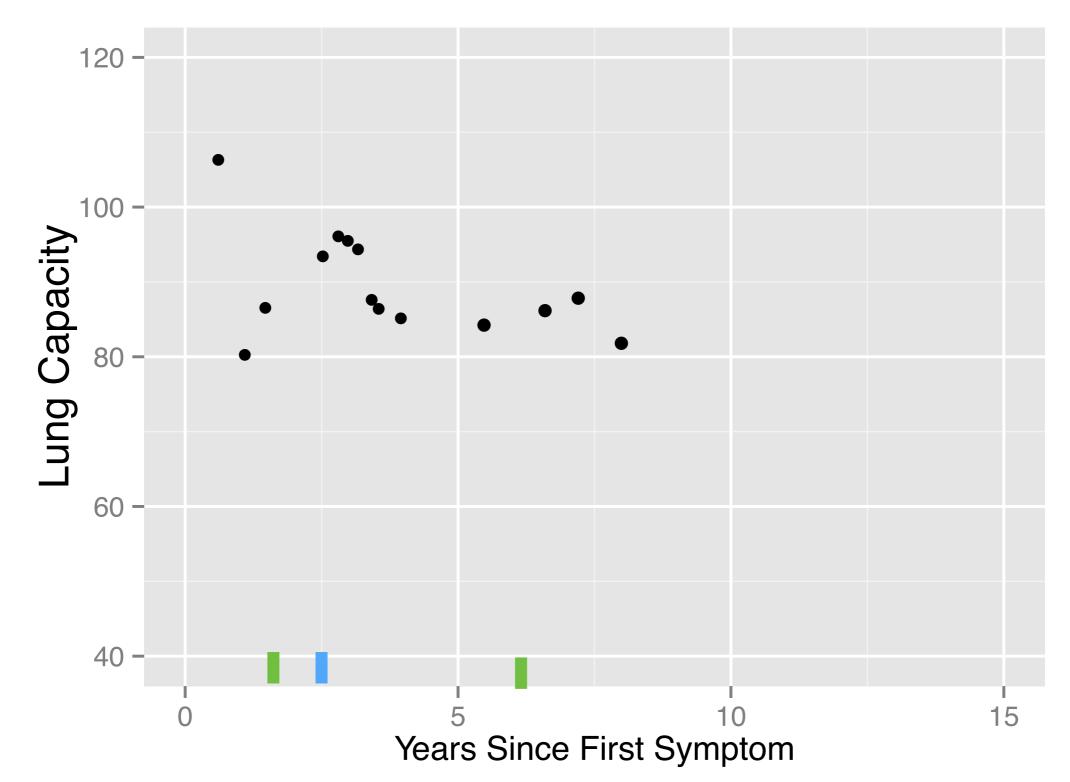
Rubin, 1974 Neyman et al., 1923 Rubin, 2005

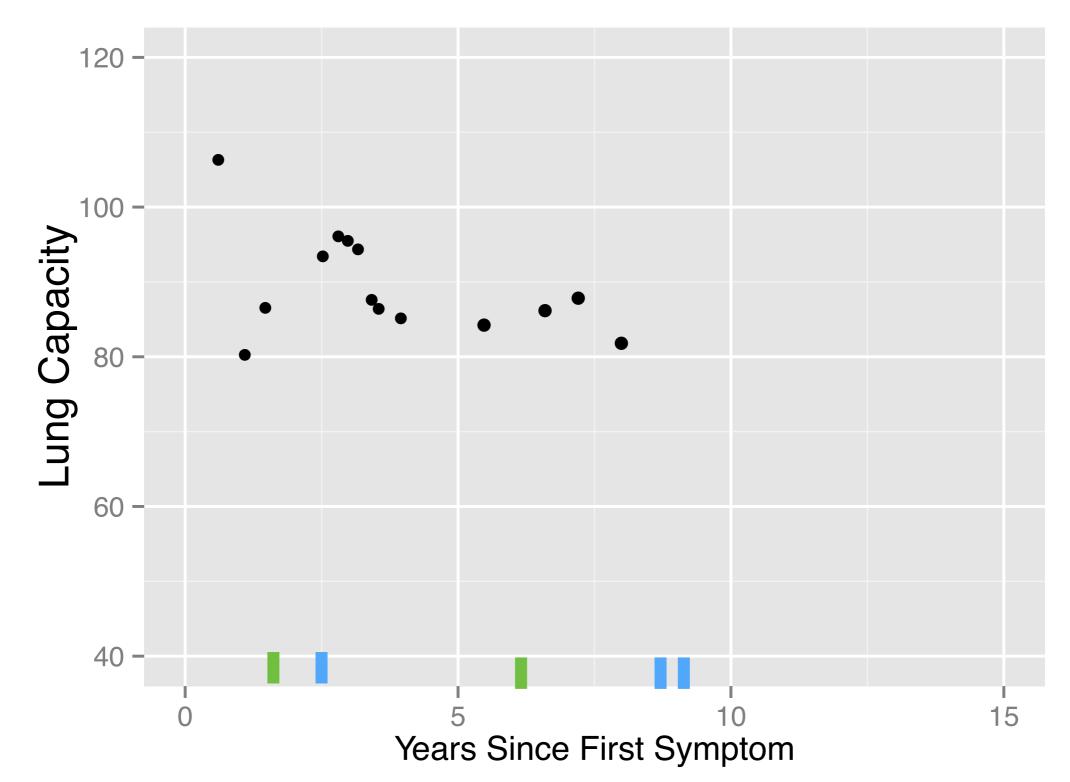


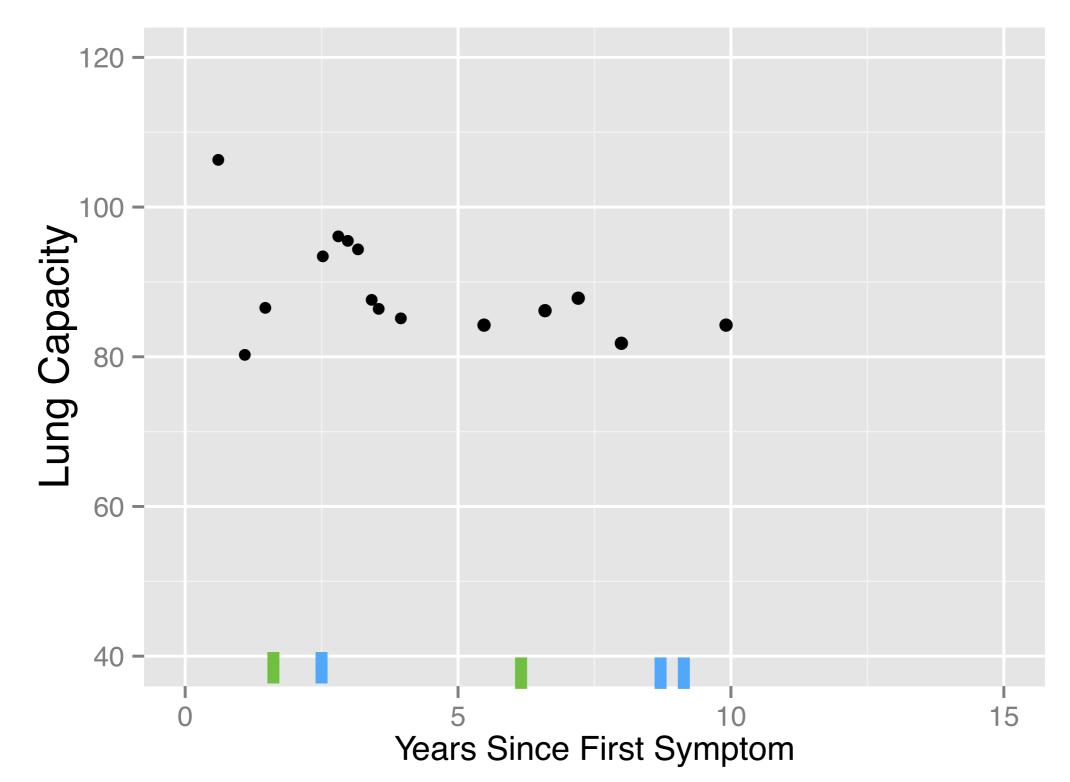


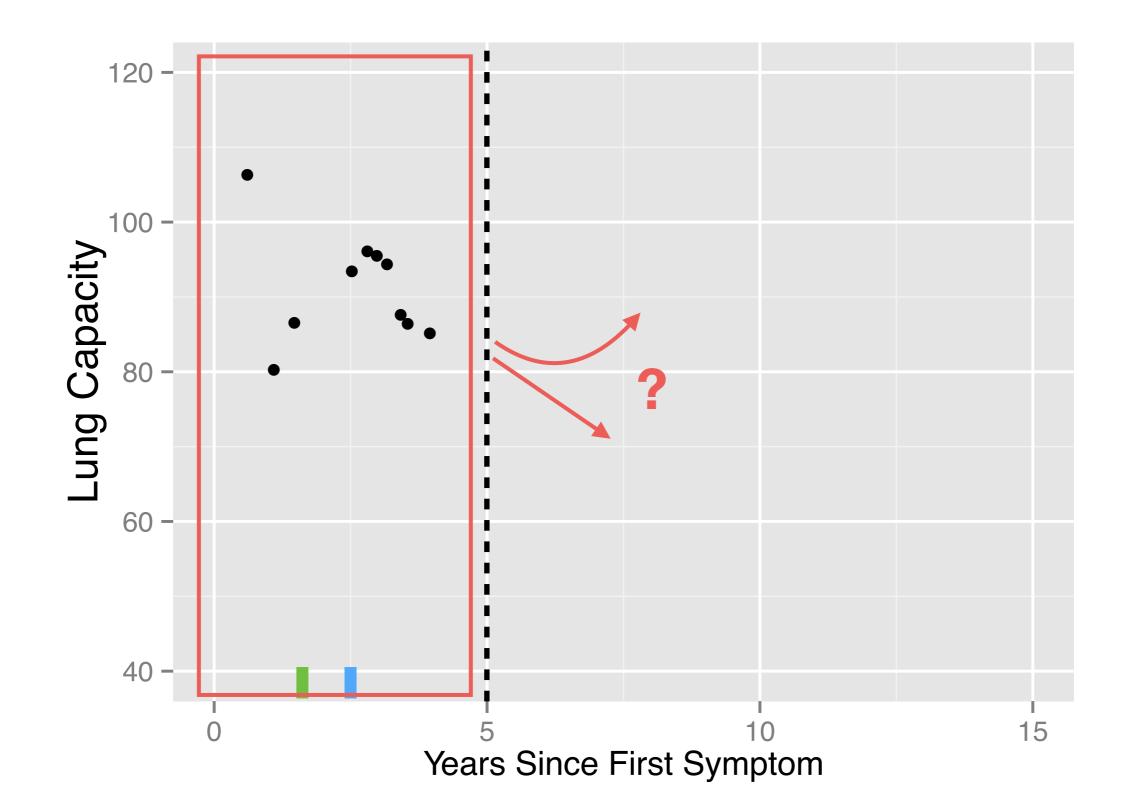


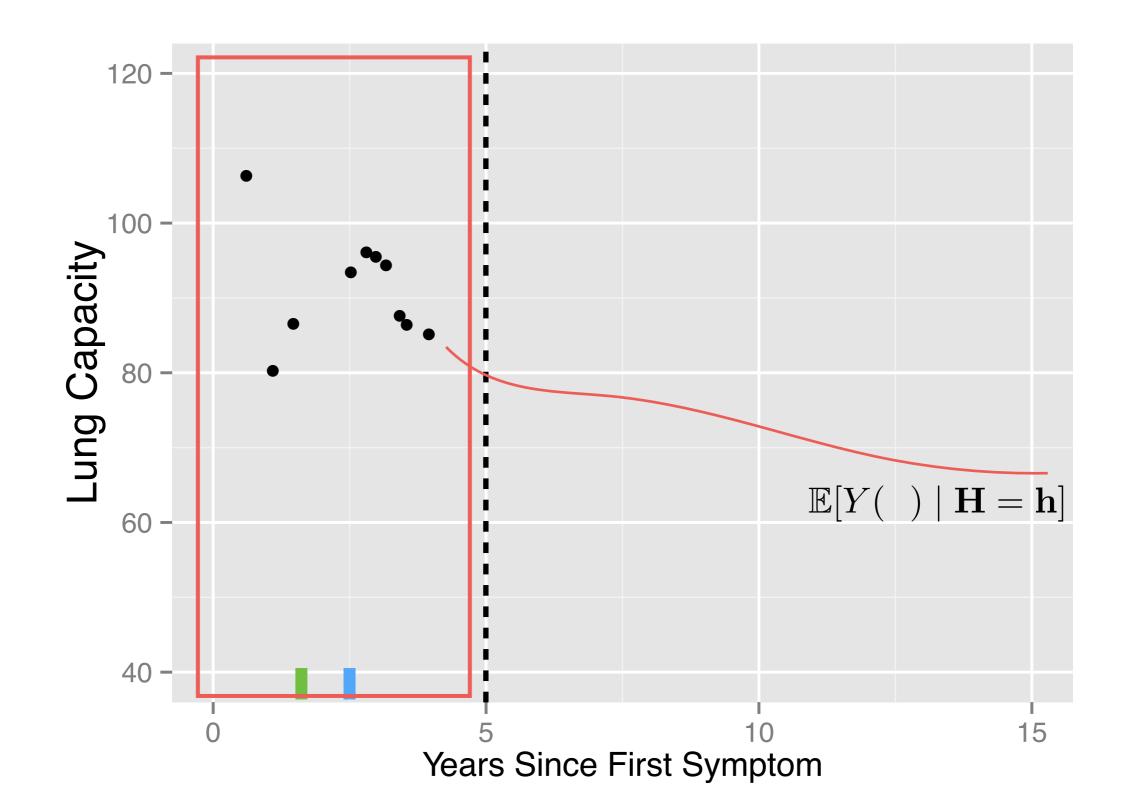


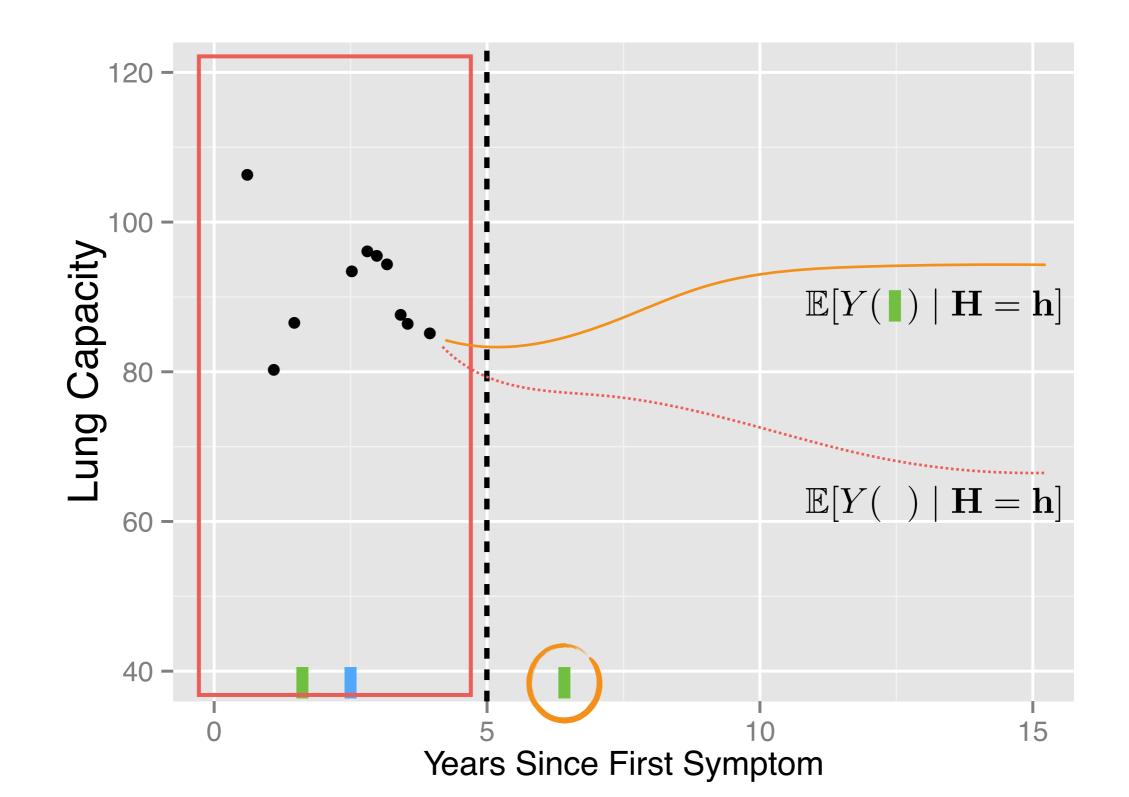


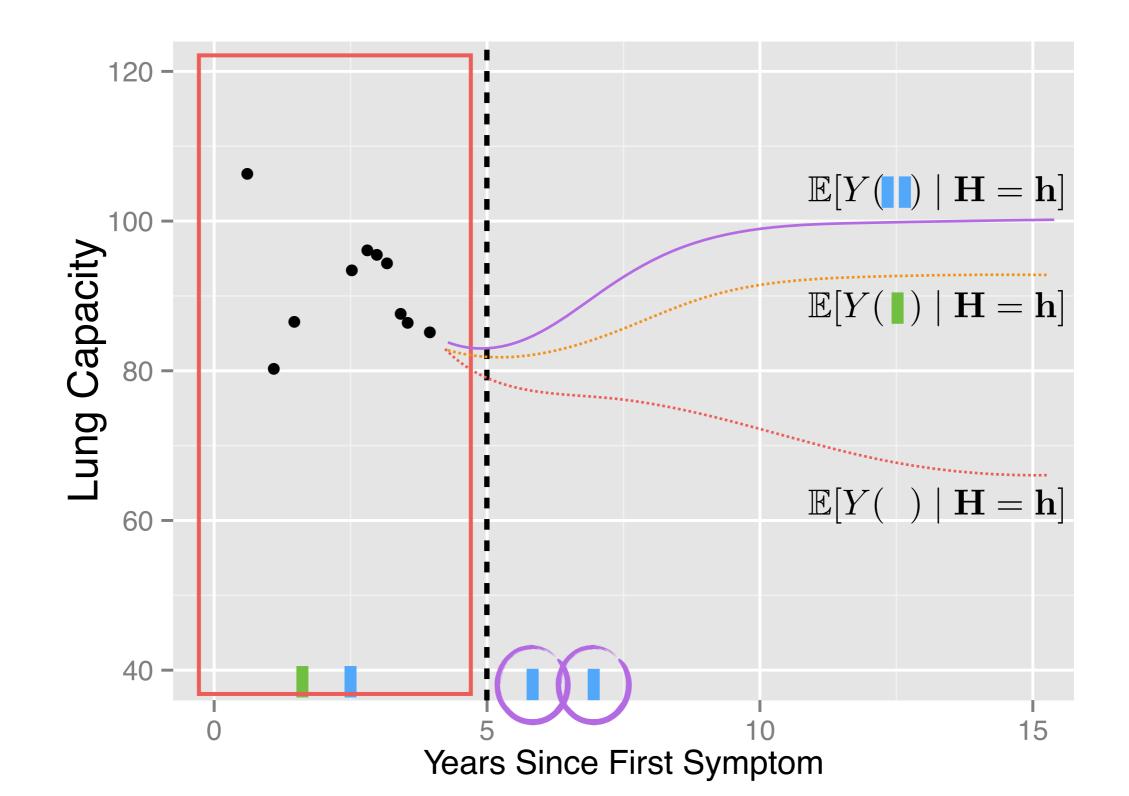












Related Work

 Counterfactual models: See Schulam and Saria, NIPS 2017 for discussion of related work. Schulam Saria, 2017

Brodersen et al., 2015	ads; single intervention
Bottou et al., 2013	
Taubman et al.,2009	epidemiology; multiple sequential interventions

Xu, Xu, Saria, 2016 Lok et al., 2008 sparse, irregularly sampled longitudinal data; functional outcomes

 Off-policy evaluation: Re-weighting to evaluate reward for a policy when learning from offline data.

Critical Assumptions

- To learn the potential outcome models, we will use three important assumptions:
- (1) Consistency
 - Links observed outcomes to potential outcomes
- (2) Treatment Positivity
 - Ensures that we can learn potential outcome models

Rubin, 1974 Neyman et al., 1923 Rubin, 2005

- (3) No unmeasured confounders (NUC)
 - Ensures that we do not learn biased models

(1) Consistency

 Consider a dataset containing observed outcomes, observed treatments, and covariates:

$$\{y_i, a_i, \mathbf{x}_i\}_{i=1}^n$$

- E.g.: blood pressure, exercise, BMI
- Consistency allows us to replace the observed response with the potential outcome of the observed treatment

$$Y \triangleq Y(a) \mid A = a$$

Under consistency our dataset satisfies

$$\{y_i, a_i, \mathbf{x}_i\}_{i=1}^n \triangleq \{y_i(a_i), a_i, \mathbf{x}_i\}_{i=1}^n$$

(2) Positivity

- When working with observational data, for any set of covariates x we need to assume a non-zero probability of seeing each treatment
 - Otherwise, in general, cannot learn a conditional model of the potential outcomes given those covariates
- Formally, we assume that

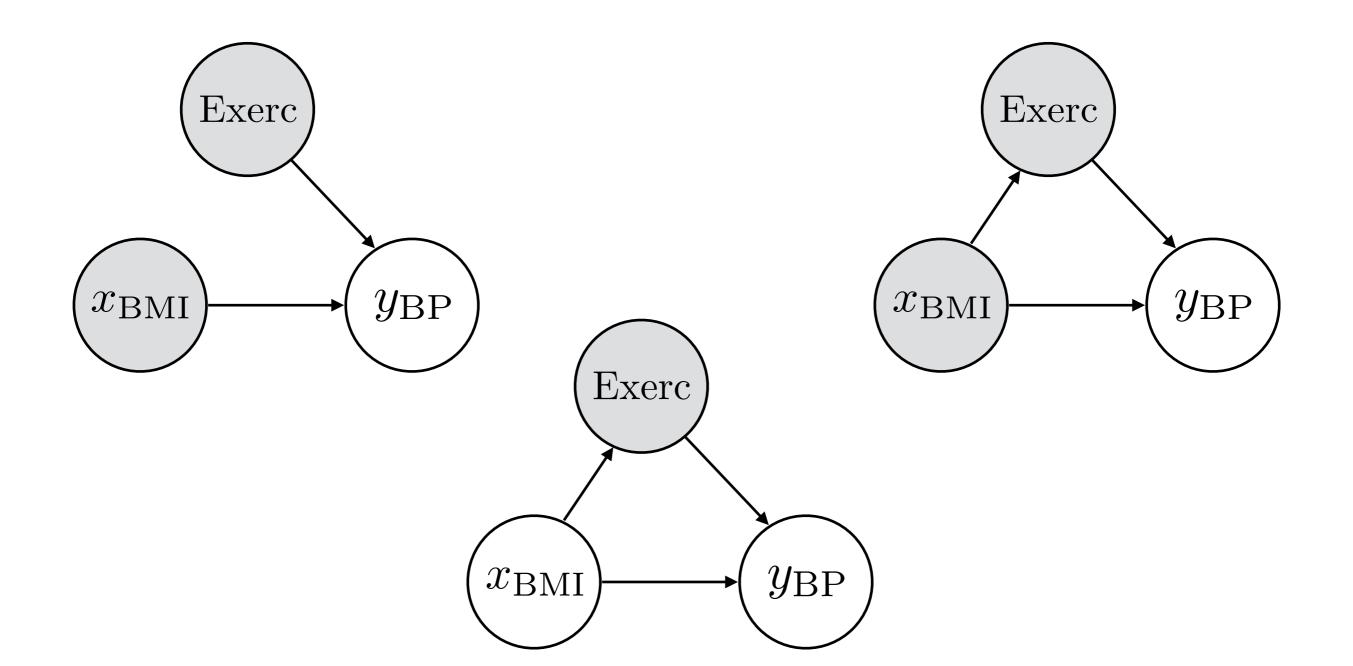
$$P_{Obs}(A = a \mid \mathbf{X} = \mathbf{x}) > 0 \quad \forall a \in \mathcal{A}, \forall \mathbf{x} \in \mathcal{X}$$

(3) No Unmeasured Confounders (NUC)

- Formally, NUC is an statistical independence assertion:
 - $Y(a) \perp A \mid \mathbf{X} = \mathbf{x} : \forall a \in \mathcal{A}, \forall \mathbf{x} \in \mathcal{X}$

(3) No Unmeasured Confounders (NUC)

• Formally, NUC is an statistical independence assertion: $Y(a) \perp A \mid \mathbf{X} = \mathbf{x} : \forall a \in \mathcal{A}, \forall \mathbf{x} \in \mathcal{X}$



Learning Potential Outcome Models

 Assumptions allow estimation of potential outcomes from (observational) data:

$$P(Y(a) \mid \mathbf{X} = \mathbf{x}) = P(Y(a) \mid \mathbf{X} = \mathbf{x}, A = a)$$
(A3)
=
$$P(Y \mid \mathbf{X} = \mathbf{x}, A = a)$$
(A1)

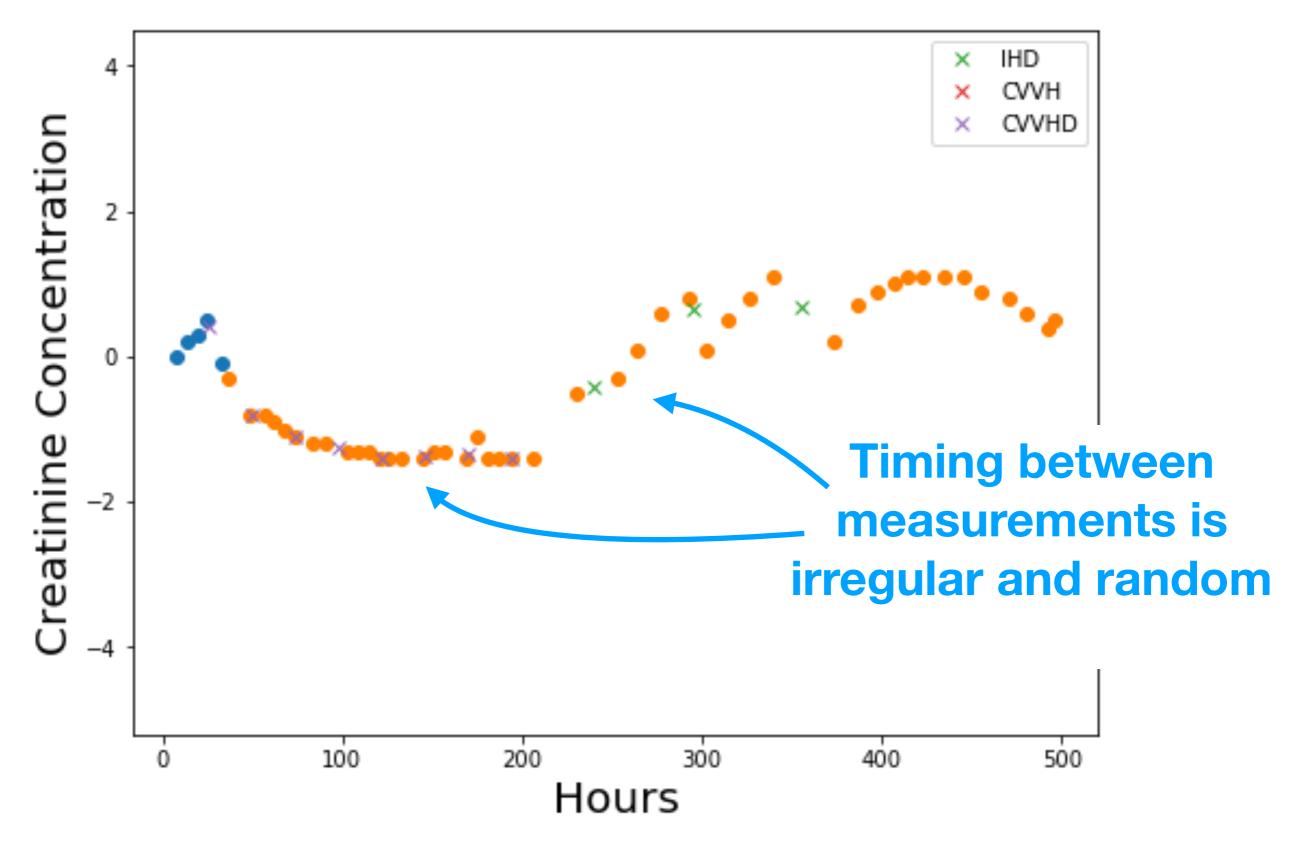
Estimation requires a statistical model for estimating conditionals

- To simulate data from a new policy, we need to learn the potential outcome models
 - If we have an observational dataset where assumptions 1-3 hold, then this is possible!

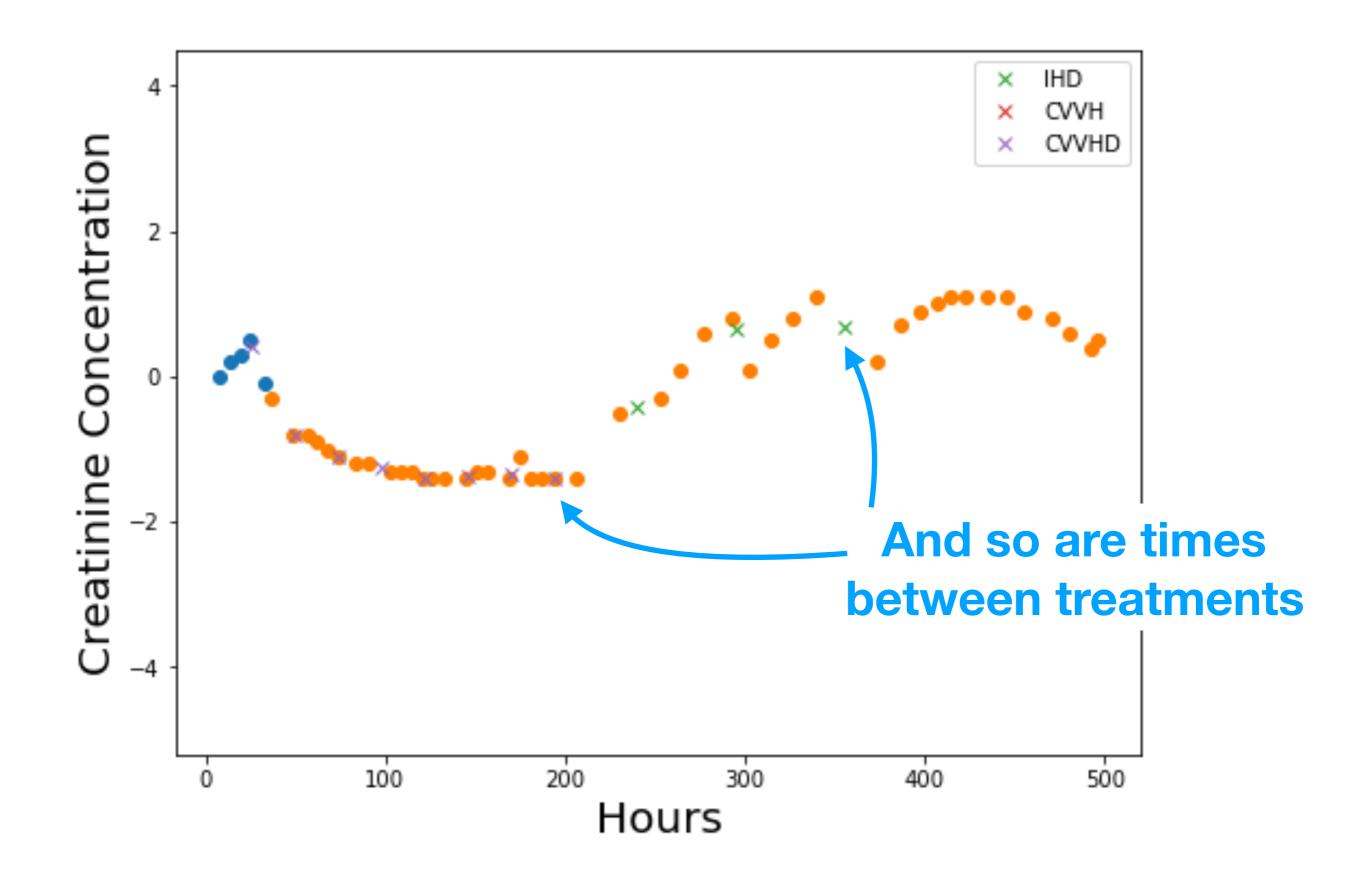
UAI Tutorial: Saria and Soleimani, 2017

Observational Traces

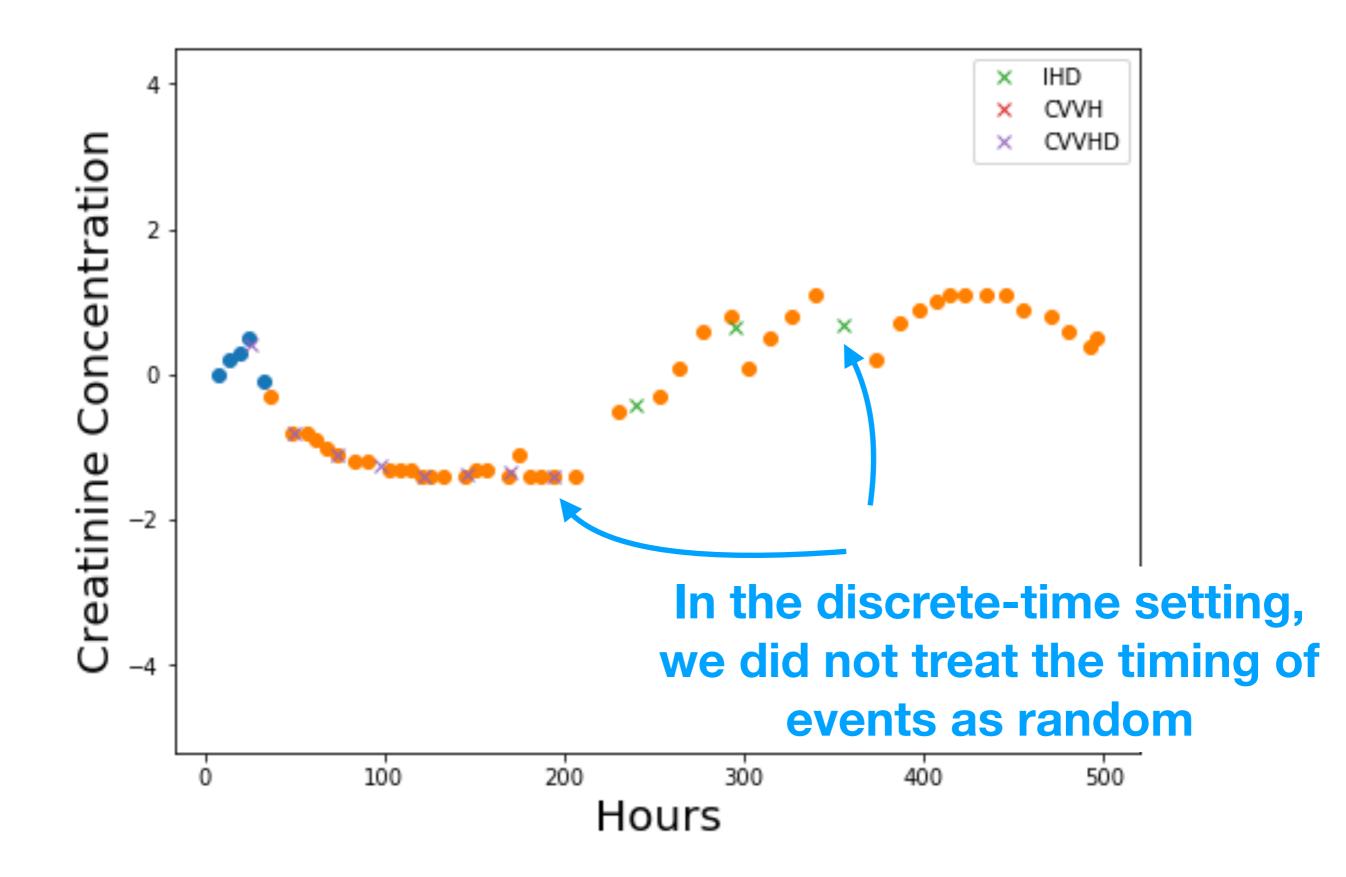
Creatinine is a test used to measure kidney function.



Observational Traces



Challenges w/ Observational Traces

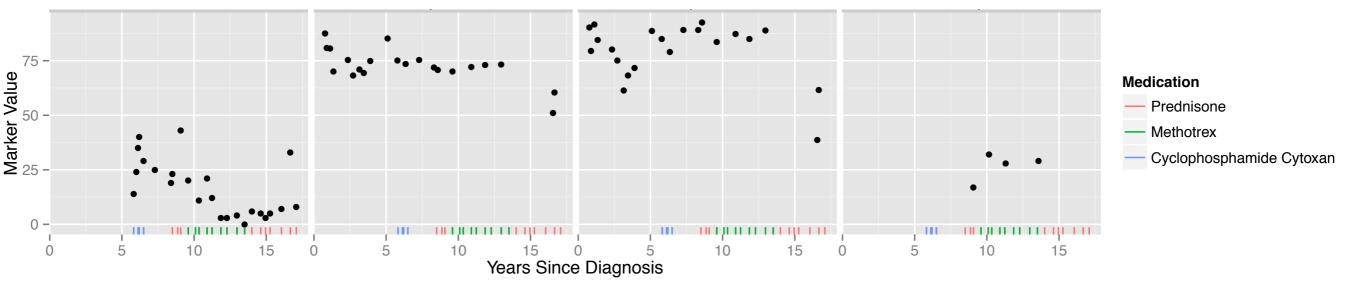


Collection of Gaussian processes

$$\left\{ \left\{ Y_t(\boldsymbol{a}) : t \in [0, \tau] \right\} : \boldsymbol{a} \in \mathcal{C} \right\}$$

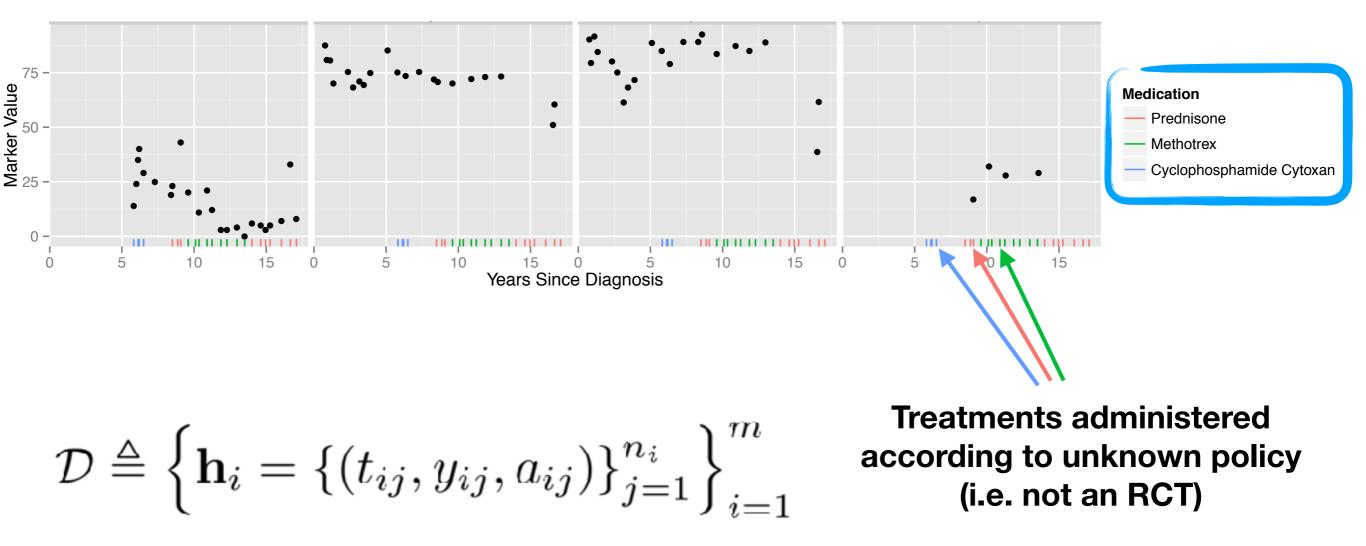
Fixed time period Set of finite sequences of actions

Learning from Observational Traces

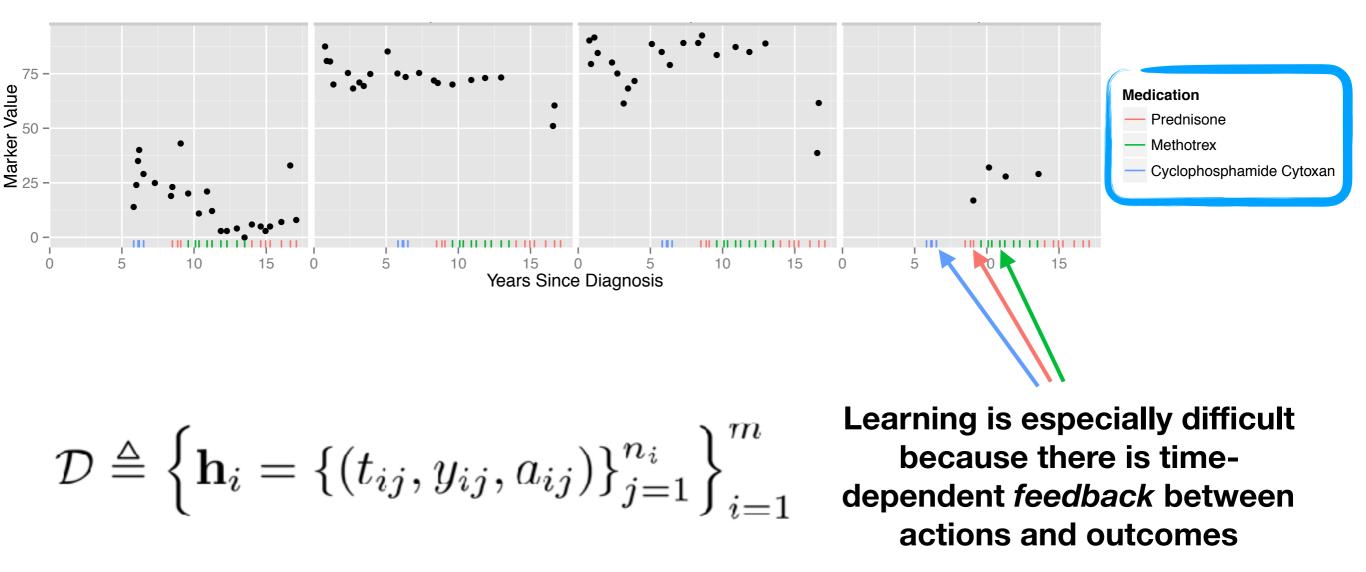


$$\mathcal{D} \triangleq \left\{ \mathbf{h}_i = \left\{ (t_{ij}, y_{ij}, a_{ij}) \right\}_{j=1}^{n_i} \right\}_{i=1}^m$$

Learning from Observational Traces



Learning from Observational Traces



Learning Models from Observational Traces

- Road map:
 - (1) Establish assumptions that connect probabilistic of observational traces to *target counterfactual model*
 - (2) Posit probabilistic model of observational traces
 - (3) Derive maximum likelihood estimator

$$P(\{Y_s[\mathbf{a}]:s>t\} \mid \mathcal{H}_t)$$

• We use a marked point process (MPP):

$$\{(T_i, X_i)\}_{i=1}^{\infty}$$

- Points model the event times: measurements or actions
- Mark models the type of event

 $\mathcal{X} = (\mathbb{R} \cup \{\emptyset\}) \times (\mathcal{C} \cup \{\emptyset\}) \times \{0,1\} \times \{0,1\}$

• We use a marked point process (MPP):

$$\{(T_i, X_i)\}_{i=1}^{\infty}$$

- Points model the event times: measurements or actions
- Mark models the type of event

$$\mathcal{X} = (\mathbb{R} \cup \{\emptyset\}) \times (\mathcal{C} \cup \{\emptyset\}) \times \{0,1\} \times \{0,1\}$$

Did we measure an outcome?

• We use a marked point process (MPP):

$$\{(T_i, X_i)\}_{i=1}^{\infty}$$

- Points model the event times: measurements or actions
- Mark models the type of event

$$\mathcal{X} = (\mathbb{R} \cup \{\emptyset\}) \times (\mathcal{C} \cup \{\emptyset\}) \times \{0, 1\} \times \{0, 1\}$$

$$z_y \qquad z_a$$

Did we take an action?

• We use a marked point process (MPP):

$$\{(T_i, X_i)\}_{i=1}^{\infty}$$

- Points model the event times: measurements or actions
- Mark models the type of event

$$\mathcal{X} = (\mathbb{R} \cup \{\emptyset\}) \times (\mathcal{C} \cup \{\emptyset\}) \times \{0, 1\} \times \{0, 1\}$$

$$y$$

$$z_y$$

$$z_a$$

What is the value of the outcome?

• We use a marked point process (MPP):

$$\{(T_i, X_i)\}_{i=1}^{\infty}$$

- Points model the event times: measurements or actions
- Mark models the type of event

$$\mathcal{X} = (\mathbb{R} \cup \{\emptyset\}) \times (\mathcal{C} \cup \{\emptyset\}) \times \{0, 1\} \times \{0, 1\}$$

$$y$$

$$z_{y}$$

$$z_{a}$$

What action did we take?

• Parameterize MPP using hazard and mark density:

$$\lambda^*(t, x) = \lambda^*(t)p^*(x \mid t)$$

• Parameterize MPP using hazard and mark density:

$$\lambda^*(t, x) = \lambda^*(t)p^*(x \mid t)$$

Probability of event happening at this time

Probability of mark given event time

• Parameterize MPP using hazard and mark density:

$$\lambda^*(t, x) = \lambda^*(t)p^*(x \mid t)$$

Probability of event happening at this time

Star denotes dependence on history

Probability of mark given event time

• Parameterize MPP using hazard and mark density:

$$\lambda^*(t, x) = \lambda^*(t)p^*(x \mid t)$$

• Estimate MPP by maximizing probability of traces

$$\ell(\theta) = \sum_{j=1}^{n} \log p_{\theta}^{*}(y_{j} \mid t_{j}, z_{yj}) + \sum_{j=1}^{n} \log \lambda_{\theta}^{*}(t) p_{\theta}^{*}(a_{j}, z_{yj}, z_{aj} \mid t_{j}, y_{j}) - \int_{0}^{\tau} \lambda_{\theta}^{*}(s) ds$$
Model the conditional probability of
the outcome using a GP

Schulam and Saria, NIPS 2017

Recovering the CGP

- When does the MPP GP recover the CGP?
- In addition to Consistency, we define two assumptions

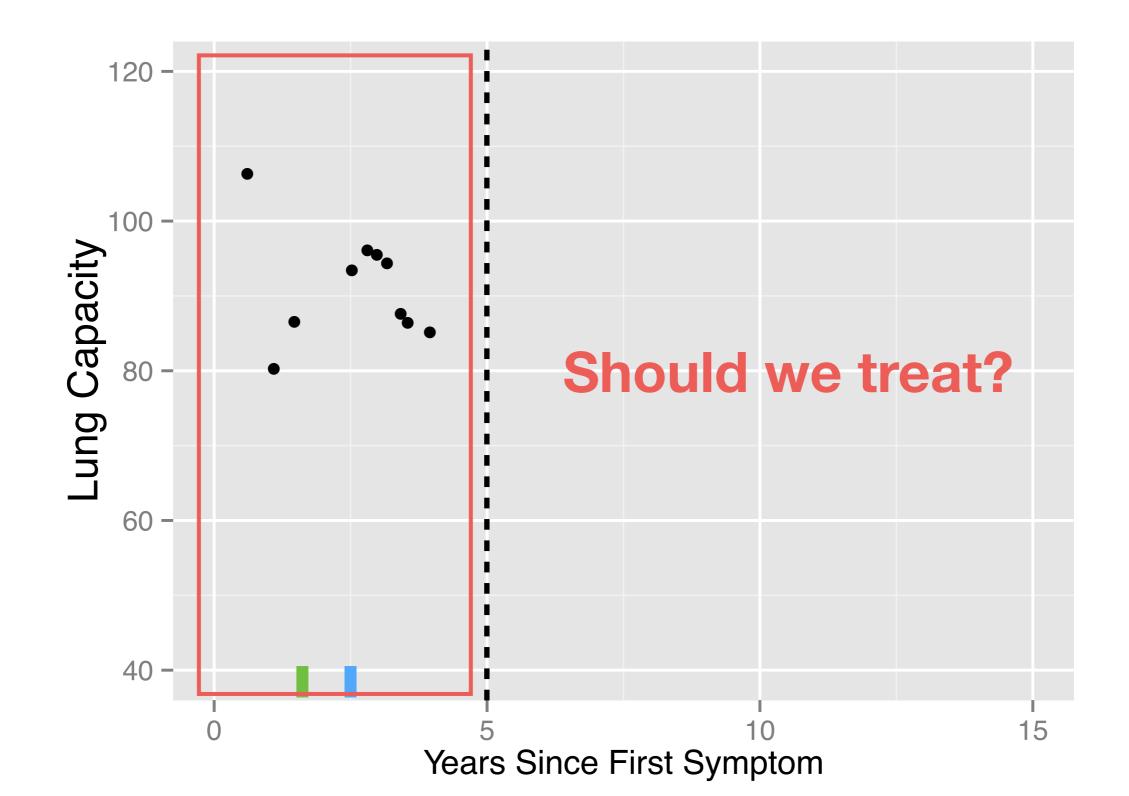
Recovering the CGP

- When does the MPP GP recover the CGP?
- In addition to Consistency, we define two assumptions
- Continuous-time NUC
 - Analogue of NUC for MPP

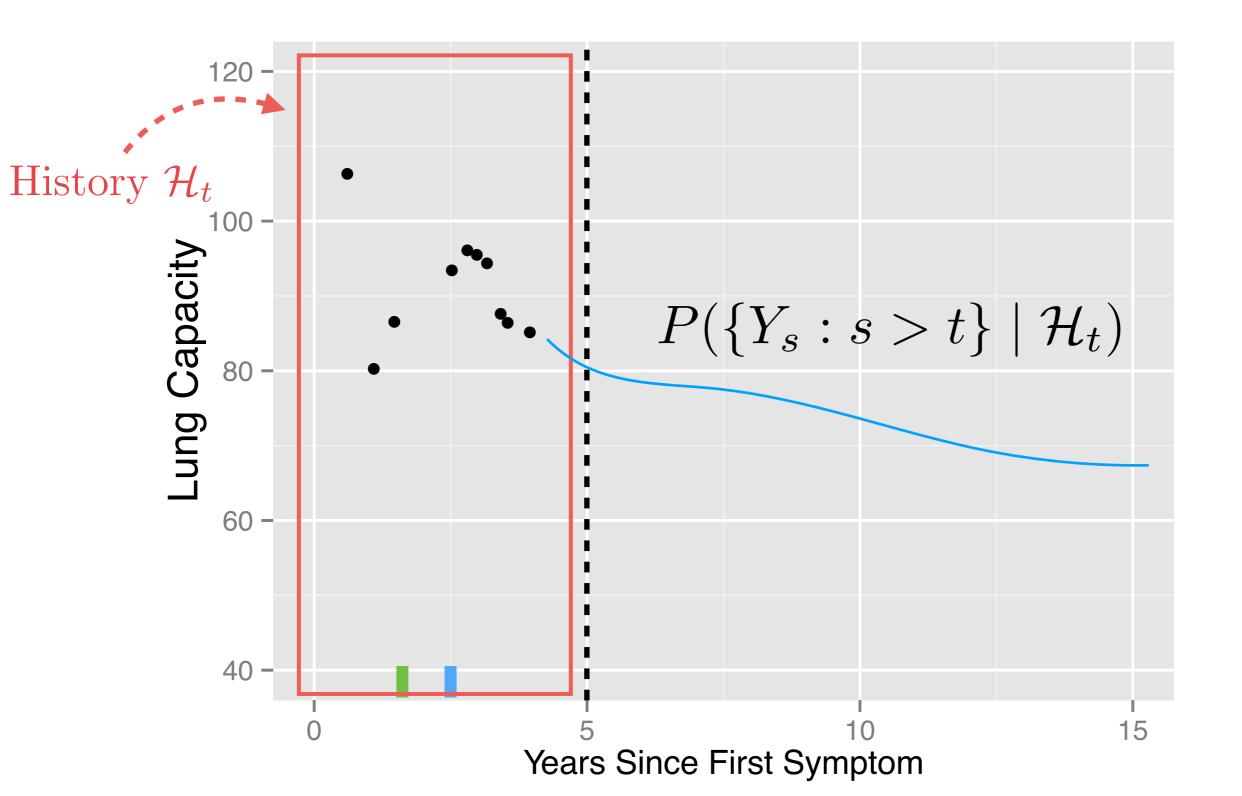
Recovering the CGP

- When does the MPP GP recover the CGP?
- In addition to Consistency, we define two assumptions
- Continuous-time NUC
 - Analogue of NUC for MPP
- Non-informative measurement times
 - Measurement and action times are conditionally independent of potential outcomes

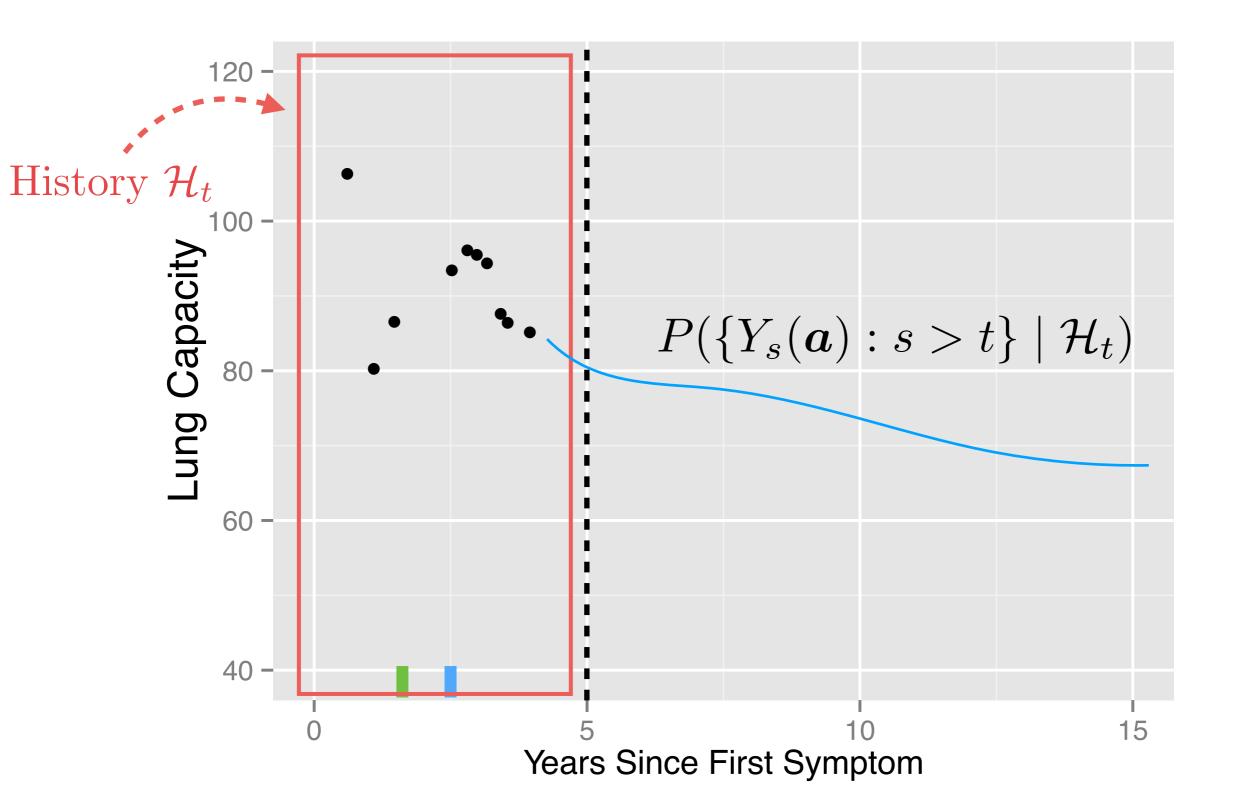
Reliable Decisions with CGPs



Classical Supervised Model



Counterfactual GP



Simulated Data

- Simulate observational traces from multiple regimes
- Traces are treated by policies unknown to learners
- In regimes A and B, policies satisfy our assumptions
- In regime C, policy violates our assumptions
- Simulate three training sets (regimes A, B, and C)
- Simulate one common test set (regime A)

- Risk scores:
 - Use Baseline and CGP to predict final severity marker
 - Normalize predictions to [0, 1]

- Risk scores:
 - Use Baseline and CGP to predict final severity marker
 - Normalize predictions to [0, 1]

CGP risk scores are stable across regime A and B training data

	Regime A		Regime B		Regime C	
	Baseline GP	CGP	Baseline GP	CGP	Baseline GP	CGP
Risk Score Δ from A	0.000	0.000	0.083	0.001	0.162	0.128
Kendall's $ au$ from A	1.000	1.000	0.857	0.998	0.640	0.562
AUC	0.853	0.872	0.832	0.872	0.806	0.829

- Risk scores:
 - Use Baseline and CGP to predict final severity marker
 - Normalize predictions to [0, 1]

Baseline GP scores change

	Regime A		Regime B		Regime C	
	Baseline GP	CGP	Baseline GP	CGP	Baseline GP	CGP
Risk Score Δ from A	0.000	0.000	0.083	0.001	0.162	0.128
Kendall's $ au$ from A	1.000	1.000	0.857	0.998	0.640	0.562
AUC	0.853	0.872	0.832	0.872	0.806	0.829

- Risk scores:
 - Use Baseline and CGP to predict final severity marker
 - Normalize predictions to [0, 1]

CGP relative risk across patients is also stable across training data A and B

	Regime A		Regime B		Regime C	
	Baseline GP	CGP	Baseline GP	CGP	Baseline GP	CGP
Risk Score Δ from A	0.000	0.000		0.001	0.162	0.128
Kendall's $ au$ from A	1.000	1.000	0.857	0.998	0.640	0.562
AUC	0.853	0.872	0.832	0.872	0.806	0.829

- Risk scores:
 - Use Baseline and CGP to predict final severity marker
 - Normalize predictions to [0, 1]

Baseline GP's relative risk changes

	Regime A		Regime B		Regime C	
	Baseline GP	CGP	Baseline GP	CGP	Baseline GP	CGP
Risk Score Δ from A	0.000	0.000	0.083	0.001	0.162	0.128
Kendall's $ au$ from A	1.000	1.000	0.857	0.998	0.640	0.562
AUC	0.853	0.872	0.832	0.872	0.806	0.829

- Risk scores:
 - Use Baseline and CGP to predict final severity marker
 - Normalize predictions to [0, 1]

CGP AUC is constant across regimes A and B

	Regime A		Regime B		Regime C	
	Baseline GP	CGP	Baseline GP	CGP	Baseline GP	CGP
Risk Score Δ from A	0.000	0.000	0.083	0.001	0.162	0.128
Kendall's $ au$ from A		1.000	0.857	9.998	0.640	0.562
AUC	0.853	0.872	0.832	0.872	0.806	0.829

- Risk scores:
 - Use Baseline and CGP to predict final severity marker
 - Normalize predictions to [0, 1]

Baseline GP's AUC is unstable

	Regime A		Regime B		Regime C	
	Baseline GP	CGP	Baseline GP	CGP	Baseline GP	CGP
Risk Score Δ from A	0.000	0.000	0.083	0.001	0.162	0.128
Kendall's $ au$ from A	1.000	1.000	0.857	0.998	0.640	0.562
AUC		0.872	0.832	0.872	0.806	0.829

Simulated Data

- Simulate observational traces from three regimes
- Traces are treated by policies unknown to learners
- In regimes A and B, policies satisfy our assumptions
- In regime C, policy violates our assumptions
- Simulate three training sets (regimes A, B, and C)
- Simulate one common test set (regime A)

- Risk scores:
 - Use Baseline and CGP to predict final severity marker
 - Negate predictions and normalize to [0, 1]

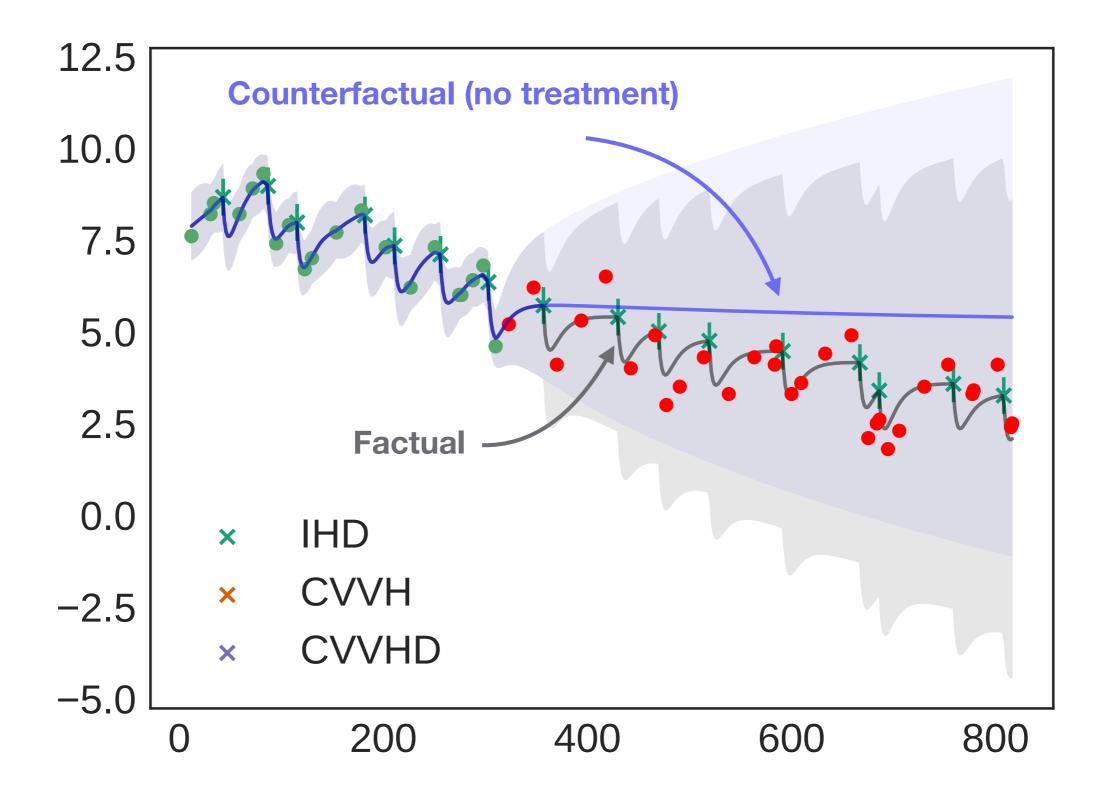
CGP risk scores are unstable if the policy in the training data violates our assumptions

	Regime A		Regime	B	Regime C	
	Baseline GP	CGP	Baseline GP	CGP	Baseline GP	CGP
Risk Score Δ from A	0.000	0.000	0.083	0.001	0.162	0.128
Kendall's $ au$ from A	1.000	1.000	0.857	0.998	0.640	0.562
AUC	0.853	0.872	0.832	0.872	0.806	0.829

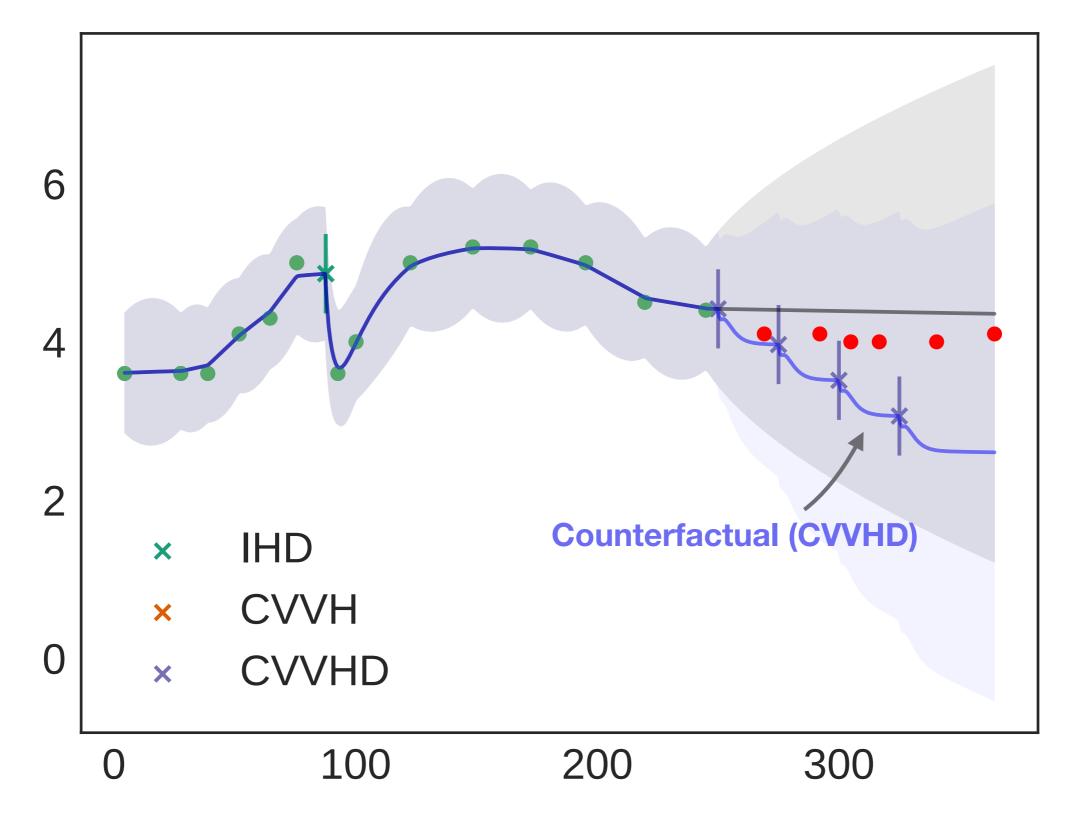
Medical Decision-Support using CGPs

- Dialysis is expensive, but necessary when kidneys fail
- Important questions for decision-making:
 - (1) Will this individual be okay if I remove dialysis?
 - (2) Will this individual benefit from dialysis?
- CGP can help to answer these questions

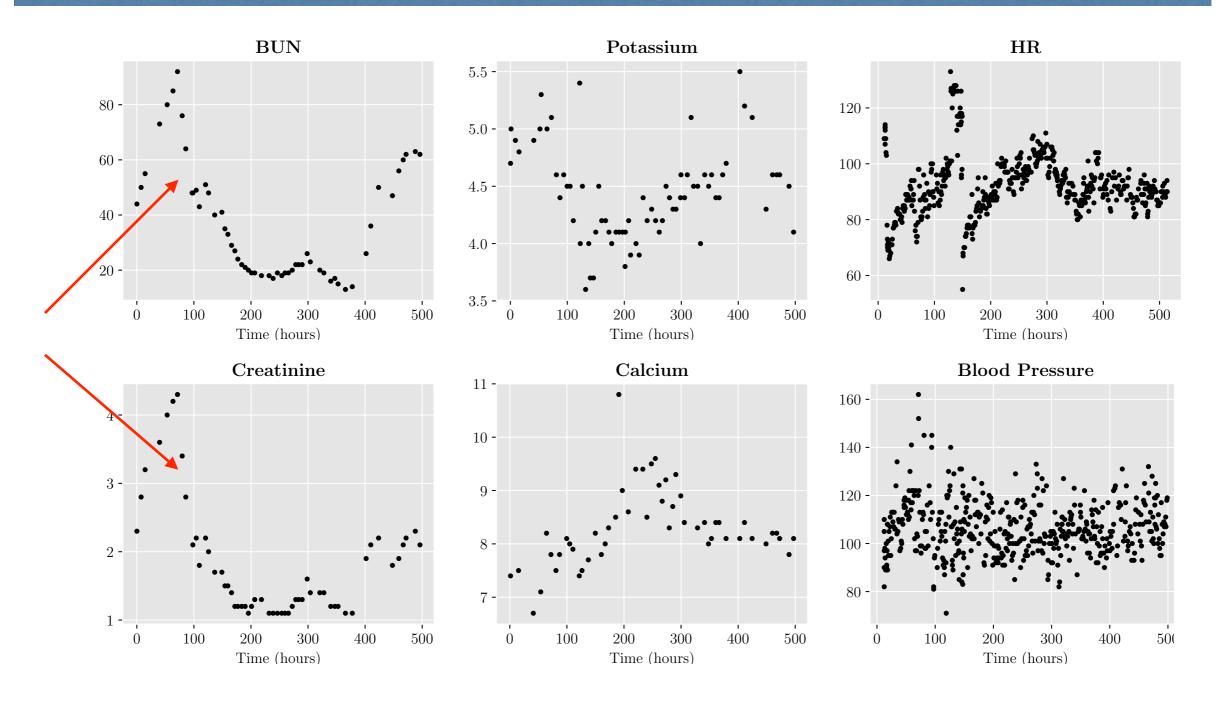
Medical Decision-Support



Medical Decision-Support



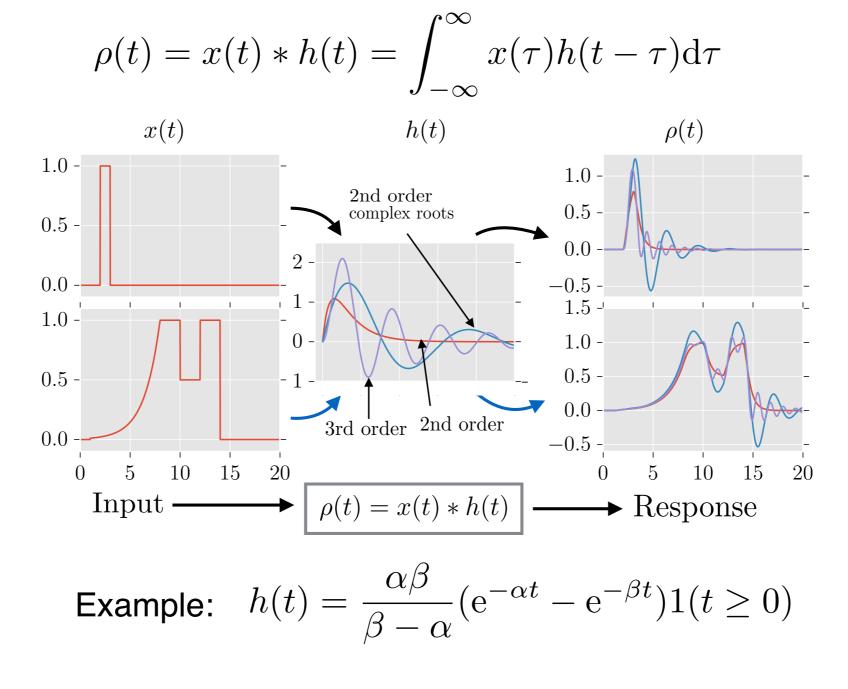
A Real ICU Patient with AKI



- 1. Irregularly sampled
- 2. Unaligned signals
- 3. Cross correlations

Continuous-time actions, continuous-time multi-variate trajectories

Input x(t) convolved with *impulse-response* h(t) to generate response $\rho(t)$



To allow sharing across signals:

Similar ideas in

Cutler, 1978

pharmacokinetics:

Rich et al., 2016

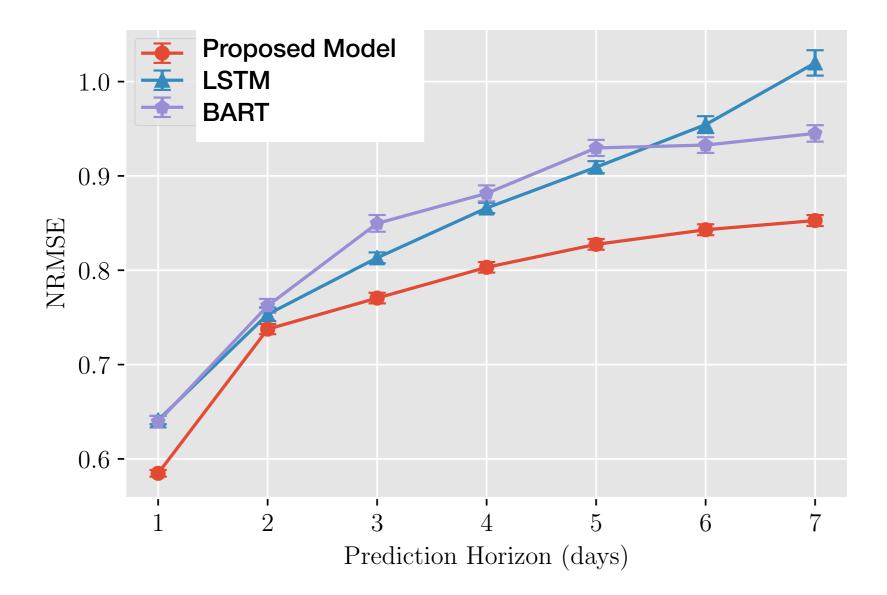
Shargel et al. 2005

$$g_d(t) = \psi \rho_0(t) + (1 - \psi) \qquad \rho_d(t)$$

 $\psi \in [0,1]$

Soleimani, Subbaswamy, Saria, UAI 2017

Quantitative Results



- Better relative performance at <u>longer prediction horizons</u>
- For horizon 7: on test regions with treatment, 15% than BART and 8% better than LSTM

Soleimani, Subbaswamy, Saria, UAI 2017

Conclusions

- Use counterfactual objectives for training predictive models
- Assumptions are critical for counterfactual models
 - But they are <u>not</u> statistically testable
 - Can we develop formal sensitivity analyses?
- Are the other structural assumptions where CGP's can be learned?
- Counterfactual reasoning is orthogonal to other efforts in interpretability and accountability
 - Counterfactual objective tells us what to fit
 - Interpretable models: how to parameterize for transparency

Key References

- Potential Outcomes
 - Neyman et al., 1923 <u>I. 1990</u> (English)
 - **.** Rubin, 1974 Rubin, 2005
- Treatment-Confounder Feedback and G-computation
 - Robins 1986
 - Robins and Hernan 2009
- Counterfactual Reasoning and Reliable Decision Support
 - Schulam and Saria, NIPS 2017
 - Soleimani, Subbaswamy, Saria, UAI 2017
 - Xu, Xu, Saria, MLHC 2016 (JMLR-to appear)
 - Dyagilev and Saria, Machine Learning 2015
 - Soleimani and Saria, UAI 2017
 - Saria and Schulam, NIPS Tutorial 2016

Thank you! <u>ssaria@cs.jhu.edu</u> <u>www.suchisaria.com</u> @suchisaria

All references throughout the slides are active links and clickable. For errors and edits, please contact: <u>ssaria@cs.jhu.edu</u> Thanks!