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Supervised ML models can be biased 
 for decision-making problems!
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Actions determined by a policy 
based on your learned model

Why?
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⇡test(P̂ ),
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Why?

Supervised ML leads to models that are unstable to  
shifts in the policy between the train and test



Example: Risk Monitoring
Adverse 

Event Onset

Is the patient at risk of 
a septic shock?



• Rise in Temperature and Rise in WBC are indicators of 
sepsis and death 

• But, doctors in H1 aggressively treat patients with 
high temperature  

• As doctors treat treat more aggressively, supervised 
learning model learns high temperature is associated 
with low risk. 

 
 

Dyagilev and Saria, Machine Learning 2015

http://link.springer.com/article/10.1007/s10994-015-5527-7


Increasing discrepancy in 
physician prescription behavior 
in train vs. test environment

Treat based on  
temp

Treat based on  
WBC

Dyagilev and Saria, Machine Learning 2015

Predictive model trained using classical supervised ML creates 
unsafe scenarios where sick patients are overlooked.

http://link.springer.com/article/10.1007/s10994-015-5527-7


• Clone the customer; give a 10% and 20% discount code 
to each clone


• Choose the outcome that has the better outcome

{ }Y (d10) Y (d20),

Outcome under 10% discount.

Run an experiment:  
observe outcome under diff scenarios



{ }Y (d10) Y (d20),

Outcome under 20% discount.

Run an experiment:  
observe outcome under diff scenarios

• Clone the customer; give a 10% and 20% discount code 
to each clone


• Choose the outcome that has the better outcome



• Factual: outcome observed in the data 
 
vs. 


• Counterfactual: outcome is unobserved

{ }Y (d10) Y (d20),

Can we learn models of these 
outcomes from observational data?



Potential Outcomes

{Y (a) : a 2 A}

Set of actionsRandom variable

Action

Potential outcomes model the observed outcome 
under each possible action (or intervention)

Rubin, 1974 Neyman et al., 1923 Rubin, 2005

http://psycnet.apa.org/journals/edu/66/5/688/
http://projecteuclid.org/euclid.ss/1177012031
http://amstat.tandfonline.com/doi/abs/10.1198/016214504000001880
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Counterfactual GP
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• Counterfactual models: See Schulam and Saria, NIPS 
2017 for discussion of related work.  

Related Work

Dudik et al., 2011 Paduraru et al. 2013Jiang and Li, 2016

• Off-policy evaluation: Re-weighting to evaluate reward  
for a policy when learning from offline data. 

e.g.

Brodersen et al., 2015 ads; single intervention
Bottou et al., 2013 

Taubman et al.,2009 epidemiology; multiple sequential  
interventions

Xu, Xu, Saria, 2016 sparse, irregularly sampled  
longitudinal data; functional outcomesLok et al., 2008 

Schulam Saria, 2017

https://arxiv.org/abs/1103.4601
http://proceedings.mlr.press/v24/paduraru12a/paduraru12a.pdf
http://jmlr.org/proceedings/papers/v48/jiang16.pdf
http://biomet.oxfordjournals.org/content/70/1/41.short
https://arxiv.org/abs/1209.2355
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786249/
https://arxiv.org/abs/1608.05182
https://arxiv.org/pdf/1703.10651.pdf


Critical Assumptions
• To learn the potential outcome models, we will use three 

important assumptions:

• (1) Consistency

• Links observed outcomes to potential outcomes

• (2) Treatment Positivity

• Ensures that we can learn potential outcome models

• (3) No unmeasured confounders (NUC)

• Ensures that we do not learn biased models
Rubin, 1974 Neyman et al., 1923 Rubin, 2005

http://psycnet.apa.org/journals/edu/66/5/688/
http://projecteuclid.org/euclid.ss/1177012031
http://amstat.tandfonline.com/doi/abs/10.1198/016214504000001880


(1) Consistency
• Consider a dataset containing observed outcomes, 

observed treatments, and covariates:

• E.g.: blood pressure, exercise, BMI

• Consistency allows us to replace the observed response 
with the potential outcome of the observed treatment

• Under consistency our dataset satisfies

{yi, ai,xi}ni=1

Y , Y (a) | A = a

{yi, ai,xi}ni=1 , {yi(ai), ai,xi}ni=1



(2) Positivity
• When working with observational data, for any set of 

covariates     we need to assume a non-zero 
probability of seeing each treatment

• Otherwise, in general, cannot learn a conditional model 
of the potential outcomes given those covariates

• Formally, we assume that

x

PObs(A = a | X = x) > 0 8a 2 A, 8x 2 X



(3) No Unmeasured Confounders (NUC)
• Formally, NUC is an statistical independence assertion:

Y (a) ? A | X = x : 8a 2 A, 8x 2 X



(3) No Unmeasured Confounders (NUC)
• Formally, NUC is an statistical independence assertion:

Y (a) ? A | X = x : 8a 2 A, 8x 2 X

xBMI yBP

Exerc

xBMI yBP

Exerc

xBMI yBP

Exerc



Learning Potential Outcome Models
• Assumptions allow estimation of potential outcomes from 

(observational) data:

(A3)
(A1)

P(Y (a) | X = x) = P(Y (a) | X = x, A = a)

= P(Y | X = x, A = a)

Estimation requires a statistical model for estimating conditionals 

• To simulate data from a new policy, we need to learn the 
potential outcome models

• If we have an observational dataset where assumptions 
1-3 hold, then this is possible!

UAI Tutorial:
Saria and Soleimani, 2017

https://www.youtube-nocookie.com/embed/rZyFUBwiaF4?rel=0


Observational Traces

Timing between  
measurements is  

irregular and random 

Creatinine is a test used to measure kidney function.



Observational Traces

And so are times  
between treatments



Challenges w/ Observational Traces

In the discrete-time setting,  
we did not treat the timing of 

events as random



Counterfactual GP
• Collection of Gaussian processes

n

{Yt(a) : t 2 [0, ⌧ ]} : a 2 C
o

Fixed time period Set of finite 
sequences of  

actions



Learning from 
Observational Traces
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Treatments administered 
according to unknown policy 

(i.e. not an RCT)



Learning from 
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Learning is especially difficult 
because there is time-

dependent feedback between  
actions and outcomes

Robins 1986

http://www.sciencedirect.com/science/article/pii/0270025586900886


Learning Models from Observational Traces
• Road map:

• (1) Establish assumptions that connect probabilistic of 
observational traces to target counterfactual model

• (2) Posit probabilistic model of observational traces

• (3) Derive maximum likelihood estimator

P ({Ys[a] : s > t} | Ht)

Schulam and Saria, NIPS 2017

https://arxiv.org/pdf/1703.10651.pdf


Modeling Observational Traces

• We use a marked point process (MPP):


• Points model the event times: measurements or actions


• Mark models the type of event

{(Ti, Xi)}1i=1

X = (R [ {?})⇥ (C [ {?})⇥ {0, 1}⇥ {0, 1}

Schulam and Saria, NIPS 2017

https://arxiv.org/pdf/1703.10651.pdf


Modeling Observational Traces

• We use a marked point process (MPP):


• Points model the event times: measurements or actions


• Mark models the type of event

{(Ti, Xi)}1i=1

X = (R [ {?})⇥ (C [ {?})⇥ {0, 1}⇥ {0, 1}
zy

Did we measure an outcome?



Modeling Observational Traces

• We use a marked point process (MPP):


• Points model the event times: measurements or actions


• Mark models the type of event

{(Ti, Xi)}1i=1

X = (R [ {?})⇥ (C [ {?})⇥ {0, 1}⇥ {0, 1}
zy

Did we take an action?

za



Modeling Observational Traces

• We use a marked point process (MPP):


• Points model the event times: measurements or actions


• Mark models the type of event

{(Ti, Xi)}1i=1

X = (R [ {?})⇥ (C [ {?})⇥ {0, 1}⇥ {0, 1}
zy

What is the value of the outcome?

zay



Modeling Observational Traces

• We use a marked point process (MPP):


• Points model the event times: measurements or actions


• Mark models the type of event

{(Ti, Xi)}1i=1

X = (R [ {?})⇥ (C [ {?})⇥ {0, 1}⇥ {0, 1}
zy

What action did we take?

zay a



Modeling Observational Traces

• Parameterize MPP using hazard and mark density:

Schulam and Saria, NIPS 2017

https://arxiv.org/pdf/1703.10651.pdf


Modeling Observational Traces

• Parameterize MPP using hazard and mark density:

Probability of event  
happening at this time

Probability of mark  
given event time

Schulam and Saria, NIPS 2017

https://arxiv.org/pdf/1703.10651.pdf


Modeling Observational Traces

• Parameterize MPP using hazard and mark density:

Probability of event  
happening at this time

Probability of mark  
given event time

Star denotes  
dependence on  

history

Schulam and Saria, NIPS 2017

https://arxiv.org/pdf/1703.10651.pdf


Modeling Observational Traces

• Parameterize MPP using hazard and mark density:


• Estimate MPP by maximizing probability of traces

`(✓) =
nX

j=1

log p⇤✓(yj | tj , zyj) +
nX

j=1

log �⇤
✓(t)p

⇤
✓(aj , zyj , zaj | tj , yj)�

Z ⌧

0
�⇤
✓(s)ds

Model the conditional probability of 
the outcome using a GP

Schulam and Saria, NIPS 2017

https://arxiv.org/pdf/1703.10651.pdf


Recovering the CGP
• When does the MPP GP recover the CGP?


• In addition to Consistency, we define two assumptions

Schulam and Saria, NIPS 2017

https://arxiv.org/pdf/1703.10651.pdf


Recovering the CGP
• When does the MPP GP recover the CGP?


• In addition to Consistency, we define two assumptions


• Continuous-time NUC


• Analogue of NUC for MPP

Schulam and Saria, NIPS 2017

https://arxiv.org/pdf/1703.10651.pdf


Recovering the CGP
• When does the MPP GP recover the CGP?


• In addition to Consistency, we define two assumptions


• Continuous-time NUC


• Analogue of NUC for MPP


• Non-informative measurement times


• Measurement and action times are conditionally 
independent of potential outcomes

Schulam and Saria, NIPS 2017

https://arxiv.org/pdf/1703.10651.pdf


Reliable Decisions with CGPs
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Classical Supervised Model
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Counterfactual GP
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Simulated Data
• Simulate observational traces from multiple regimes


• Traces are treated by policies unknown to learners


• In regimes A and B, policies satisfy our assumptions


• In regime C, policy violates our assumptions


• Simulate three training sets (regimes A, B, and C)


• Simulate one common test set (regime A)



Results
• Risk scores:


• Use Baseline and CGP to predict final severity marker


• Normalize predictions to [0, 1]



Results
• Risk scores:


• Use Baseline and CGP to predict final severity marker


• Normalize predictions to [0, 1]

CGP risk scores are stable across 
regime A and B training data



Results

Baseline GP scores change

• Risk scores:


• Use Baseline and CGP to predict final severity marker


• Normalize predictions to [0, 1]



Results

CGP relative risk across patients is also 
stable across training data A and B

• Risk scores:


• Use Baseline and CGP to predict final severity marker


• Normalize predictions to [0, 1]



Results

Baseline GP’s relative risk changes

• Risk scores:


• Use Baseline and CGP to predict final severity marker


• Normalize predictions to [0, 1]



Results

CGP AUC is constant across  
regimes A and B

• Risk scores:


• Use Baseline and CGP to predict final severity marker


• Normalize predictions to [0, 1]



Results

Baseline GP’s AUC is unstable

• Risk scores:


• Use Baseline and CGP to predict final severity marker


• Normalize predictions to [0, 1]



Simulated Data
• Simulate observational traces from three regimes


• Traces are treated by policies unknown to learners


• In regimes A and B, policies satisfy our assumptions


• In regime C, policy violates our assumptions


• Simulate three training sets (regimes A, B, and C)


• Simulate one common test set (regime A)



Results
• Risk scores:


• Use Baseline and CGP to predict final severity marker


• Negate predictions and normalize to [0, 1]

CGP risk scores are unstable if the policy in 
the training data violates our assumptions



Medical Decision-Support  
using CGPs

• Dialysis is expensive, but necessary when kidneys fail


• Important questions for decision-making:


• (1) Will this individual be okay if I remove dialysis?


• (2) Will this individual benefit from dialysis?


• CGP can help to answer these questions



Medical Decision-Support
Counterfactual (no treatment)

Factual



Medical Decision-Support

Counterfactual (CVVHD)



A Real ICU Patient with AKI

1. Irregularly sampled
2. Unaligned signals
3. Cross correlations
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Continuous-time actions, continuous-time multi-variate 
trajectories

Input x(t) convolved with impulse-response h(t) to generate response ⇢(t)

Input
⇢(t) = x(t) ⇤ h(t)

Response
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2nd order

x(t) h(t) ⇢(t)

⇢(t) = x(t) ⇤ h(t) =
Z 1

�1
x(⌧)h(t� ⌧)d⌧

h(t) =
↵�

� � ↵
(e�↵t � e��t)1(t � 0)Example:

To allow sharing across signals: gd(t) =  ⇢0(t)| {z }
shared

+(1�  ) ⇢d(t)| {z }
signal-specific 2 [0, 1]

Similar ideas in 
pharmacokinetics:
Cutler, 1978

Shargel et al. 2005

Rich et al., 2016

Soleimani, Subbaswamy, Saria, UAI 2017 

https://link.springer.com/article/10.1007/BF01312266
https://www.amazon.com/Applied-Biopharmaceutics-Pharmacokinetics-Shargel-Biopharmaceuticals/dp/007160393X
https://www.ncbi.nlm.nih.gov/pubmed/26537297
http://auai.org/uai2017/proceedings/papers/266.pdf


Quantitative Results

Better relative performance at longer prediction horizons

For horizon 7: on test regions with treatment, 15% than BART and 8% better than LSTM

1 2 3 4 5 6 7
Prediction Horizon (days)

0.6

0.7

0.8

0.9

1.0
N

R
M

S
E

Proposed model

RNN

BART

Soleimani, Subbaswamy, Saria, UAI 2017 

Proposed Model 
LSTM 
BART

http://auai.org/uai2017/proceedings/papers/266.pdf


Conclusions
• Use counterfactual objectives for training predictive models


• Assumptions are critical for counterfactual models


• But they are not statistically testable


• Can we develop formal sensitivity analyses?


• Are the other structural assumptions where CGP’s can be learned?


• Counterfactual reasoning is orthogonal to other efforts in interpretability 
and accountability


• Counterfactual objective tells us what to fit


• Interpretable models: how to parameterize for transparency
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