
Adriaan van Wijngaarden
meets Scott

Domain-Theoretic Foundations for
Probabilistic Network Programming

Alexandra Silva (UCL)

The gang

Networks

• built and programmed the same way
since the 1970s

• low-level, special-purpose devices
implemented on custom hardware

• routers and switches that do little
besides maintaining routing tables
and forwarding packets

• configured locally using proprietary
interfaces

Network configuration
largely a black art

✓ Difficult to implement end-to-end routing
policies and optimisations that require a
global perspective

✓ Difficult to extend with new functionality
✓ Effectively impossible to reason precisely

about behaviour

Software-Defined Networks

Openflow

• Specifies capabilities and behaviour of switch hardware
• A language for manipulating network configurations

• Very low-level: easy for hardware to implement, difficult for
humans to write and reason about

But…

✓ is platform independent
✓ provides an open standard that any vendor can implement

[McKeown & al., SIGCOMM 08]

Verification of networks

✤ Frenetic [Foster & al., ICFP 11]
✤ Pyretic [Monsanto & al., NSDI 13]
✤ Maple [Voellmy & al., SIGCOMM 13]
✤ FlowLog [Nelson & al., NSDI 14]
✤ Header Space Analysis [Kazemian & al., NSDI 12]
✤ VeriFlow [Khurshid & al., NSDI 13]
✤ NetKAT [Anderson & al., POPL 14]
✤ and many others . . .

Trend in PL&Verification after Software-Defined Networks

• Design high-level languages that model essential network features
• Develop semantics that enables reasoning precisely about behaviour
• Build tools to synthesise low-level implementations automatically

NetKAT
NetKAT [Anderson & al. 14]

NetKAT
=

Kleene algebra with tests (KAT)
+

additional specialized constructs particular to
network topology and packet switching

NetKATKleene Algebra (KA)

Stephen Cole Kleene
(1909–1994)

(0 + 1(01⇤0)⇤1)⇤

{multiples of 3 in binary}
1

0

1

0

0

1

(ab)⇤a = a(ba)⇤

{a, aba, ababa, . . .}
a

b

(a+ b)⇤ = a⇤(ba⇤)⇤

{all strings over {a, b}}
a + b

NetKAT
Kleene Algebra with Tests (KAT)

(K ,B ,+, ·,⇤ , , 0, 1), B ✓ K

I (K ,+, ·,⇤ , 0, 1) is a Kleene algebra

I (B ,+, ·, , 0, 1) is a Boolean algebra

I (B ,+, ·, 0, 1) is a subalgebra of (K ,+, ·, 0, 1)

I p, q, r , . . . range over K

I a, b, c , . . . range over B

KAT = simple imperative language

If b then p else q = b;p + !b;q

While b do p = (bp)*!b

NetKAT

I a packet ⇡ is an assignment of constant values n to fields x

I a packet history is a nonempty sequence of packets
⇡1 :: ⇡2 :: · · · :: ⇡k

I the head packet is ⇡1

NetKAT

I assignments x n
assign constant value n to field x in the head packet

I tests x = n
if value of field x in the head packet is n, then pass, else drop

I dup
duplicate the head packet

NetKAT

Networks in NetKAT

sw=6;pt=8;dst := 10.0.1.5;pt:=5

 For all packets located at port 8 of switch 6, set the destination address
to 10.0.1.5 and forward it out on port 5.

Networks in NetKAT
Networks

The behavior of an entire network can be encoded in NetKAT
by interleaving steps of processions by switches and topology

policy
+

(policy; topo); policy
+

(policy; topo; policy; topo); policy
⋮

(policy; topo)*; policy

policy

topo

The behaviour of an entire network can be encoded in NetKAT
by interleaving steps of processions by switches and topology

Semantics

(policy;topo)*;policy

packet history set of packet histories
<p,…> {<q,…>,<r,…>}

[[e]] : H ! 2H

Standard Model

Standard model of NetKAT is a packet-forwarding model

JeK : H ! 2H

where H = {packet histories}

Jx nK(⇡1 :: �)
4
= {⇡1[n/x] :: �}

Jx = nK(⇡1 :: �)
4
=

(
{⇡1 :: �} if ⇡1(x) = n

? if ⇡1(x) 6= n

JdupK(⇡1 :: �)
4
= {⇡1 :: ⇡1 :: �}

Verification using NetKATExamples

Reachability
I Can host A communicate with host B? Can every host

communicate with every other host?

Security
I Does all untrusted tra�c pass through the intrusion detection

system located at C?

Loop detection
I Is it possible for a packet to be forwarded around a cycle in the

network?

Results

Soundness and Completeness [Anderson et al. 14]

I ` p = q if and only if JpK = JqK

Decision Procedure [Foster et al. 15]

I NetKAT coalgebra

I e�cient bisimulation-based decision procedure

I implementation in OCaml

I deployed in the Frenetic suite of network management tools

Verification using NetKAT

Limitations

✴Packet-processing function

✴Applicability limited to simple connectivity or routing behavior

[[e]] : H ! 2H

✴ expected congestion
✴ reliability
✴ randomized routing

Probabilities are needed

ProbNetKAT

p�r q

as a subset of the output set can only increase. From this germ of an
idea, we formulate an order-theoretic semantics for ProbNetKAT.

In addition to the strong theoretical motivation for this work, our
new semantics also provides a source of practical useful reasoning
techniques, notably in the treatment of iteration and approximation.
The original paper on ProbNetKAT showed that Kleene star operator
satisfies the usual fixpoint equation P ⇤

= 1 & P ; P ⇤, and that
its finite approximants P (n) converge weakly (but not pointwise)
to it. However, it was not characterized as a least fixpoint in any
order or as a canonical solution in any sense. This was a bit
unsettling and raised questions as to whether it was the “right”
definition—questions for which there was no obvious answer. This
paper characterizes P ⇤ as the least fixpoint of the Scott-continuous
map X 7! 1 & P ;X on a continuous DCPO of Scott-continuous
Markov kernels. This not only corroborates the original definition
as the “right” one, but provides a powerful tool for monotone
approximation. Indeed, this result implies the correctness of our
implementation, which we have used to build and evaluate real-
world applications.

Contributions. This main contributions of this paper are as fol-
lows: (i) we develop a domain-theoretic foundation for probabilistic
network programming, (ii) using this semantics, we build an imple-
mentation of the ProbNetKAT language, and (iii) we evaluate the
practical applicability of the language on several case studies.

Outline. The paper is structured as follows: §2 gives a high-level
overview of our technical development using a simple running ex-
ample. §3 reviews basic definitions from domain theory and measure
theory. §4 formalizes the syntax and semantics of ProbNetKAT ab-
stractly, in terms of a monad. §5 proves a general theorem relating
the Scott and Cantor topologies on 2

H. Although the Scott topology
is much weaker, the two topologies generate the same Borel sets, so
the probability measures are the same in both. We also show that
the bases of the two topologies are related by a countably infinite-
dimensional triangular linear system, which can be viewed as an
infinite analog of the inclusion-exclusion principle. The cornerstone
of this result is an extension theorem (Theorem 7) that determines
when a function on the basic Scott-open sets extends to a measure.
§6 gives the new domain-theoretic semantics for ProbNetKAT in
which programs are characterized as Markov kernels that are Scott-
continuous in their first argument. We show that this class of kernels
forms a continuous DCPO, the basis elements being those kernels
that drop all but fixed finite sets of input and output packets. §7
shows that ProbNetKAT’s primitives are (Scott-)continuous and its
program operators preserve continuity. Other operations such as
product and Lebesgue integration are also treated in this framework.
In proving these results, we attempt to reuse general results from
domain theory whenever possible, relying on the specific properties
of 2H only when necessary. We supply complete proofs for folklore
results and in cases where we could not find an appropriate orig-
inal source. We also show that the two definitions of the Kleene
star operator—one in terms of an infinite stochastic process and
one as the least fixpoint of a Scott-continuous map—coincide. §8
applies the continuity results from §7 to derive monotone conver-
gence theorems. §9 describes an implementation based on §8 and
practical applications. §10 reviews related work. We conclude in
§11 by discussing open problems and future directions.

2. Overview
This section provides motivation for the ProbNetKAT language and
summarizes our technical results using a simple example.

Example. Consider the topology shown in Figure 1 and suppose
we are asked to implement a routing application that forwards all
traffic to its destination while minimizing congestion, gracefully

S1 S2

S3S4

h1 h2

h3h4

1 2

34

2 1

3

2

43

1

4

(a)

(b) (c)

Figure 1. (a) topology, (b) congestion, (c) failure throughput.

adapting to shifts in load, and also handling unexpected failures.
This problem is known as traffic engineering in the networking
literature and has been extensively studied [4, 22, 26, 48, 57]. Note
that standard shortest-path routing (SPF) does not solve the problem
as stated—in general, it can lead to bottlenecks and also makes
the network vulnerable to failures. For example, consider sending
a large amount of traffic from h1 to h3: there are two paths in
the topology, one via S2 and one via S4, but if we only use a
single path we sacrifice half of the available capacity. The most
widely-deployed approaches to traffic engineering today are based
on using multiple paths and randomization. For example, Equal
Cost Multipath Routing (ECMP), which is widely supported on
commodity routers, selects a least-cost path for each traffic flow
uniformly at random. The intention is to spread the offered load
across a large set of paths, thereby reducing congestion without
increasing latency.

ProbNetKAT Language. It is straightforward to write a Prob-
NetKAT program that captures the essential behavior of ECMP. We
first encode routing tables and topology, and then write a program
that models the behavior of the entire network.
Routing: We model the routing tables for the switches using simple
ProbNetKAT programs that match on destination addresses and for-
ward packets on the next hop toward their destination. To randomly
map packets to least-cost paths, we use the choice operator (�). For
example, the program for switch S1 in Figure 1 is as follows:

p1 , (dst=h1 ; pt 1)

& (dst=h2 ; pt 2)

& (dst=h3 ; (pt 2� pt 4))

& (dst=h4 ; pt 4)

The programs for other switches are similar. To a first approximation,
this program can be read as a routing table, whose entries are
separated by the parallel composition operator (&). The first entry
states that packets whose destination is h1 should be forwarded
out on port 1 (which is directly connected to h1). Likewise, the
second entry states that packets whose destination is host h2 should
be forwarded out on port 2, which is the next hop on the unique
shortest path to h2. The third entry, however, is different: it states
that packets whose destination is h3 should be forwarded out on

dst = h3; pt 2�.5 pt 4

ProbNetKAT by example

ports 2 and 4 with equal probability. This divides traffic going to h3

among the clockwise path via S2 and the counter-clockwise path
via S4. The final entry states that packets whose destination is h4

should be forwarded out on port 4, which is again the next hop on
the unique shortest path to h4. The routing program for the network
is the parallel composition of the programs for each switch:

p , (sw=S1 ;p1)&(sw=S2 ;p2)&(sw=S3 ;p3)&(sw=S4 ;p4)

Topology: We model a directed link as a program that matches on
the switch and port at one end of the link and modifies the switch
and port to the other end of the link. We model an undirected link
l as a parallel composition of directed links in each direction. For
example, the link between switches S1 and S2 is as follows:

l1,2 , (sw=S1 ; pt=2 ; dup ; sw S2 ; pt 1 ; dup)

& (sw=S2 ; pt=1 ; dup ; sw S1 ; pt 2 ; dup)

Note that at each hop we use ProbNetKAT’s dup operator to store
the headers in the packet’s history, which records the trajectory of
the packet as it goes through the network. Histories are useful for
tasks such as measuring path length and analyzing link congestion.
We model the topology as a parallel composition of individual links:

t , l1,2 & l2,3 & l3,4 & l1,4

To delimit the network edge, we define ingress and egress predicates:

in , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .
out , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .

Here, since every ingress is an egress, the predicates are identical.
Network: We model the end-to-end behavior of the entire network
by combining p, t, in and out into a single program:

net , in ; (p ; t)⇤ ; p ; out

This program models processing each input from ingress to egress
across a series of switches and links. Formally it denotes a Markov
kernel that, when supplied with an input distribution on packet
histories µ produces an output distribution ⌫.
Queries: Having constructed a probabilistic model of the network,
we can use standard tools from measure theory to reason about
performance. For example, to compute the expected congestion on
a given link l, we would introduce a function Q from sets of packets
to R [{1} (formally a random variable):

Q(a) ,
X

h2a

#l(h)

where #l(h) is the function on packet histories that returns the
number of times that link l occurs in h, and then compute the
expected value of Q using integration:

E
⌫
[Q] =

Z
Qd⌫

We can compute queries that capture other aspects of network
performance such as latency, reliability, etc. in similar fashion.

Limitations. Unfortunately there are several serious problems
with the approach just described:
• One problem is that computing the results of a query can require

complicated measure theory since a ProbNetKAT program may
generate a continuous distribution in general. Formally, instead
of summing over the support of the distribution, we have to use
Lebesgue integration in an appropriate measurable space. There
are also challenges in representing infinite distributions.

• Another issue is that the semantics of iteration is modeled in
terms of an infinite stochastic process rather than a standard
fixpoint. The original ProbNetKAT paper showed that it is

possible to approximate a program using a series of star-free
programs that weakly converge to the correct result, but the
approximations need not converge monotonically. This fact
makes approximation difficult to use in practice.

• Even worse, many of the queries that we would like to answer
are not actually continuous in the Cantor topology, meaning that
the weak convergence result does not even apply! The notion of
distance on sets of packet histories is d(a, b) = 2

�n where n is
the length of the smallest history in a but not in b, or vice versa.
It is easy to construct a sequence of histories hn of length n such
that limn!1 d({hn}, {}) = 0 but limn!1 Q({hn}) = 1
which is not equal to Q({}) = 0.

Together, these issues are significant impediments that make it
difficult to apply ProbNetKAT in many practical scenarios.

Domain-Theoretic Semantics. This paper develops a new seman-
tics for ProbNetKAT that overcomes these problems and provides
the key building blocks needed to engineer a practical implemen-
tation. The main insight is that we can formulate the semantics in
terms of the Scott topology rather than the Cantor topology. It turns
out that these two topologies generate the same Borel sets, and the
relationship between them can be characterized using an extension
theorem that captures when functions on the basic Scott-open sets
extend to a measure. We show how to construct a DCPO equipped
with a natural partial order that also lifts to a partial order on Markov
kernels. We prove that standard program operators are continuous,
which allows us to formulate the semantics of the language—in par-
ticular Kleene star—using standard tools from domain theory, such
as least fixpoints. Finally, we formalize a notion of approximation
and prove a monotone convergence theorem.

The problems with the original ProbNetKAT semantics identified
above are all solved using the new semantics. Because the new
semantics models iteration as a least fixpoint, we can work with
finite distributions and star-free approximations that are guaranteed
to monotonically converge to the correct result. Moreover, whereas
our query Q was not Cantor continuous, it is straightforward to
show that it is Scott continuous. Let A be an increasing chain
a0 ✓ a1 ✓ a2 ✓ . . . ordered by inclusion. Scott continuity
requires

F
a2A Q(a) = Q(

F
A
�

which is easy to prove. Hence, the
convergence theorem applies and we can compute a monotonically
increasing chain of approximations that converge to E⌫ [Q].

Implementation and Applications. We developed the first imple-
mentation of ProbNetKAT using the new semantics. We built an
interpreter for the language and implemented a variety of traffic en-
gineering schemes including ECMP, K-shortest path routing (which
provides improved fault tolerance), and oblivious routing [57]. We
analyzed the performance of each scheme in terms of congestion
and latency on real-world demands drawn from Internet2’s Abilene
backbone, and in the presence of link failures. We showed how
to use the language to reason probabilistically about reachability
properties such as loops and black holes. Figures 1 (b-c) depict the
expected throughput and maximum congestion and using shortest
paths (SPF) and ECMP on the 4-node topology as computed by our
ProbNetKAT implementation. We set the demand from h1 to h3

to be 1
2 units of traffic, and the demand between all other pairs of

hosts to be 1
8 units. The first graph depicts the maximum congestion

induced under successive approximations of the Kleene star, and
shows that ECMP achieves much better congestion than SPF. With
SPF, the most congested link (from S1 to S2) carries traffic from h1

to h2, from h4 to h2, and from h1 to h3, resulting in 3
4 total traffic.

With ECMP, the same link carries traffic from h1 to h2, half of the
traffic from h2 to h4, half of the traffic from h1 to h3, resulting in 7

16
total traffic. The second graph depicts the loss of throughput when
the same link fails. The total aggregate demand is 1 7

8 . With SPF, 3
4

as a subset of the output set can only increase. From this germ of an
idea, we formulate an order-theoretic semantics for ProbNetKAT.

In addition to the strong theoretical motivation for this work, our
new semantics also provides a source of practical useful reasoning
techniques, notably in the treatment of iteration and approximation.
The original paper on ProbNetKAT showed that Kleene star operator
satisfies the usual fixpoint equation P ⇤

= 1 & P ; P ⇤, and that
its finite approximants P (n) converge weakly (but not pointwise)
to it. However, it was not characterized as a least fixpoint in any
order or as a canonical solution in any sense. This was a bit
unsettling and raised questions as to whether it was the “right”
definition—questions for which there was no obvious answer. This
paper characterizes P ⇤ as the least fixpoint of the Scott-continuous
map X 7! 1 & P ;X on a continuous DCPO of Scott-continuous
Markov kernels. This not only corroborates the original definition
as the “right” one, but provides a powerful tool for monotone
approximation. Indeed, this result implies the correctness of our
implementation, which we have used to build and evaluate real-
world applications.

Contributions. This main contributions of this paper are as fol-
lows: (i) we develop a domain-theoretic foundation for probabilistic
network programming, (ii) using this semantics, we build an imple-
mentation of the ProbNetKAT language, and (iii) we evaluate the
practical applicability of the language on several case studies.

Outline. The paper is structured as follows: §2 gives a high-level
overview of our technical development using a simple running ex-
ample. §3 reviews basic definitions from domain theory and measure
theory. §4 formalizes the syntax and semantics of ProbNetKAT ab-
stractly, in terms of a monad. §5 proves a general theorem relating
the Scott and Cantor topologies on 2

H. Although the Scott topology
is much weaker, the two topologies generate the same Borel sets, so
the probability measures are the same in both. We also show that
the bases of the two topologies are related by a countably infinite-
dimensional triangular linear system, which can be viewed as an
infinite analog of the inclusion-exclusion principle. The cornerstone
of this result is an extension theorem (Theorem 7) that determines
when a function on the basic Scott-open sets extends to a measure.
§6 gives the new domain-theoretic semantics for ProbNetKAT in
which programs are characterized as Markov kernels that are Scott-
continuous in their first argument. We show that this class of kernels
forms a continuous DCPO, the basis elements being those kernels
that drop all but fixed finite sets of input and output packets. §7
shows that ProbNetKAT’s primitives are (Scott-)continuous and its
program operators preserve continuity. Other operations such as
product and Lebesgue integration are also treated in this framework.
In proving these results, we attempt to reuse general results from
domain theory whenever possible, relying on the specific properties
of 2H only when necessary. We supply complete proofs for folklore
results and in cases where we could not find an appropriate orig-
inal source. We also show that the two definitions of the Kleene
star operator—one in terms of an infinite stochastic process and
one as the least fixpoint of a Scott-continuous map—coincide. §8
applies the continuity results from §7 to derive monotone conver-
gence theorems. §9 describes an implementation based on §8 and
practical applications. §10 reviews related work. We conclude in
§11 by discussing open problems and future directions.

2. Overview
This section provides motivation for the ProbNetKAT language and
summarizes our technical results using a simple example.

Example. Consider the topology shown in Figure 1 and suppose
we are asked to implement a routing application that forwards all
traffic to its destination while minimizing congestion, gracefully

S1 S2

S3S4

h1 h2

h3h4

1 2

34

2 1

3

2

43

1

4

(a)

(b) (c)

Figure 1. (a) topology, (b) congestion, (c) failure throughput.

adapting to shifts in load, and also handling unexpected failures.
This problem is known as traffic engineering in the networking
literature and has been extensively studied [4, 22, 26, 48, 57]. Note
that standard shortest-path routing (SPF) does not solve the problem
as stated—in general, it can lead to bottlenecks and also makes
the network vulnerable to failures. For example, consider sending
a large amount of traffic from h1 to h3: there are two paths in
the topology, one via S2 and one via S4, but if we only use a
single path we sacrifice half of the available capacity. The most
widely-deployed approaches to traffic engineering today are based
on using multiple paths and randomization. For example, Equal
Cost Multipath Routing (ECMP), which is widely supported on
commodity routers, selects a least-cost path for each traffic flow
uniformly at random. The intention is to spread the offered load
across a large set of paths, thereby reducing congestion without
increasing latency.

ProbNetKAT Language. It is straightforward to write a Prob-
NetKAT program that captures the essential behavior of ECMP. We
first encode routing tables and topology, and then write a program
that models the behavior of the entire network.
Routing: We model the routing tables for the switches using simple
ProbNetKAT programs that match on destination addresses and for-
ward packets on the next hop toward their destination. To randomly
map packets to least-cost paths, we use the choice operator (�). For
example, the program for switch S1 in Figure 1 is as follows:

p1 , (dst=h1 ; pt 1)

& (dst=h2 ; pt 2)

& (dst=h3 ; (pt 2� pt 4))

& (dst=h4 ; pt 4)

The programs for other switches are similar. To a first approximation,
this program can be read as a routing table, whose entries are
separated by the parallel composition operator (&). The first entry
states that packets whose destination is h1 should be forwarded
out on port 1 (which is directly connected to h1). Likewise, the
second entry states that packets whose destination is host h2 should
be forwarded out on port 2, which is the next hop on the unique
shortest path to h2. The third entry, however, is different: it states
that packets whose destination is h3 should be forwarded out on

as a subset of the output set can only increase. From this germ of an
idea, we formulate an order-theoretic semantics for ProbNetKAT.

In addition to the strong theoretical motivation for this work, our
new semantics also provides a source of practical useful reasoning
techniques, notably in the treatment of iteration and approximation.
The original paper on ProbNetKAT showed that Kleene star operator
satisfies the usual fixpoint equation P ⇤

= 1 & P ; P ⇤, and that
its finite approximants P (n) converge weakly (but not pointwise)
to it. However, it was not characterized as a least fixpoint in any
order or as a canonical solution in any sense. This was a bit
unsettling and raised questions as to whether it was the “right”
definition—questions for which there was no obvious answer. This
paper characterizes P ⇤ as the least fixpoint of the Scott-continuous
map X 7! 1 & P ;X on a continuous DCPO of Scott-continuous
Markov kernels. This not only corroborates the original definition
as the “right” one, but provides a powerful tool for monotone
approximation. Indeed, this result implies the correctness of our
implementation, which we have used to build and evaluate real-
world applications.

Contributions. This main contributions of this paper are as fol-
lows: (i) we develop a domain-theoretic foundation for probabilistic
network programming, (ii) using this semantics, we build an imple-
mentation of the ProbNetKAT language, and (iii) we evaluate the
practical applicability of the language on several case studies.

Outline. The paper is structured as follows: §2 gives a high-level
overview of our technical development using a simple running ex-
ample. §3 reviews basic definitions from domain theory and measure
theory. §4 formalizes the syntax and semantics of ProbNetKAT ab-
stractly, in terms of a monad. §5 proves a general theorem relating
the Scott and Cantor topologies on 2

H. Although the Scott topology
is much weaker, the two topologies generate the same Borel sets, so
the probability measures are the same in both. We also show that
the bases of the two topologies are related by a countably infinite-
dimensional triangular linear system, which can be viewed as an
infinite analog of the inclusion-exclusion principle. The cornerstone
of this result is an extension theorem (Theorem 7) that determines
when a function on the basic Scott-open sets extends to a measure.
§6 gives the new domain-theoretic semantics for ProbNetKAT in
which programs are characterized as Markov kernels that are Scott-
continuous in their first argument. We show that this class of kernels
forms a continuous DCPO, the basis elements being those kernels
that drop all but fixed finite sets of input and output packets. §7
shows that ProbNetKAT’s primitives are (Scott-)continuous and its
program operators preserve continuity. Other operations such as
product and Lebesgue integration are also treated in this framework.
In proving these results, we attempt to reuse general results from
domain theory whenever possible, relying on the specific properties
of 2H only when necessary. We supply complete proofs for folklore
results and in cases where we could not find an appropriate orig-
inal source. We also show that the two definitions of the Kleene
star operator—one in terms of an infinite stochastic process and
one as the least fixpoint of a Scott-continuous map—coincide. §8
applies the continuity results from §7 to derive monotone conver-
gence theorems. §9 describes an implementation based on §8 and
practical applications. §10 reviews related work. We conclude in
§11 by discussing open problems and future directions.

2. Overview
This section provides motivation for the ProbNetKAT language and
summarizes our technical results using a simple example.

Example. Consider the topology shown in Figure 1 and suppose
we are asked to implement a routing application that forwards all
traffic to its destination while minimizing congestion, gracefully

S1 S2

S3S4

h1 h2

h3h4

1 2

34

2 1

3

2

43

1

4

(a)

(b) (c)

Figure 1. (a) topology, (b) congestion, (c) failure throughput.

adapting to shifts in load, and also handling unexpected failures.
This problem is known as traffic engineering in the networking
literature and has been extensively studied [4, 22, 26, 48, 57]. Note
that standard shortest-path routing (SPF) does not solve the problem
as stated—in general, it can lead to bottlenecks and also makes
the network vulnerable to failures. For example, consider sending
a large amount of traffic from h1 to h3: there are two paths in
the topology, one via S2 and one via S4, but if we only use a
single path we sacrifice half of the available capacity. The most
widely-deployed approaches to traffic engineering today are based
on using multiple paths and randomization. For example, Equal
Cost Multipath Routing (ECMP), which is widely supported on
commodity routers, selects a least-cost path for each traffic flow
uniformly at random. The intention is to spread the offered load
across a large set of paths, thereby reducing congestion without
increasing latency.

ProbNetKAT Language. It is straightforward to write a Prob-
NetKAT program that captures the essential behavior of ECMP. We
first encode routing tables and topology, and then write a program
that models the behavior of the entire network.
Routing: We model the routing tables for the switches using simple
ProbNetKAT programs that match on destination addresses and for-
ward packets on the next hop toward their destination. To randomly
map packets to least-cost paths, we use the choice operator (�). For
example, the program for switch S1 in Figure 1 is as follows:

p1 , (dst=h1 ; pt 1)

& (dst=h2 ; pt 2)

& (dst=h3 ; (pt 2� pt 4))

& (dst=h4 ; pt 4)

The programs for other switches are similar. To a first approximation,
this program can be read as a routing table, whose entries are
separated by the parallel composition operator (&). The first entry
states that packets whose destination is h1 should be forwarded
out on port 1 (which is directly connected to h1). Likewise, the
second entry states that packets whose destination is host h2 should
be forwarded out on port 2, which is the next hop on the unique
shortest path to h2. The third entry, however, is different: it states
that packets whose destination is h3 should be forwarded out on

ports 2 and 4 with equal probability. This divides traffic going to h3

among the clockwise path via S2 and the counter-clockwise path
via S4. The final entry states that packets whose destination is h4

should be forwarded out on port 4, which is again the next hop on
the unique shortest path to h4. The routing program for the network
is the parallel composition of the programs for each switch:

p , (sw=S1 ;p1)&(sw=S2 ;p2)&(sw=S3 ;p3)&(sw=S4 ;p4)

Topology: We model a directed link as a program that matches on
the switch and port at one end of the link and modifies the switch
and port to the other end of the link. We model an undirected link
l as a parallel composition of directed links in each direction. For
example, the link between switches S1 and S2 is as follows:

l1,2 , (sw=S1 ; pt=2 ; dup ; sw S2 ; pt 1 ; dup)

& (sw=S2 ; pt=1 ; dup ; sw S1 ; pt 2 ; dup)

Note that at each hop we use ProbNetKAT’s dup operator to store
the headers in the packet’s history, which records the trajectory of
the packet as it goes through the network. Histories are useful for
tasks such as measuring path length and analyzing link congestion.
We model the topology as a parallel composition of individual links:

t , l1,2 & l2,3 & l3,4 & l1,4

To delimit the network edge, we define ingress and egress predicates:

in , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .
out , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .

Here, since every ingress is an egress, the predicates are identical.
Network: We model the end-to-end behavior of the entire network
by combining p, t, in and out into a single program:

net , in ; (p ; t)⇤ ; p ; out

This program models processing each input from ingress to egress
across a series of switches and links. Formally it denotes a Markov
kernel that, when supplied with an input distribution on packet
histories µ produces an output distribution ⌫.
Queries: Having constructed a probabilistic model of the network,
we can use standard tools from measure theory to reason about
performance. For example, to compute the expected congestion on
a given link l, we would introduce a function Q from sets of packets
to R [{1} (formally a random variable):

Q(a) ,
X

h2a

#l(h)

where #l(h) is the function on packet histories that returns the
number of times that link l occurs in h, and then compute the
expected value of Q using integration:

E
⌫
[Q] =

Z
Qd⌫

We can compute queries that capture other aspects of network
performance such as latency, reliability, etc. in similar fashion.

Limitations. Unfortunately there are several serious problems
with the approach just described:
• One problem is that computing the results of a query can require

complicated measure theory since a ProbNetKAT program may
generate a continuous distribution in general. Formally, instead
of summing over the support of the distribution, we have to use
Lebesgue integration in an appropriate measurable space. There
are also challenges in representing infinite distributions.

• Another issue is that the semantics of iteration is modeled in
terms of an infinite stochastic process rather than a standard
fixpoint. The original ProbNetKAT paper showed that it is

possible to approximate a program using a series of star-free
programs that weakly converge to the correct result, but the
approximations need not converge monotonically. This fact
makes approximation difficult to use in practice.

• Even worse, many of the queries that we would like to answer
are not actually continuous in the Cantor topology, meaning that
the weak convergence result does not even apply! The notion of
distance on sets of packet histories is d(a, b) = 2

�n where n is
the length of the smallest history in a but not in b, or vice versa.
It is easy to construct a sequence of histories hn of length n such
that limn!1 d({hn}, {}) = 0 but limn!1 Q({hn}) = 1
which is not equal to Q({}) = 0.

Together, these issues are significant impediments that make it
difficult to apply ProbNetKAT in many practical scenarios.

Domain-Theoretic Semantics. This paper develops a new seman-
tics for ProbNetKAT that overcomes these problems and provides
the key building blocks needed to engineer a practical implemen-
tation. The main insight is that we can formulate the semantics in
terms of the Scott topology rather than the Cantor topology. It turns
out that these two topologies generate the same Borel sets, and the
relationship between them can be characterized using an extension
theorem that captures when functions on the basic Scott-open sets
extend to a measure. We show how to construct a DCPO equipped
with a natural partial order that also lifts to a partial order on Markov
kernels. We prove that standard program operators are continuous,
which allows us to formulate the semantics of the language—in par-
ticular Kleene star—using standard tools from domain theory, such
as least fixpoints. Finally, we formalize a notion of approximation
and prove a monotone convergence theorem.

The problems with the original ProbNetKAT semantics identified
above are all solved using the new semantics. Because the new
semantics models iteration as a least fixpoint, we can work with
finite distributions and star-free approximations that are guaranteed
to monotonically converge to the correct result. Moreover, whereas
our query Q was not Cantor continuous, it is straightforward to
show that it is Scott continuous. Let A be an increasing chain
a0 ✓ a1 ✓ a2 ✓ . . . ordered by inclusion. Scott continuity
requires

F
a2A Q(a) = Q(

F
A
�

which is easy to prove. Hence, the
convergence theorem applies and we can compute a monotonically
increasing chain of approximations that converge to E⌫ [Q].

Implementation and Applications. We developed the first imple-
mentation of ProbNetKAT using the new semantics. We built an
interpreter for the language and implemented a variety of traffic en-
gineering schemes including ECMP, K-shortest path routing (which
provides improved fault tolerance), and oblivious routing [57]. We
analyzed the performance of each scheme in terms of congestion
and latency on real-world demands drawn from Internet2’s Abilene
backbone, and in the presence of link failures. We showed how
to use the language to reason probabilistically about reachability
properties such as loops and black holes. Figures 1 (b-c) depict the
expected throughput and maximum congestion and using shortest
paths (SPF) and ECMP on the 4-node topology as computed by our
ProbNetKAT implementation. We set the demand from h1 to h3

to be 1
2 units of traffic, and the demand between all other pairs of

hosts to be 1
8 units. The first graph depicts the maximum congestion

induced under successive approximations of the Kleene star, and
shows that ECMP achieves much better congestion than SPF. With
SPF, the most congested link (from S1 to S2) carries traffic from h1

to h2, from h4 to h2, and from h1 to h3, resulting in 3
4 total traffic.

With ECMP, the same link carries traffic from h1 to h2, half of the
traffic from h2 to h4, half of the traffic from h1 to h3, resulting in 7

16
total traffic. The second graph depicts the loss of throughput when
the same link fails. The total aggregate demand is 1 7

8 . With SPF, 3
4

Forwarding policy

ports 2 and 4 with equal probability. This divides traffic going to h3

among the clockwise path via S2 and the counter-clockwise path
via S4. The final entry states that packets whose destination is h4

should be forwarded out on port 4, which is again the next hop on
the unique shortest path to h4. The routing program for the network
is the parallel composition of the programs for each switch:

p , (sw=S1 ;p1)&(sw=S2 ;p2)&(sw=S3 ;p3)&(sw=S4 ;p4)

Topology: We model a directed link as a program that matches on
the switch and port at one end of the link and modifies the switch
and port to the other end of the link. We model an undirected link
l as a parallel composition of directed links in each direction. For
example, the link between switches S1 and S2 is as follows:

l1,2 , (sw=S1 ; pt=2 ; dup ; sw S2 ; pt 1 ; dup)

& (sw=S2 ; pt=1 ; dup ; sw S1 ; pt 2 ; dup)

Note that at each hop we use ProbNetKAT’s dup operator to store
the headers in the packet’s history, which records the trajectory of
the packet as it goes through the network. Histories are useful for
tasks such as measuring path length and analyzing link congestion.
We model the topology as a parallel composition of individual links:

t , l1,2 & l2,3 & l3,4 & l1,4

To delimit the network edge, we define ingress and egress predicates:

in , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .
out , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .

Here, since every ingress is an egress, the predicates are identical.
Network: We model the end-to-end behavior of the entire network
by combining p, t, in and out into a single program:

net , in ; (p ; t)⇤ ; p ; out

This program models processing each input from ingress to egress
across a series of switches and links. Formally it denotes a Markov
kernel that, when supplied with an input distribution on packet
histories µ produces an output distribution ⌫.
Queries: Having constructed a probabilistic model of the network,
we can use standard tools from measure theory to reason about
performance. For example, to compute the expected congestion on
a given link l, we would introduce a function Q from sets of packets
to R [{1} (formally a random variable):

Q(a) ,
X

h2a

#l(h)

where #l(h) is the function on packet histories that returns the
number of times that link l occurs in h, and then compute the
expected value of Q using integration:

E
⌫
[Q] =

Z
Qd⌫

We can compute queries that capture other aspects of network
performance such as latency, reliability, etc. in similar fashion.

Limitations. Unfortunately there are several serious problems
with the approach just described:
• One problem is that computing the results of a query can require

complicated measure theory since a ProbNetKAT program may
generate a continuous distribution in general. Formally, instead
of summing over the support of the distribution, we have to use
Lebesgue integration in an appropriate measurable space. There
are also challenges in representing infinite distributions.

• Another issue is that the semantics of iteration is modeled in
terms of an infinite stochastic process rather than a standard
fixpoint. The original ProbNetKAT paper showed that it is

possible to approximate a program using a series of star-free
programs that weakly converge to the correct result, but the
approximations need not converge monotonically. This fact
makes approximation difficult to use in practice.

• Even worse, many of the queries that we would like to answer
are not actually continuous in the Cantor topology, meaning that
the weak convergence result does not even apply! The notion of
distance on sets of packet histories is d(a, b) = 2

�n where n is
the length of the smallest history in a but not in b, or vice versa.
It is easy to construct a sequence of histories hn of length n such
that limn!1 d({hn}, {}) = 0 but limn!1 Q({hn}) = 1
which is not equal to Q({}) = 0.

Together, these issues are significant impediments that make it
difficult to apply ProbNetKAT in many practical scenarios.

Domain-Theoretic Semantics. This paper develops a new seman-
tics for ProbNetKAT that overcomes these problems and provides
the key building blocks needed to engineer a practical implemen-
tation. The main insight is that we can formulate the semantics in
terms of the Scott topology rather than the Cantor topology. It turns
out that these two topologies generate the same Borel sets, and the
relationship between them can be characterized using an extension
theorem that captures when functions on the basic Scott-open sets
extend to a measure. We show how to construct a DCPO equipped
with a natural partial order that also lifts to a partial order on Markov
kernels. We prove that standard program operators are continuous,
which allows us to formulate the semantics of the language—in par-
ticular Kleene star—using standard tools from domain theory, such
as least fixpoints. Finally, we formalize a notion of approximation
and prove a monotone convergence theorem.

The problems with the original ProbNetKAT semantics identified
above are all solved using the new semantics. Because the new
semantics models iteration as a least fixpoint, we can work with
finite distributions and star-free approximations that are guaranteed
to monotonically converge to the correct result. Moreover, whereas
our query Q was not Cantor continuous, it is straightforward to
show that it is Scott continuous. Let A be an increasing chain
a0 ✓ a1 ✓ a2 ✓ . . . ordered by inclusion. Scott continuity
requires

F
a2A Q(a) = Q(

F
A
�

which is easy to prove. Hence, the
convergence theorem applies and we can compute a monotonically
increasing chain of approximations that converge to E⌫ [Q].

Implementation and Applications. We developed the first imple-
mentation of ProbNetKAT using the new semantics. We built an
interpreter for the language and implemented a variety of traffic en-
gineering schemes including ECMP, K-shortest path routing (which
provides improved fault tolerance), and oblivious routing [57]. We
analyzed the performance of each scheme in terms of congestion
and latency on real-world demands drawn from Internet2’s Abilene
backbone, and in the presence of link failures. We showed how
to use the language to reason probabilistically about reachability
properties such as loops and black holes. Figures 1 (b-c) depict the
expected throughput and maximum congestion and using shortest
paths (SPF) and ECMP on the 4-node topology as computed by our
ProbNetKAT implementation. We set the demand from h1 to h3

to be 1
2 units of traffic, and the demand between all other pairs of

hosts to be 1
8 units. The first graph depicts the maximum congestion

induced under successive approximations of the Kleene star, and
shows that ECMP achieves much better congestion than SPF. With
SPF, the most congested link (from S1 to S2) carries traffic from h1

to h2, from h4 to h2, and from h1 to h3, resulting in 3
4 total traffic.

With ECMP, the same link carries traffic from h1 to h2, half of the
traffic from h2 to h4, half of the traffic from h1 to h3, resulting in 7

16
total traffic. The second graph depicts the loss of throughput when
the same link fails. The total aggregate demand is 1 7

8 . With SPF, 3
4

Topology

ports 2 and 4 with equal probability. This divides traffic going to h3

among the clockwise path via S2 and the counter-clockwise path
via S4. The final entry states that packets whose destination is h4

should be forwarded out on port 4, which is again the next hop on
the unique shortest path to h4. The routing program for the network
is the parallel composition of the programs for each switch:

p , (sw=S1 ;p1)&(sw=S2 ;p2)&(sw=S3 ;p3)&(sw=S4 ;p4)

Topology: We model a directed link as a program that matches on
the switch and port at one end of the link and modifies the switch
and port to the other end of the link. We model an undirected link
l as a parallel composition of directed links in each direction. For
example, the link between switches S1 and S2 is as follows:

l1,2 , (sw=S1 ; pt=2 ; dup ; sw S2 ; pt 1 ; dup)

& (sw=S2 ; pt=1 ; dup ; sw S1 ; pt 2 ; dup)

Note that at each hop we use ProbNetKAT’s dup operator to store
the headers in the packet’s history, which records the trajectory of
the packet as it goes through the network. Histories are useful for
tasks such as measuring path length and analyzing link congestion.
We model the topology as a parallel composition of individual links:

t , l1,2 & l2,3 & l3,4 & l1,4

To delimit the network edge, we define ingress and egress predicates:

in , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .
out , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .

Here, since every ingress is an egress, the predicates are identical.
Network: We model the end-to-end behavior of the entire network
by combining p, t, in and out into a single program:

net , in ; (p ; t)⇤ ; p ; out

This program models processing each input from ingress to egress
across a series of switches and links. Formally it denotes a Markov
kernel that, when supplied with an input distribution on packet
histories µ produces an output distribution ⌫.
Queries: Having constructed a probabilistic model of the network,
we can use standard tools from measure theory to reason about
performance. For example, to compute the expected congestion on
a given link l, we would introduce a function Q from sets of packets
to R [{1} (formally a random variable):

Q(a) ,
X

h2a

#l(h)

where #l(h) is the function on packet histories that returns the
number of times that link l occurs in h, and then compute the
expected value of Q using integration:

E
⌫
[Q] =

Z
Qd⌫

We can compute queries that capture other aspects of network
performance such as latency, reliability, etc. in similar fashion.

Limitations. Unfortunately there are several serious problems
with the approach just described:
• One problem is that computing the results of a query can require

complicated measure theory since a ProbNetKAT program may
generate a continuous distribution in general. Formally, instead
of summing over the support of the distribution, we have to use
Lebesgue integration in an appropriate measurable space. There
are also challenges in representing infinite distributions.

• Another issue is that the semantics of iteration is modeled in
terms of an infinite stochastic process rather than a standard
fixpoint. The original ProbNetKAT paper showed that it is

possible to approximate a program using a series of star-free
programs that weakly converge to the correct result, but the
approximations need not converge monotonically. This fact
makes approximation difficult to use in practice.

• Even worse, many of the queries that we would like to answer
are not actually continuous in the Cantor topology, meaning that
the weak convergence result does not even apply! The notion of
distance on sets of packet histories is d(a, b) = 2

�n where n is
the length of the smallest history in a but not in b, or vice versa.
It is easy to construct a sequence of histories hn of length n such
that limn!1 d({hn}, {}) = 0 but limn!1 Q({hn}) = 1
which is not equal to Q({}) = 0.

Together, these issues are significant impediments that make it
difficult to apply ProbNetKAT in many practical scenarios.

Domain-Theoretic Semantics. This paper develops a new seman-
tics for ProbNetKAT that overcomes these problems and provides
the key building blocks needed to engineer a practical implemen-
tation. The main insight is that we can formulate the semantics in
terms of the Scott topology rather than the Cantor topology. It turns
out that these two topologies generate the same Borel sets, and the
relationship between them can be characterized using an extension
theorem that captures when functions on the basic Scott-open sets
extend to a measure. We show how to construct a DCPO equipped
with a natural partial order that also lifts to a partial order on Markov
kernels. We prove that standard program operators are continuous,
which allows us to formulate the semantics of the language—in par-
ticular Kleene star—using standard tools from domain theory, such
as least fixpoints. Finally, we formalize a notion of approximation
and prove a monotone convergence theorem.

The problems with the original ProbNetKAT semantics identified
above are all solved using the new semantics. Because the new
semantics models iteration as a least fixpoint, we can work with
finite distributions and star-free approximations that are guaranteed
to monotonically converge to the correct result. Moreover, whereas
our query Q was not Cantor continuous, it is straightforward to
show that it is Scott continuous. Let A be an increasing chain
a0 ✓ a1 ✓ a2 ✓ . . . ordered by inclusion. Scott continuity
requires

F
a2A Q(a) = Q(

F
A
�

which is easy to prove. Hence, the
convergence theorem applies and we can compute a monotonically
increasing chain of approximations that converge to E⌫ [Q].

Implementation and Applications. We developed the first imple-
mentation of ProbNetKAT using the new semantics. We built an
interpreter for the language and implemented a variety of traffic en-
gineering schemes including ECMP, K-shortest path routing (which
provides improved fault tolerance), and oblivious routing [57]. We
analyzed the performance of each scheme in terms of congestion
and latency on real-world demands drawn from Internet2’s Abilene
backbone, and in the presence of link failures. We showed how
to use the language to reason probabilistically about reachability
properties such as loops and black holes. Figures 1 (b-c) depict the
expected throughput and maximum congestion and using shortest
paths (SPF) and ECMP on the 4-node topology as computed by our
ProbNetKAT implementation. We set the demand from h1 to h3

to be 1
2 units of traffic, and the demand between all other pairs of

hosts to be 1
8 units. The first graph depicts the maximum congestion

induced under successive approximations of the Kleene star, and
shows that ECMP achieves much better congestion than SPF. With
SPF, the most congested link (from S1 to S2) carries traffic from h1

to h2, from h4 to h2, and from h1 to h3, resulting in 3
4 total traffic.

With ECMP, the same link carries traffic from h1 to h2, half of the
traffic from h2 to h4, half of the traffic from h1 to h3, resulting in 7

16
total traffic. The second graph depicts the loss of throughput when
the same link fails. The total aggregate demand is 1 7

8 . With SPF, 3
4

Ingress - egress

ports 2 and 4 with equal probability. This divides traffic going to h3

among the clockwise path via S2 and the counter-clockwise path
via S4. The final entry states that packets whose destination is h4

should be forwarded out on port 4, which is again the next hop on
the unique shortest path to h4. The routing program for the network
is the parallel composition of the programs for each switch:

p , (sw=S1 ;p1)&(sw=S2 ;p2)&(sw=S3 ;p3)&(sw=S4 ;p4)

Topology: We model a directed link as a program that matches on
the switch and port at one end of the link and modifies the switch
and port to the other end of the link. We model an undirected link
l as a parallel composition of directed links in each direction. For
example, the link between switches S1 and S2 is as follows:

l1,2 , (sw=S1 ; pt=2 ; dup ; sw S2 ; pt 1 ; dup)

& (sw=S2 ; pt=1 ; dup ; sw S1 ; pt 2 ; dup)

Note that at each hop we use ProbNetKAT’s dup operator to store
the headers in the packet’s history, which records the trajectory of
the packet as it goes through the network. Histories are useful for
tasks such as measuring path length and analyzing link congestion.
We model the topology as a parallel composition of individual links:

t , l1,2 & l2,3 & l3,4 & l1,4

To delimit the network edge, we define ingress and egress predicates:

in , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .
out , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .

Here, since every ingress is an egress, the predicates are identical.
Network: We model the end-to-end behavior of the entire network
by combining p, t, in and out into a single program:

net , in ; (p ; t)⇤ ; p ; out

This program models processing each input from ingress to egress
across a series of switches and links. Formally it denotes a Markov
kernel that, when supplied with an input distribution on packet
histories µ produces an output distribution ⌫.
Queries: Having constructed a probabilistic model of the network,
we can use standard tools from measure theory to reason about
performance. For example, to compute the expected congestion on
a given link l, we would introduce a function Q from sets of packets
to R [{1} (formally a random variable):

Q(a) ,
X

h2a

#l(h)

where #l(h) is the function on packet histories that returns the
number of times that link l occurs in h, and then compute the
expected value of Q using integration:

E
⌫
[Q] =

Z
Qd⌫

We can compute queries that capture other aspects of network
performance such as latency, reliability, etc. in similar fashion.

Limitations. Unfortunately there are several serious problems
with the approach just described:
• One problem is that computing the results of a query can require

complicated measure theory since a ProbNetKAT program may
generate a continuous distribution in general. Formally, instead
of summing over the support of the distribution, we have to use
Lebesgue integration in an appropriate measurable space. There
are also challenges in representing infinite distributions.

• Another issue is that the semantics of iteration is modeled in
terms of an infinite stochastic process rather than a standard
fixpoint. The original ProbNetKAT paper showed that it is

possible to approximate a program using a series of star-free
programs that weakly converge to the correct result, but the
approximations need not converge monotonically. This fact
makes approximation difficult to use in practice.

• Even worse, many of the queries that we would like to answer
are not actually continuous in the Cantor topology, meaning that
the weak convergence result does not even apply! The notion of
distance on sets of packet histories is d(a, b) = 2

�n where n is
the length of the smallest history in a but not in b, or vice versa.
It is easy to construct a sequence of histories hn of length n such
that limn!1 d({hn}, {}) = 0 but limn!1 Q({hn}) = 1
which is not equal to Q({}) = 0.

Together, these issues are significant impediments that make it
difficult to apply ProbNetKAT in many practical scenarios.

Domain-Theoretic Semantics. This paper develops a new seman-
tics for ProbNetKAT that overcomes these problems and provides
the key building blocks needed to engineer a practical implemen-
tation. The main insight is that we can formulate the semantics in
terms of the Scott topology rather than the Cantor topology. It turns
out that these two topologies generate the same Borel sets, and the
relationship between them can be characterized using an extension
theorem that captures when functions on the basic Scott-open sets
extend to a measure. We show how to construct a DCPO equipped
with a natural partial order that also lifts to a partial order on Markov
kernels. We prove that standard program operators are continuous,
which allows us to formulate the semantics of the language—in par-
ticular Kleene star—using standard tools from domain theory, such
as least fixpoints. Finally, we formalize a notion of approximation
and prove a monotone convergence theorem.

The problems with the original ProbNetKAT semantics identified
above are all solved using the new semantics. Because the new
semantics models iteration as a least fixpoint, we can work with
finite distributions and star-free approximations that are guaranteed
to monotonically converge to the correct result. Moreover, whereas
our query Q was not Cantor continuous, it is straightforward to
show that it is Scott continuous. Let A be an increasing chain
a0 ✓ a1 ✓ a2 ✓ . . . ordered by inclusion. Scott continuity
requires

F
a2A Q(a) = Q(

F
A
�

which is easy to prove. Hence, the
convergence theorem applies and we can compute a monotonically
increasing chain of approximations that converge to E⌫ [Q].

Implementation and Applications. We developed the first imple-
mentation of ProbNetKAT using the new semantics. We built an
interpreter for the language and implemented a variety of traffic en-
gineering schemes including ECMP, K-shortest path routing (which
provides improved fault tolerance), and oblivious routing [57]. We
analyzed the performance of each scheme in terms of congestion
and latency on real-world demands drawn from Internet2’s Abilene
backbone, and in the presence of link failures. We showed how
to use the language to reason probabilistically about reachability
properties such as loops and black holes. Figures 1 (b-c) depict the
expected throughput and maximum congestion and using shortest
paths (SPF) and ECMP on the 4-node topology as computed by our
ProbNetKAT implementation. We set the demand from h1 to h3

to be 1
2 units of traffic, and the demand between all other pairs of

hosts to be 1
8 units. The first graph depicts the maximum congestion

induced under successive approximations of the Kleene star, and
shows that ECMP achieves much better congestion than SPF. With
SPF, the most congested link (from S1 to S2) carries traffic from h1

to h2, from h4 to h2, and from h1 to h3, resulting in 3
4 total traffic.

With ECMP, the same link carries traffic from h1 to h2, half of the
traffic from h2 to h4, half of the traffic from h1 to h3, resulting in 7

16
total traffic. The second graph depicts the loss of throughput when
the same link fails. The total aggregate demand is 1 7

8 . With SPF, 3
4

Semantics

(¬t). Programs include predicates (t) and modifications (f n) as
primitives, and the operators parallel composition (p&q), sequential
composition (p ; q), and iteration (p⇤). The primitive dup records
the current state of the packet by extending the tail with the head
packet. Finally, choice p �r q executes p with probability r or q
with probability 1� r. We write p� q when r = 0.5.

Predicate conjunction and sequential composition use the same
syntax (t ;u) as their semantics coincide (as we will see shortly). The
same is true for disjunction of predicates and parallel composition
(t& u). The distinction between predicates and policies is merely
to restrict negation to predicates and rule out programs like ¬(p⇤).
Example. Consider the programs

p1 , pt=1 ; (pt 2 & pt 3)

p2 , (pt=2 & pt=3) ; dst 10.0.0.1 ; pt 1

The first program multicasts packets entering at port 1 out of ports
2 and 3, and drops all other packets. The second program matches
on packets coming in on ports 2 or 3, modifies their destination to
the IP address 10.0.0.1, and sends them out through port 1. The
program p1 & p2 acts like p1 for packets entering at port 1, and like
p2 for packets entering at ports 2 or 3.

Monads. We define the semantics of NetKAT programs paramet-
rically over a monad M. This allows us to give two concrete seman-
tics at once: the classical deterministic semantics (using the identity
monad), and the new probabilistic semantics (using the probabil-
ity monad). For simplicity, we refrain from giving a categorical
treatment and simply model a monad in terms of three components:
• a type constructor M mapping objects X to a domain M(X);
• an operator ⌘ : X !M(X) that lifts objects into the domain
M(X); and

• an infix operator

�= : M(X)! (X !M(X))!M(X)

that lifts a function f : X !M(X) to a function

(��= f) : M(X)!M(X)

These components must satisfy three axioms:

⌘(a)�= f = f(a) (M1)
m�= ⌘ = m (M2)

(m�= f)�= g = m�=(�x.f(x)�= g) (M3)

The semantics of deterministic programs (not containing probabilis-
tic choices p �r q) uses as underlying objects the set of packet
histories 2

H and the identity monad M(X) = X: ⌘ is the iden-
tify function and x�= f is simply function application f(x). The
identity monad trivially satisfies the three axioms.

The semantics of probabilistic programs uses the probability
(or Giry) monad [17, 29, 58] that maps a measurable space to the
domain of probability measures over that space. The operator ⌘
maps a to the point mass (or Dirac measure) �a on a. Composition
µ�=(�a.⌫a) can be thought of as a two-stage probabilistic exper-
iment where the second experiment ⌫a depends on the outcome a
of the first experiment µ. Operationally, we first sample from µ to
obtain a random outcome a; then, we sample from ⌫a to obtain the
final outcome b. What is the distribution over final outcomes? The
key is to note that �a.⌫a is a Markov kernel (§3), and so composition
with µ is given by the familiar integral

µ�=(�a.⌫a) = �A.

Z

a2X

µa(A) · µ(da)

introduced in (3.1). It is well known that these definitions satisfy the
monad axioms [17, 29, 36]. (M1) and (M2) are trivial properties of

the Lebesgue Integral. (M3) is essentially Fubini’s theorem, which
permits changing the order of integration in a double integral.

Deterministic Semantics. In deterministic NetKAT (without p �r

q), a program p denotes a function [[p]] 2 2

H ! 2

H mapping a set
of input histories a 2 2

H to a set of output histories [[p]](a).
A predicate t maps the input set a to the subset b ✓ a of histories

satisfying the predicate. In particular, the false primitive 0 denotes
the function mapping any input to the empty set; the true primitive
1 is the identity function; the test f =n retains those histories with
field f of the head packet equal to n; and negation ¬t returns only
those histories not satisfying t. Modification f n sets the f -field
of all head-packets to the value n. Duplication dup extends the
tails of all input histories with their head packets, thus permanently
recording the current state of the packets.

Parallel composition p& q feeds the input to both p and q and
takes the union of their outputs. If p and q are predicates, a history
is thus in the output iff it satisfies at least one of p or q, so that union
acts like logical disjunction on predicates. Sequential composition
p ;q feeds the input to p and then feeds p’s output to q to produce the
final result. If p and q are predicates, a history is thus in the output
iff it satisfies both p and q, acting like logical conjunction. Iteration
p⇤ behaves like the parallel composition of p sequentially composed
with itself zero or more times (because

F
is union in 2

H).

Probabilistic Semantics. The semantics of ProbNetKAT is given
using the probability monad applied to the set of histories 2H (seen
as a measurable set). A program p denotes a function

[[p]] 2 2

H ! {µ : B ! [0, 1] | µ is a probability measure}
mapping a set of input histories a to a distribution over output sets
[[p]](a). Here, B denotes the Borel sets of 2

H (§5). Equivalently,
[[p]] is a Markov kernel with source and destination (2

H,B). The
semantics of all primitive programs is identical to the deterministic
case, except that they now return point masses on output sets (rather
than just output sets). In fact, it follows from (M1) that all programs
without choices and iteration are point masses.

Parallel composition p&q feeds the input a to p and q, samples b1
and b2 from the output distributions [[p]](a) and [[q]](a), and returns
the union of the samples b1 [b2. Probabilistic choice p �r q feeds
the input to both p and q and returns a convex combination of the
output distributions according to r. Sequential composition p ; q
is just sequential composition of Markov kernels. Operationally, it
feeds the input to p, obtains a sample b from p’s output distribution,
and feeds the sample to q to obtain the final distribution. Iteration
p⇤ is defined as the least fixpoint of the map on Markov kernels
X 7! 1 & [[p]];X , which is continuous in a DCPO that we will
develop in the following sections. We will show that this definition,
which is simple and is based on standard techniques from domain
theory, coincides with the semantics proposed in previous work [15].

Basic Properties. To clarify the nature of predicates and other
primitives, we establish two intuitive properties:

Lemma 2. Any predicate t satisfies [[t]](a) = ⌘(a \ bt), where
bt , [[t]](H) in the identity monad.
Proof. By induction on t, using (M1) in the induction step.

Lemma 3. All atomic policies p (including predicates) satisfy

[[p]](a) = ⌘({fp(h) | h 2 a})
for some partial function fp : H * H.
Proof. Immediate from Figure 2 and Lemma 2.

Lemma 2 captures the intuition that predicates act like filters.
Lemma 3 establishes that the behavior of primitive programs is
captured by their behavior on individual histories.

Borel sets of B 2H

The semantics of NetKAT is shown in Figure 3. Intuitively, a test x = n
drops the packet if the test is not satisfied and passes it through unaltered if
it is satisfied—i.e., tests behave like filters. The dup construct duplicates the
head packet ⇡, yielding a fresh copy that can be modified by other constructs.
Hence, the dup construct can be used to encode paths through the network, with
each occurrence of dup marking an intermediate hop. Note that + behaves like
a disjunction operation when applied to tests and like a union operation when
applied to actions. Similarly, ; behaves like a conjunction operation when applied
to tests and like a sequential composition when applied to actions. Negation is
only ever applied to tests, as is enforced by the syntax of the language.

5.2 Sets of Packet Histories as a Measurable Space

To give a denotational semantics to ProbNetKAT, we must first identify a suit-
able space of mathematical objects. Because we want to reason about probability
distributions over sets of network paths, we construct a measurable space (as de-
fined in §3) from sets of packet histories, and then define the semantics using
Markov kernels on this space. The powerset 2H of packet histories H forms a
topological space with topology generated by basic clopen sets,

B⌧ = {a 2 2H | ⌧ 2 a}, ⌧ 2 H.

This space is homeomorphic to the Cantor space, the topological product of
countably many copies of the discrete two-element space. Let B ✓ 22

H

be the
Borel sets of this topology. This is the smallest �-algebra containing the sets
B⌧ . The measurable space (2H ,B) with outcomes 2H and events B provides a
foundation for interpreting ProbNetKAT programs as Markov kernels 2H ! 2H .

5.3 The Operation &

Next, we define an operation on measures that will be needed to define the
semantics of ProbNetKAT’s parallel composition operator. Parallel composi-
tion di↵ers in some important ways from NetKAT’s union operator—intuitively,
union merely combines the sets of packet histories generated by its arguments,
whereas parallel composition must somehow combine measures on sets of packet
histories, which is a more intricate operation. For example, while union is idem-
potent, parallel composition will not be in general.

Operationally, the & operation on measures can be understood as follows:
given measures µ and ⌫, to compute the measure µ & ⌫, we sample µ and ⌫
independently to get two subsets of H, then take their union. The probability
of an event A 2 B is the probability that this union is in A.

Formally, given µ, ⌫ 2 M, let µ⇥ ⌫ be the product measure on the product
space 2H ⇥ 2H . The union operation

S
: 2H ⇥ 2H ! 2H is continuous and

therefore measurable, so we can define

(µ & ⌫)(A) , (µ⇥ ⌫)({(a, b) | a [b 2 A}). (5.1)

11

Intuitively, this is the probability that the union a[b of two independent samples
taken with respect to µ and ⌫ lies in A. The & operation enjoys a number of
useful properties, as captured by the following lemma:

Lemma 1.

(i) & is associative and commutative.

(ii) & is linear in both arguments.

(iii) (�a & µ)(A) = µ({b | a [b 2 A}).
(iv) �a & �b = �a[b.

(v) �? is a two-sided identity for &.

(vi) µ & µ = µ i↵ µ = �a for some a 2 2H .

There is also an infinitary version of & that works on finite or countable multisets
of measures, but we will not need it in our development.

5.4 ProbNetKAT Semantics

Now we are ready to define the semantics of ProbNetKAT itself. Every Prob-
NetKAT term p will denote a Markov kernel

[[p]] : 2H ⇥ B ! R
which can be curried variously as

[[p]] : 2H ! B ! R [[p]] : B ! 2H ! R.

Intuitively, the term p, given an input a 2 2H , produces an output according to
the distribution [[p]](a). We can think of running the program p with input a as a
probabilistic experiment, and the value [[p]](a,A) 2 R is the probability that the
outcome of the experiment lies in A 2 B. The measure [[p]](a) is not necessarily
discrete (§6.3): its total weight is always 1, although the probability of any given
singleton may be 0.

The semantics of the atomic operations are defined as follows for a 2 2H :

[[x n]](a) = �{⇡[n/x] :� |⇡ :�2a}

[[x = n]](a) = �{⇡ :� |⇡ :�2a, ⇡(x)=n}

[[dup]](a) = �{⇡ :⇡ :� |⇡ :�2a}

[[skip]](a) = �a

[[drop]](a) = �?

Note that if no elements of a satisfy the test x = n, the result is �?, which is
the Dirac measure on the emptyset, not the constant 0 measure.

These are all deterministic terms, and as such, they correspond to measurable
functions f : 2H ! 2H . In each of these cases, the function f is completely
determined by its action on singletons, and indeed by its action on the head
packet of the unique element of each of those singletons.

12

The semantics of the remaining ProbNetKAT terms, except for Kleene star,
is defined as follows:

[[p & q]](a) = [[p]](a) & [[q]](a)

[[p ; q]](a) = [[q]]([[p]](a))

[[p �r q]](a) = r[[p]](a) + (1� r)[[q]](a)

Note that the semantics of composition requires us to extend [[q]] to allow mea-
sures as inputs. This is done by integration as described in §3:

[[q]](µ) , �A.

Z

a22

H

[[q]](a,A) · µ(da), for µ a measure on 2H .

It is not surprising that this extension is needed: in NetKAT, the semantics
is similarly extended to sets of histories to define the semantics of sequential
composition. Both phenomena are consequences of sequential composition taking
place in the Kleisli category of the powerset and Giry monads respectively.

5.5 Semantics of Iteration

To complete the semantics, we must define the semantics of the Kleene star
operator. This turns out to be quite challenging, because the usual definition of
star as a sum of powers does not work with ProbNetKAT. Instead, we define
an infinite stochastic process and show that it satisfies the essential fixpoint
equation that Kleene star is expected to obey (Theorem 1).

Consider the following infinite stochastic process. Starting with c
0

2 2H ,
create a sequence c

0

, c
1

, c
2

, . . . inductively. After n steps, say we have constructed
c
0

, . . . , cn. Let cn+1

be the outcome obtained by sampling 2H according to the
distribution [[p]](cn). Continue this process forever to get an infinite sequence
c
0

, c
1

, c
2

, . . . 2 (2H)!. Take the union of the resulting sequence
S

n cn and ask
whether it is in A. The probability of this event is taken to be [[p⇤]](c

0

, A).
This intuitive operational definition can be justified denotationally. However,
the formal development is quite technical and depends on an application of the
Kolmogorov extension theorem—see the full version of this paper [13].

The next theorem shows that the iteration operator satisfies a natural fix-
point equation. In fact, this property was the original motivation behind the
operational definition we just gave. It can be used to describe the iterated pro-
cessing performed by a network (§8), and to define the semantics of loops (§5.6).

Theorem 1. [[p⇤]] = [[skip & pp⇤]].

Proof. To determine the probability [[p⇤]](c
0

, A), we sample [[p]](c
0

) to get an
outcome c

1

, then run the protocol [[p⇤]] on c
1

to obtain a set c, then ask whether

13

[[p+r q]](a) = r[[p]](a) + (1� r)[[p]](a)

using Cantor topology

Semantics

(¬t). Programs include predicates (t) and modifications (f n) as
primitives, and the operators parallel composition (p&q), sequential
composition (p ; q), and iteration (p⇤). The primitive dup records
the current state of the packet by extending the tail with the head
packet. Finally, choice p �r q executes p with probability r or q
with probability 1� r. We write p� q when r = 0.5.

Predicate conjunction and sequential composition use the same
syntax (t ;u) as their semantics coincide (as we will see shortly). The
same is true for disjunction of predicates and parallel composition
(t& u). The distinction between predicates and policies is merely
to restrict negation to predicates and rule out programs like ¬(p⇤).
Example. Consider the programs

p1 , pt=1 ; (pt 2 & pt 3)

p2 , (pt=2 & pt=3) ; dst 10.0.0.1 ; pt 1

The first program multicasts packets entering at port 1 out of ports
2 and 3, and drops all other packets. The second program matches
on packets coming in on ports 2 or 3, modifies their destination to
the IP address 10.0.0.1, and sends them out through port 1. The
program p1 & p2 acts like p1 for packets entering at port 1, and like
p2 for packets entering at ports 2 or 3.

Monads. We define the semantics of NetKAT programs paramet-
rically over a monad M. This allows us to give two concrete seman-
tics at once: the classical deterministic semantics (using the identity
monad), and the new probabilistic semantics (using the probabil-
ity monad). For simplicity, we refrain from giving a categorical
treatment and simply model a monad in terms of three components:
• a type constructor M mapping objects X to a domain M(X);
• an operator ⌘ : X !M(X) that lifts objects into the domain
M(X); and

• an infix operator

�= : M(X)! (X !M(X))!M(X)

that lifts a function f : X !M(X) to a function

(��= f) : M(X)!M(X)

These components must satisfy three axioms:

⌘(a)�= f = f(a) (M1)
m�= ⌘ = m (M2)

(m�= f)�= g = m�=(�x.f(x)�= g) (M3)

The semantics of deterministic programs (not containing probabilis-
tic choices p �r q) uses as underlying objects the set of packet
histories 2

H and the identity monad M(X) = X: ⌘ is the iden-
tify function and x�= f is simply function application f(x). The
identity monad trivially satisfies the three axioms.

The semantics of probabilistic programs uses the probability
(or Giry) monad [17, 29, 58] that maps a measurable space to the
domain of probability measures over that space. The operator ⌘
maps a to the point mass (or Dirac measure) �a on a. Composition
µ�=(�a.⌫a) can be thought of as a two-stage probabilistic exper-
iment where the second experiment ⌫a depends on the outcome a
of the first experiment µ. Operationally, we first sample from µ to
obtain a random outcome a; then, we sample from ⌫a to obtain the
final outcome b. What is the distribution over final outcomes? The
key is to note that �a.⌫a is a Markov kernel (§3), and so composition
with µ is given by the familiar integral

µ�=(�a.⌫a) = �A.

Z

a2X

µa(A) · µ(da)

introduced in (3.1). It is well known that these definitions satisfy the
monad axioms [17, 29, 36]. (M1) and (M2) are trivial properties of

the Lebesgue Integral. (M3) is essentially Fubini’s theorem, which
permits changing the order of integration in a double integral.

Deterministic Semantics. In deterministic NetKAT (without p �r

q), a program p denotes a function [[p]] 2 2

H ! 2

H mapping a set
of input histories a 2 2

H to a set of output histories [[p]](a).
A predicate t maps the input set a to the subset b ✓ a of histories

satisfying the predicate. In particular, the false primitive 0 denotes
the function mapping any input to the empty set; the true primitive
1 is the identity function; the test f =n retains those histories with
field f of the head packet equal to n; and negation ¬t returns only
those histories not satisfying t. Modification f n sets the f -field
of all head-packets to the value n. Duplication dup extends the
tails of all input histories with their head packets, thus permanently
recording the current state of the packets.

Parallel composition p& q feeds the input to both p and q and
takes the union of their outputs. If p and q are predicates, a history
is thus in the output iff it satisfies at least one of p or q, so that union
acts like logical disjunction on predicates. Sequential composition
p ;q feeds the input to p and then feeds p’s output to q to produce the
final result. If p and q are predicates, a history is thus in the output
iff it satisfies both p and q, acting like logical conjunction. Iteration
p⇤ behaves like the parallel composition of p sequentially composed
with itself zero or more times (because

F
is union in 2

H).

Probabilistic Semantics. The semantics of ProbNetKAT is given
using the probability monad applied to the set of histories 2H (seen
as a measurable set). A program p denotes a function

[[p]] 2 2

H ! {µ : B ! [0, 1] | µ is a probability measure}
mapping a set of input histories a to a distribution over output sets
[[p]](a). Here, B denotes the Borel sets of 2

H (§5). Equivalently,
[[p]] is a Markov kernel with source and destination (2

H,B). The
semantics of all primitive programs is identical to the deterministic
case, except that they now return point masses on output sets (rather
than just output sets). In fact, it follows from (M1) that all programs
without choices and iteration are point masses.

Parallel composition p&q feeds the input a to p and q, samples b1
and b2 from the output distributions [[p]](a) and [[q]](a), and returns
the union of the samples b1 [b2. Probabilistic choice p �r q feeds
the input to both p and q and returns a convex combination of the
output distributions according to r. Sequential composition p ; q
is just sequential composition of Markov kernels. Operationally, it
feeds the input to p, obtains a sample b from p’s output distribution,
and feeds the sample to q to obtain the final distribution. Iteration
p⇤ is defined as the least fixpoint of the map on Markov kernels
X 7! 1 & [[p]];X , which is continuous in a DCPO that we will
develop in the following sections. We will show that this definition,
which is simple and is based on standard techniques from domain
theory, coincides with the semantics proposed in previous work [15].

Basic Properties. To clarify the nature of predicates and other
primitives, we establish two intuitive properties:

Lemma 2. Any predicate t satisfies [[t]](a) = ⌘(a \ bt), where
bt , [[t]](H) in the identity monad.
Proof. By induction on t, using (M1) in the induction step.

Lemma 3. All atomic policies p (including predicates) satisfy

[[p]](a) = ⌘({fp(h) | h 2 a})
for some partial function fp : H * H.
Proof. Immediate from Figure 2 and Lemma 2.

Lemma 2 captures the intuition that predicates act like filters.
Lemma 3 establishes that the behavior of primitive programs is
captured by their behavior on individual histories.

[[p⇤]] =?
Ideally: [[p⇤]] = [[1&pp⇤]]

least fix point? which order?

Ad-hoc attempt: infinite stochastic process

Semantics

Randomized Routing

Expected
 Congestion?

ProbNetKAT model p, input distribution μ
→ output distribution ν = μ >>=〚 p〛∈ Dist(2H)

Randomized Routing

Expected
 Congestion?

ProbNetKAT model p, input distribution μ
→ output distribution ν = μ >>=〚 p〛∈ Dist(2H)

Congestion Query: Random Variable Q : 2H → [0,∞]

Randomized Routing

Expected
 Congestion?

ProbNetKAT model p, input distribution μ
→ output distribution ν = μ >>=〚 p〛∈ Dist(2H)

Congestion Query: Random Variable Q : 2H → [0,∞]

Expected Congestion: Eν[Q]

ports 2 and 4 with equal probability. This divides traffic going to h3

among the clockwise path via S2 and the counter-clockwise path
via S4. The final entry states that packets whose destination is h4

should be forwarded out on port 4, which is again the next hop on
the unique shortest path to h4. The routing program for the network
is the parallel composition of the programs for each switch:

p , (sw=S1 ;p1)&(sw=S2 ;p2)&(sw=S3 ;p3)&(sw=S4 ;p4)

Topology: We model a directed link as a program that matches on
the switch and port at one end of the link and modifies the switch
and port to the other end of the link. We model an undirected link
l as a parallel composition of directed links in each direction. For
example, the link between switches S1 and S2 is as follows:

l1,2 , (sw=S1 ; pt=2 ; dup ; sw S2 ; pt 1 ; dup)

& (sw=S2 ; pt=1 ; dup ; sw S1 ; pt 2 ; dup)

Note that at each hop we use ProbNetKAT’s dup operator to store
the headers in the packet’s history, which records the trajectory of
the packet as it goes through the network. Histories are useful for
tasks such as measuring path length and analyzing link congestion.
We model the topology as a parallel composition of individual links:

t , l1,2 & l2,3 & l3,4 & l1,4

To delimit the network edge, we define ingress and egress predicates:

in , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .
out , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .

Here, since every ingress is an egress, the predicates are identical.
Network: We model the end-to-end behavior of the entire network
by combining p, t, in and out into a single program:

net , in ; (p ; t)⇤ ; p ; out

This program models processing each input from ingress to egress
across a series of switches and links. Formally it denotes a Markov
kernel that, when supplied with an input distribution on packet
histories µ produces an output distribution ⌫.
Queries: Having constructed a probabilistic model of the network,
we can use standard tools from measure theory to reason about
performance. For example, to compute the expected congestion on
a given link l, we would introduce a function Q from sets of packets
to R [{1} (formally a random variable):

Q(a) ,
X

h2a

#l(h)

where #l(h) is the function on packet histories that returns the
number of times that link l occurs in h, and then compute the
expected value of Q using integration:

E
⌫
[Q] =

Z
Qd⌫

We can compute queries that capture other aspects of network
performance such as latency, reliability, etc. in similar fashion.

Limitations. Unfortunately there are several serious problems
with the approach just described:
• One problem is that computing the results of a query can require

complicated measure theory since a ProbNetKAT program may
generate a continuous distribution in general. Formally, instead
of summing over the support of the distribution, we have to use
Lebesgue integration in an appropriate measurable space. There
are also challenges in representing infinite distributions.

• Another issue is that the semantics of iteration is modeled in
terms of an infinite stochastic process rather than a standard
fixpoint. The original ProbNetKAT paper showed that it is

possible to approximate a program using a series of star-free
programs that weakly converge to the correct result, but the
approximations need not converge monotonically. This fact
makes approximation difficult to use in practice.

• Even worse, many of the queries that we would like to answer
are not actually continuous in the Cantor topology, meaning that
the weak convergence result does not even apply! The notion of
distance on sets of packet histories is d(a, b) = 2

�n where n is
the length of the smallest history in a but not in b, or vice versa.
It is easy to construct a sequence of histories hn of length n such
that limn!1 d({hn}, {}) = 0 but limn!1 Q({hn}) = 1
which is not equal to Q({}) = 0.

Together, these issues are significant impediments that make it
difficult to apply ProbNetKAT in many practical scenarios.

Domain-Theoretic Semantics. This paper develops a new seman-
tics for ProbNetKAT that overcomes these problems and provides
the key building blocks needed to engineer a practical implemen-
tation. The main insight is that we can formulate the semantics in
terms of the Scott topology rather than the Cantor topology. It turns
out that these two topologies generate the same Borel sets, and the
relationship between them can be characterized using an extension
theorem that captures when functions on the basic Scott-open sets
extend to a measure. We show how to construct a DCPO equipped
with a natural partial order that also lifts to a partial order on Markov
kernels. We prove that standard program operators are continuous,
which allows us to formulate the semantics of the language—in par-
ticular Kleene star—using standard tools from domain theory, such
as least fixpoints. Finally, we formalize a notion of approximation
and prove a monotone convergence theorem.

The problems with the original ProbNetKAT semantics identified
above are all solved using the new semantics. Because the new
semantics models iteration as a least fixpoint, we can work with
finite distributions and star-free approximations that are guaranteed
to monotonically converge to the correct result. Moreover, whereas
our query Q was not Cantor continuous, it is straightforward to
show that it is Scott continuous. Let A be an increasing chain
a0 ✓ a1 ✓ a2 ✓ . . . ordered by inclusion. Scott continuity
requires

F
a2A Q(a) = Q(

F
A
�

which is easy to prove. Hence, the
convergence theorem applies and we can compute a monotonically
increasing chain of approximations that converge to E⌫ [Q].

Implementation and Applications. We developed the first imple-
mentation of ProbNetKAT using the new semantics. We built an
interpreter for the language and implemented a variety of traffic en-
gineering schemes including ECMP, K-shortest path routing (which
provides improved fault tolerance), and oblivious routing [57]. We
analyzed the performance of each scheme in terms of congestion
and latency on real-world demands drawn from Internet2’s Abilene
backbone, and in the presence of link failures. We showed how
to use the language to reason probabilistically about reachability
properties such as loops and black holes. Figures 1 (b-c) depict the
expected throughput and maximum congestion and using shortest
paths (SPF) and ECMP on the 4-node topology as computed by our
ProbNetKAT implementation. We set the demand from h1 to h3

to be 1
2 units of traffic, and the demand between all other pairs of

hosts to be 1
8 units. The first graph depicts the maximum congestion

induced under successive approximations of the Kleene star, and
shows that ECMP achieves much better congestion than SPF. With
SPF, the most congested link (from S1 to S2) carries traffic from h1

to h2, from h4 to h2, and from h1 to h3, resulting in 3
4 total traffic.

With ECMP, the same link carries traffic from h1 to h2, half of the
traffic from h2 to h4, half of the traffic from h1 to h3, resulting in 7

16
total traffic. The second graph depicts the loss of throughput when
the same link fails. The total aggregate demand is 1 7

8 . With SPF, 3
4

ports 2 and 4 with equal probability. This divides traffic going to h3

among the clockwise path via S2 and the counter-clockwise path
via S4. The final entry states that packets whose destination is h4

should be forwarded out on port 4, which is again the next hop on
the unique shortest path to h4. The routing program for the network
is the parallel composition of the programs for each switch:

p , (sw=S1 ;p1)&(sw=S2 ;p2)&(sw=S3 ;p3)&(sw=S4 ;p4)

Topology: We model a directed link as a program that matches on
the switch and port at one end of the link and modifies the switch
and port to the other end of the link. We model an undirected link
l as a parallel composition of directed links in each direction. For
example, the link between switches S1 and S2 is as follows:

l1,2 , (sw=S1 ; pt=2 ; dup ; sw S2 ; pt 1 ; dup)

& (sw=S2 ; pt=1 ; dup ; sw S1 ; pt 2 ; dup)

Note that at each hop we use ProbNetKAT’s dup operator to store
the headers in the packet’s history, which records the trajectory of
the packet as it goes through the network. Histories are useful for
tasks such as measuring path length and analyzing link congestion.
We model the topology as a parallel composition of individual links:

t , l1,2 & l2,3 & l3,4 & l1,4

To delimit the network edge, we define ingress and egress predicates:

in , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .
out , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .

Here, since every ingress is an egress, the predicates are identical.
Network: We model the end-to-end behavior of the entire network
by combining p, t, in and out into a single program:

net , in ; (p ; t)⇤ ; p ; out

This program models processing each input from ingress to egress
across a series of switches and links. Formally it denotes a Markov
kernel that, when supplied with an input distribution on packet
histories µ produces an output distribution ⌫.
Queries: Having constructed a probabilistic model of the network,
we can use standard tools from measure theory to reason about
performance. For example, to compute the expected congestion on
a given link l, we would introduce a function Q from sets of packets
to R [{1} (formally a random variable):

Q(a) ,
X

h2a

#l(h)

where #l(h) is the function on packet histories that returns the
number of times that link l occurs in h, and then compute the
expected value of Q using integration:

E
⌫
[Q] =

Z
Qd⌫

We can compute queries that capture other aspects of network
performance such as latency, reliability, etc. in similar fashion.

Limitations. Unfortunately there are several serious problems
with the approach just described:
• One problem is that computing the results of a query can require

complicated measure theory since a ProbNetKAT program may
generate a continuous distribution in general. Formally, instead
of summing over the support of the distribution, we have to use
Lebesgue integration in an appropriate measurable space. There
are also challenges in representing infinite distributions.

• Another issue is that the semantics of iteration is modeled in
terms of an infinite stochastic process rather than a standard
fixpoint. The original ProbNetKAT paper showed that it is

possible to approximate a program using a series of star-free
programs that weakly converge to the correct result, but the
approximations need not converge monotonically. This fact
makes approximation difficult to use in practice.

• Even worse, many of the queries that we would like to answer
are not actually continuous in the Cantor topology, meaning that
the weak convergence result does not even apply! The notion of
distance on sets of packet histories is d(a, b) = 2

�n where n is
the length of the smallest history in a but not in b, or vice versa.
It is easy to construct a sequence of histories hn of length n such
that limn!1 d({hn}, {}) = 0 but limn!1 Q({hn}) = 1
which is not equal to Q({}) = 0.

Together, these issues are significant impediments that make it
difficult to apply ProbNetKAT in many practical scenarios.

Domain-Theoretic Semantics. This paper develops a new seman-
tics for ProbNetKAT that overcomes these problems and provides
the key building blocks needed to engineer a practical implemen-
tation. The main insight is that we can formulate the semantics in
terms of the Scott topology rather than the Cantor topology. It turns
out that these two topologies generate the same Borel sets, and the
relationship between them can be characterized using an extension
theorem that captures when functions on the basic Scott-open sets
extend to a measure. We show how to construct a DCPO equipped
with a natural partial order that also lifts to a partial order on Markov
kernels. We prove that standard program operators are continuous,
which allows us to formulate the semantics of the language—in par-
ticular Kleene star—using standard tools from domain theory, such
as least fixpoints. Finally, we formalize a notion of approximation
and prove a monotone convergence theorem.

The problems with the original ProbNetKAT semantics identified
above are all solved using the new semantics. Because the new
semantics models iteration as a least fixpoint, we can work with
finite distributions and star-free approximations that are guaranteed
to monotonically converge to the correct result. Moreover, whereas
our query Q was not Cantor continuous, it is straightforward to
show that it is Scott continuous. Let A be an increasing chain
a0 ✓ a1 ✓ a2 ✓ . . . ordered by inclusion. Scott continuity
requires

F
a2A Q(a) = Q(

F
A
�

which is easy to prove. Hence, the
convergence theorem applies and we can compute a monotonically
increasing chain of approximations that converge to E⌫ [Q].

Implementation and Applications. We developed the first imple-
mentation of ProbNetKAT using the new semantics. We built an
interpreter for the language and implemented a variety of traffic en-
gineering schemes including ECMP, K-shortest path routing (which
provides improved fault tolerance), and oblivious routing [57]. We
analyzed the performance of each scheme in terms of congestion
and latency on real-world demands drawn from Internet2’s Abilene
backbone, and in the presence of link failures. We showed how
to use the language to reason probabilistically about reachability
properties such as loops and black holes. Figures 1 (b-c) depict the
expected throughput and maximum congestion and using shortest
paths (SPF) and ECMP on the 4-node topology as computed by our
ProbNetKAT implementation. We set the demand from h1 to h3

to be 1
2 units of traffic, and the demand between all other pairs of

hosts to be 1
8 units. The first graph depicts the maximum congestion

induced under successive approximations of the Kleene star, and
shows that ECMP achieves much better congestion than SPF. With
SPF, the most congested link (from S1 to S2) carries traffic from h1

to h2, from h4 to h2, and from h1 to h3, resulting in 3
4 total traffic.

With ECMP, the same link carries traffic from h1 to h2, half of the
traffic from h2 to h4, half of the traffic from h1 to h3, resulting in 7

16
total traffic. The second graph depicts the loss of throughput when
the same link fails. The total aggregate demand is 1 7

8 . With SPF, 3
4

Issues with previous
semanticsComputation???

Eν[Q] = ∫Q dν

continuous
distribution

Lebesgue
Integral

Challenges in representing
infinite distributions

Iteration — infinite stochastic process
instead of standard fixpoint

weak convergence
 non-monotonic

many queries not
continuous Cantor topology
— no weak convergence!

No practical implementation?

The importance of continuity

a1, a2, · · ·

simple (e.g. finite) objects

limit a

can be approximated bya (an)

f

limitf(a1), f(a2), · · · f(a)

Perform computation on a continuousf

The importance of continuity
for network analysis

µ1, µ2, · · · µ

Eµ[f]

monotonically improving sequence of approximations for
performance metrics such as latency and congestion

finite support!

— expected value of a continuous map is continuous

New semantics

(¬t). Programs include predicates (t) and modifications (f n) as
primitives, and the operators parallel composition (p&q), sequential
composition (p ; q), and iteration (p⇤). The primitive dup records
the current state of the packet by extending the tail with the head
packet. Finally, choice p �r q executes p with probability r or q
with probability 1� r. We write p� q when r = 0.5.

Predicate conjunction and sequential composition use the same
syntax (t ;u) as their semantics coincide (as we will see shortly). The
same is true for disjunction of predicates and parallel composition
(t& u). The distinction between predicates and policies is merely
to restrict negation to predicates and rule out programs like ¬(p⇤).
Example. Consider the programs

p1 , pt=1 ; (pt 2 & pt 3)

p2 , (pt=2 & pt=3) ; dst 10.0.0.1 ; pt 1

The first program multicasts packets entering at port 1 out of ports
2 and 3, and drops all other packets. The second program matches
on packets coming in on ports 2 or 3, modifies their destination to
the IP address 10.0.0.1, and sends them out through port 1. The
program p1 & p2 acts like p1 for packets entering at port 1, and like
p2 for packets entering at ports 2 or 3.

Monads. We define the semantics of NetKAT programs paramet-
rically over a monad M. This allows us to give two concrete seman-
tics at once: the classical deterministic semantics (using the identity
monad), and the new probabilistic semantics (using the probabil-
ity monad). For simplicity, we refrain from giving a categorical
treatment and simply model a monad in terms of three components:
• a type constructor M mapping objects X to a domain M(X);
• an operator ⌘ : X !M(X) that lifts objects into the domain
M(X); and

• an infix operator

�= : M(X)! (X !M(X))!M(X)

that lifts a function f : X !M(X) to a function

(��= f) : M(X)!M(X)

These components must satisfy three axioms:

⌘(a)�= f = f(a) (M1)
m�= ⌘ = m (M2)

(m�= f)�= g = m�=(�x.f(x)�= g) (M3)

The semantics of deterministic programs (not containing probabilis-
tic choices p �r q) uses as underlying objects the set of packet
histories 2

H and the identity monad M(X) = X: ⌘ is the iden-
tify function and x�= f is simply function application f(x). The
identity monad trivially satisfies the three axioms.

The semantics of probabilistic programs uses the probability
(or Giry) monad [17, 29, 58] that maps a measurable space to the
domain of probability measures over that space. The operator ⌘
maps a to the point mass (or Dirac measure) �a on a. Composition
µ�=(�a.⌫a) can be thought of as a two-stage probabilistic exper-
iment where the second experiment ⌫a depends on the outcome a
of the first experiment µ. Operationally, we first sample from µ to
obtain a random outcome a; then, we sample from ⌫a to obtain the
final outcome b. What is the distribution over final outcomes? The
key is to note that �a.⌫a is a Markov kernel (§3), and so composition
with µ is given by the familiar integral

µ�=(�a.⌫a) = �A.

Z

a2X

µa(A) · µ(da)

introduced in (3.1). It is well known that these definitions satisfy the
monad axioms [17, 29, 36]. (M1) and (M2) are trivial properties of

the Lebesgue Integral. (M3) is essentially Fubini’s theorem, which
permits changing the order of integration in a double integral.

Deterministic Semantics. In deterministic NetKAT (without p �r

q), a program p denotes a function [[p]] 2 2

H ! 2

H mapping a set
of input histories a 2 2

H to a set of output histories [[p]](a).
A predicate t maps the input set a to the subset b ✓ a of histories

satisfying the predicate. In particular, the false primitive 0 denotes
the function mapping any input to the empty set; the true primitive
1 is the identity function; the test f =n retains those histories with
field f of the head packet equal to n; and negation ¬t returns only
those histories not satisfying t. Modification f n sets the f -field
of all head-packets to the value n. Duplication dup extends the
tails of all input histories with their head packets, thus permanently
recording the current state of the packets.

Parallel composition p& q feeds the input to both p and q and
takes the union of their outputs. If p and q are predicates, a history
is thus in the output iff it satisfies at least one of p or q, so that union
acts like logical disjunction on predicates. Sequential composition
p ;q feeds the input to p and then feeds p’s output to q to produce the
final result. If p and q are predicates, a history is thus in the output
iff it satisfies both p and q, acting like logical conjunction. Iteration
p⇤ behaves like the parallel composition of p sequentially composed
with itself zero or more times (because

F
is union in 2

H).

Probabilistic Semantics. The semantics of ProbNetKAT is given
using the probability monad applied to the set of histories 2H (seen
as a measurable set). A program p denotes a function

[[p]] 2 2

H ! {µ : B ! [0, 1] | µ is a probability measure}
mapping a set of input histories a to a distribution over output sets
[[p]](a). Here, B denotes the Borel sets of 2

H (§5). Equivalently,
[[p]] is a Markov kernel with source and destination (2

H,B). The
semantics of all primitive programs is identical to the deterministic
case, except that they now return point masses on output sets (rather
than just output sets). In fact, it follows from (M1) that all programs
without choices and iteration are point masses.

Parallel composition p&q feeds the input a to p and q, samples b1
and b2 from the output distributions [[p]](a) and [[q]](a), and returns
the union of the samples b1 [b2. Probabilistic choice p �r q feeds
the input to both p and q and returns a convex combination of the
output distributions according to r. Sequential composition p ; q
is just sequential composition of Markov kernels. Operationally, it
feeds the input to p, obtains a sample b from p’s output distribution,
and feeds the sample to q to obtain the final distribution. Iteration
p⇤ is defined as the least fixpoint of the map on Markov kernels
X 7! 1 & [[p]];X , which is continuous in a DCPO that we will
develop in the following sections. We will show that this definition,
which is simple and is based on standard techniques from domain
theory, coincides with the semantics proposed in previous work [15].

Basic Properties. To clarify the nature of predicates and other
primitives, we establish two intuitive properties:

Lemma 2. Any predicate t satisfies [[t]](a) = ⌘(a \ bt), where
bt , [[t]](H) in the identity monad.
Proof. By induction on t, using (M1) in the induction step.

Lemma 3. All atomic policies p (including predicates) satisfy

[[p]](a) = ⌘({fp(h) | h 2 a})
for some partial function fp : H * H.
Proof. Immediate from Figure 2 and Lemma 2.

Lemma 2 captures the intuition that predicates act like filters.
Lemma 3 establishes that the behavior of primitive programs is
captured by their behavior on individual histories.

Borel sets of B
using Scott topology

(¬t). Programs include predicates (t) and modifications (f n) as
primitives, and the operators parallel composition (p&q), sequential
composition (p ; q), and iteration (p⇤). The primitive dup records
the current state of the packet by extending the tail with the head
packet. Finally, choice p �r q executes p with probability r or q
with probability 1� r. We write p� q when r = 0.5.

Predicate conjunction and sequential composition use the same
syntax (t ;u) as their semantics coincide (as we will see shortly). The
same is true for disjunction of predicates and parallel composition
(t& u). The distinction between predicates and policies is merely
to restrict negation to predicates and rule out programs like ¬(p⇤).
Example. Consider the programs

p1 , pt=1 ; (pt 2 & pt 3)

p2 , (pt=2 & pt=3) ; dst 10.0.0.1 ; pt 1

The first program multicasts packets entering at port 1 out of ports
2 and 3, and drops all other packets. The second program matches
on packets coming in on ports 2 or 3, modifies their destination to
the IP address 10.0.0.1, and sends them out through port 1. The
program p1 & p2 acts like p1 for packets entering at port 1, and like
p2 for packets entering at ports 2 or 3.

Monads. We define the semantics of NetKAT programs paramet-
rically over a monad M. This allows us to give two concrete seman-
tics at once: the classical deterministic semantics (using the identity
monad), and the new probabilistic semantics (using the probabil-
ity monad). For simplicity, we refrain from giving a categorical
treatment and simply model a monad in terms of three components:
• a type constructor M mapping objects X to a domain M(X);
• an operator ⌘ : X !M(X) that lifts objects into the domain
M(X); and

• an infix operator

�= : M(X)! (X !M(X))!M(X)

that lifts a function f : X !M(X) to a function

(��= f) : M(X)!M(X)

These components must satisfy three axioms:

⌘(a)�= f = f(a) (M1)
m�= ⌘ = m (M2)

(m�= f)�= g = m�=(�x.f(x)�= g) (M3)

The semantics of deterministic programs (not containing probabilis-
tic choices p �r q) uses as underlying objects the set of packet
histories 2

H and the identity monad M(X) = X: ⌘ is the iden-
tify function and x�= f is simply function application f(x). The
identity monad trivially satisfies the three axioms.

The semantics of probabilistic programs uses the probability
(or Giry) monad [17, 29, 58] that maps a measurable space to the
domain of probability measures over that space. The operator ⌘
maps a to the point mass (or Dirac measure) �a on a. Composition
µ�=(�a.⌫a) can be thought of as a two-stage probabilistic exper-
iment where the second experiment ⌫a depends on the outcome a
of the first experiment µ. Operationally, we first sample from µ to
obtain a random outcome a; then, we sample from ⌫a to obtain the
final outcome b. What is the distribution over final outcomes? The
key is to note that �a.⌫a is a Markov kernel (§3), and so composition
with µ is given by the familiar integral

µ�=(�a.⌫a) = �A.

Z

a2X

µa(A) · µ(da)

introduced in (3.1). It is well known that these definitions satisfy the
monad axioms [17, 29, 36]. (M1) and (M2) are trivial properties of

the Lebesgue Integral. (M3) is essentially Fubini’s theorem, which
permits changing the order of integration in a double integral.

Deterministic Semantics. In deterministic NetKAT (without p �r

q), a program p denotes a function [[p]] 2 2

H ! 2

H mapping a set
of input histories a 2 2

H to a set of output histories [[p]](a).
A predicate t maps the input set a to the subset b ✓ a of histories

satisfying the predicate. In particular, the false primitive 0 denotes
the function mapping any input to the empty set; the true primitive
1 is the identity function; the test f =n retains those histories with
field f of the head packet equal to n; and negation ¬t returns only
those histories not satisfying t. Modification f n sets the f -field
of all head-packets to the value n. Duplication dup extends the
tails of all input histories with their head packets, thus permanently
recording the current state of the packets.

Parallel composition p& q feeds the input to both p and q and
takes the union of their outputs. If p and q are predicates, a history
is thus in the output iff it satisfies at least one of p or q, so that union
acts like logical disjunction on predicates. Sequential composition
p ;q feeds the input to p and then feeds p’s output to q to produce the
final result. If p and q are predicates, a history is thus in the output
iff it satisfies both p and q, acting like logical conjunction. Iteration
p⇤ behaves like the parallel composition of p sequentially composed
with itself zero or more times (because

F
is union in 2

H).

Probabilistic Semantics. The semantics of ProbNetKAT is given
using the probability monad applied to the set of histories 2H (seen
as a measurable set). A program p denotes a function

[[p]] 2 2

H ! {µ : B ! [0, 1] | µ is a probability measure}
mapping a set of input histories a to a distribution over output sets
[[p]](a). Here, B denotes the Borel sets of 2

H (§5). Equivalently,
[[p]] is a Markov kernel with source and destination (2

H,B). The
semantics of all primitive programs is identical to the deterministic
case, except that they now return point masses on output sets (rather
than just output sets). In fact, it follows from (M1) that all programs
without choices and iteration are point masses.

Parallel composition p&q feeds the input a to p and q, samples b1
and b2 from the output distributions [[p]](a) and [[q]](a), and returns
the union of the samples b1 [b2. Probabilistic choice p �r q feeds
the input to both p and q and returns a convex combination of the
output distributions according to r. Sequential composition p ; q
is just sequential composition of Markov kernels. Operationally, it
feeds the input to p, obtains a sample b from p’s output distribution,
and feeds the sample to q to obtain the final distribution. Iteration
p⇤ is defined as the least fixpoint of the map on Markov kernels
X 7! 1 & [[p]];X , which is continuous in a DCPO that we will
develop in the following sections. We will show that this definition,
which is simple and is based on standard techniques from domain
theory, coincides with the semantics proposed in previous work [15].

Basic Properties. To clarify the nature of predicates and other
primitives, we establish two intuitive properties:

Lemma 2. Any predicate t satisfies [[t]](a) = ⌘(a \ bt), where
bt , [[t]](H) in the identity monad.
Proof. By induction on t, using (M1) in the induction step.

Lemma 3. All atomic policies p (including predicates) satisfy

[[p]](a) = ⌘({fp(h) | h 2 a})
for some partial function fp : H * H.
Proof. Immediate from Figure 2 and Lemma 2.

Lemma 2 captures the intuition that predicates act like filters.
Lemma 3 establishes that the behavior of primitive programs is
captured by their behavior on individual histories.

[[p⇤]] = lfp

Finite approximations Practical implementation

Implementation and Case
studies

Interpreter in OCaml
Approximates the answer

monotonically

Several case studies
S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2

(a) Topology (b) Traffic matrix

(c) Max congestion (d) Throughput

(e) Max congestion (f) Throughput

(g) Path length (h) Random walk

Figure 5. Case study with Abilene: (c, d) without loss. (e, f)
with faulty links. (h) random walk in 4-cycle: all packets are
eventually delivered.

We can lift the result to continuous kernels, which implies that
every program is approximated arbitrarily closely by programs
whose outputs are finite discrete measures.

Corollary 24. Let b 2 }!(H). Then (P ; b)(a,�) = P (a,�)�b.

9. Implementation and Case Studies
We built an interpreter for ProbNetKAT in OCaml that implements
the denotational semantics as presented in Figure 2. Given a query,
the interpreter approximates the answer through a monotonically
increasing sequence of values (Theorems 21 and 22). We used our
implementation to conduct several case studies involving proba-
bilistic reasoning about properties of a real-world network: Inter-
net2’s Abilene backbone [25]. Before presenting our case studies,
we briefly describe how we model the components of a network in
ProbNetKAT, extending the encodings from §2.

Routing. In the networking literature, a large number of traffic
engineering (TE) approaches have been explored. We built Prob-
NetKAT implementations of each of the following routing schemes:

• Equal Cost Multipath Routing (ECMP): The network uses all
least-cost paths between each source-destination pair, and maps
incoming traffic flows onto those paths randomly. Using multiple
paths generally reduces congestion and increases throughput,
but this scheme can perform poorly when multiple paths traverse
the same bottleneck link.

• k-Shortest Paths (KSP): The network uses the top k-shortest
paths between each pair of hosts, and again maps incoming
traffic flows onto those paths randomly. This approach inherits
the performance benefits of ECMP and also provides improved
fault-tolerance properties since it always spreads traffic across k
distinct paths.

• Multipath Routing (Multi): This is similar to KSP, except
that it makes an independent choice from among the k-shortest
paths at each hop rather than just once at ingress. This approach
dynamically routes around bottlenecks and failures but can use
extremely long paths—even ones containing loops.

• Oblivious Routing (Räcke): The network forwards traffic using
a pre-computed probability distribution on carefully constructed
overlays. The distribution is constructed in such a way that
guarantees worst-case congestion within a polylogarithmic factor
of the optimal scheme, regardless of the demands for traffic.

Note that all of these schemes rely on some form of randomization
and hence are probabilistic in nature.

Traffic Model. Network operators often use traffic models con-
structed from historical data to predict future performance. We built
a small OCaml tool that translates traffic models into ProbNetKAT
programs using a simple encoding. Assume that we are given a
traffic matrix (TM) that relates pairs of hosts (u, v) to the amount of
traffic that will be sent from u to v. By normalizing each TM entry
using the aggregate demand

P
(u,v) TM(u, v), we get a probability

distribution d over pairs of hosts. For a pair of source and destination
(u, v), the associated probability d(u, v) denotes the amount of traf-
fic from u to v relative to the total traffic. Assuming uniform packet
sizes, this is also the probability that a random packet generated in
the network has source u and destination v. So, we can encode a
TM as a program that generates packets according to d:

inp , �d(u,v)⇡(u,v)!

where, ⇡(u,v)! , src u ; dst v ; sw u

⇡(u,v)! generates a packet at u with source u and destination v. For
any (non-empty) input, inp generates a distribution µ on packet
histories which can be fed to the network program. For instance,
consider a uniform traffic distribution for our 4-switch example
where each node sends equal traffic to every other node. There
are twelve (u, v) pairs with u 6= v. So, d(u, v)u 6=v =

1
12 and

d(u, u) = 0. We also store the aggregate demand as it is needed to
model queries such as expected link congestion, throughput etc.

Queries. Our implementation can be used to answer probabilistic
queries about a variety of network performance properties. §2
showed an example of using a query to compute expected congestion.
We can also measure expected mean latency in terms of path length:

let path_length (h:Hist.t) : Real.t =
Real.of_int ((Hist.length h)/2 + 1)

let lift_query_avg
(q:Hist.t -> Real.t) : (HSet.t -> Real.t) =
fun hset ->
let n = HSet.length hset in
if n = 0 then Real.zero else
let sum = HSet.fold hset ⇠init:Real.zero

⇠f:(fun acc h -> Real.(acc + q h)) in
Real.(sum / of_int n)

Internet2’s Abilene backbone network

Conclusions
First language-based framework for specifying and

verifying probabilistic network behavior.

Order theoretic semantics

Practical implementation

Analysis of several randomised routing
protocols on real-world data

van Wijngaarden would emphasize and promote the
mathematical aspects of computing (…) in design
principles of programming languages.

source:wikipedia

Questions?

Analysed properties

S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2

(a) Topology (b) Traffic matrix

(c) Max congestion (d) Throughput

(e) Max congestion (f) Throughput

(g) Path length (h) Random walk

Figure 5. Case study with Abilene: (c, d) without loss. (e, f)
with faulty links. (h) random walk in 4-cycle: all packets are
eventually delivered.

We can lift the result to continuous kernels, which implies that
every program is approximated arbitrarily closely by programs
whose outputs are finite discrete measures.

Corollary 24. Let b 2 }!(H). Then (P ; b)(a,�) = P (a,�)�b.

9. Implementation and Case Studies
We built an interpreter for ProbNetKAT in OCaml that implements
the denotational semantics as presented in Figure 2. Given a query,
the interpreter approximates the answer through a monotonically
increasing sequence of values (Theorems 21 and 22). We used our
implementation to conduct several case studies involving proba-
bilistic reasoning about properties of a real-world network: Inter-
net2’s Abilene backbone [25]. Before presenting our case studies,
we briefly describe how we model the components of a network in
ProbNetKAT, extending the encodings from §2.

Routing. In the networking literature, a large number of traffic
engineering (TE) approaches have been explored. We built Prob-
NetKAT implementations of each of the following routing schemes:

• Equal Cost Multipath Routing (ECMP): The network uses all
least-cost paths between each source-destination pair, and maps
incoming traffic flows onto those paths randomly. Using multiple
paths generally reduces congestion and increases throughput,
but this scheme can perform poorly when multiple paths traverse
the same bottleneck link.

• k-Shortest Paths (KSP): The network uses the top k-shortest
paths between each pair of hosts, and again maps incoming
traffic flows onto those paths randomly. This approach inherits
the performance benefits of ECMP and also provides improved
fault-tolerance properties since it always spreads traffic across k
distinct paths.

• Multipath Routing (Multi): This is similar to KSP, except
that it makes an independent choice from among the k-shortest
paths at each hop rather than just once at ingress. This approach
dynamically routes around bottlenecks and failures but can use
extremely long paths—even ones containing loops.

• Oblivious Routing (Räcke): The network forwards traffic using
a pre-computed probability distribution on carefully constructed
overlays. The distribution is constructed in such a way that
guarantees worst-case congestion within a polylogarithmic factor
of the optimal scheme, regardless of the demands for traffic.

Note that all of these schemes rely on some form of randomization
and hence are probabilistic in nature.

Traffic Model. Network operators often use traffic models con-
structed from historical data to predict future performance. We built
a small OCaml tool that translates traffic models into ProbNetKAT
programs using a simple encoding. Assume that we are given a
traffic matrix (TM) that relates pairs of hosts (u, v) to the amount of
traffic that will be sent from u to v. By normalizing each TM entry
using the aggregate demand

P
(u,v) TM(u, v), we get a probability

distribution d over pairs of hosts. For a pair of source and destination
(u, v), the associated probability d(u, v) denotes the amount of traf-
fic from u to v relative to the total traffic. Assuming uniform packet
sizes, this is also the probability that a random packet generated in
the network has source u and destination v. So, we can encode a
TM as a program that generates packets according to d:

inp , �d(u,v)⇡(u,v)!

where, ⇡(u,v)! , src u ; dst v ; sw u

⇡(u,v)! generates a packet at u with source u and destination v. For
any (non-empty) input, inp generates a distribution µ on packet
histories which can be fed to the network program. For instance,
consider a uniform traffic distribution for our 4-switch example
where each node sends equal traffic to every other node. There
are twelve (u, v) pairs with u 6= v. So, d(u, v)u 6=v =

1
12 and

d(u, u) = 0. We also store the aggregate demand as it is needed to
model queries such as expected link congestion, throughput etc.

Queries. Our implementation can be used to answer probabilistic
queries about a variety of network performance properties. §2
showed an example of using a query to compute expected congestion.
We can also measure expected mean latency in terms of path length:

let path_length (h:Hist.t) : Real.t =
Real.of_int ((Hist.length h)/2 + 1)

let lift_query_avg
(q:Hist.t -> Real.t) : (HSet.t -> Real.t) =
fun hset ->
let n = HSet.length hset in
if n = 0 then Real.zero else
let sum = HSet.fold hset ⇠init:Real.zero

⇠f:(fun acc h -> Real.(acc + q h)) in
Real.(sum / of_int n)

Values converge monotonically

Analysed properties

S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2

(a) Topology (b) Traffic matrix

(c) Max congestion (d) Throughput

(e) Max congestion (f) Throughput

(g) Path length (h) Random walk

Figure 5. Case study with Abilene: (c, d) without loss. (e, f)
with faulty links. (h) random walk in 4-cycle: all packets are
eventually delivered.

We can lift the result to continuous kernels, which implies that
every program is approximated arbitrarily closely by programs
whose outputs are finite discrete measures.

Corollary 24. Let b 2 }!(H). Then (P ; b)(a,�) = P (a,�)�b.

9. Implementation and Case Studies
We built an interpreter for ProbNetKAT in OCaml that implements
the denotational semantics as presented in Figure 2. Given a query,
the interpreter approximates the answer through a monotonically
increasing sequence of values (Theorems 21 and 22). We used our
implementation to conduct several case studies involving proba-
bilistic reasoning about properties of a real-world network: Inter-
net2’s Abilene backbone [25]. Before presenting our case studies,
we briefly describe how we model the components of a network in
ProbNetKAT, extending the encodings from §2.

Routing. In the networking literature, a large number of traffic
engineering (TE) approaches have been explored. We built Prob-
NetKAT implementations of each of the following routing schemes:

• Equal Cost Multipath Routing (ECMP): The network uses all
least-cost paths between each source-destination pair, and maps
incoming traffic flows onto those paths randomly. Using multiple
paths generally reduces congestion and increases throughput,
but this scheme can perform poorly when multiple paths traverse
the same bottleneck link.

• k-Shortest Paths (KSP): The network uses the top k-shortest
paths between each pair of hosts, and again maps incoming
traffic flows onto those paths randomly. This approach inherits
the performance benefits of ECMP and also provides improved
fault-tolerance properties since it always spreads traffic across k
distinct paths.

• Multipath Routing (Multi): This is similar to KSP, except
that it makes an independent choice from among the k-shortest
paths at each hop rather than just once at ingress. This approach
dynamically routes around bottlenecks and failures but can use
extremely long paths—even ones containing loops.

• Oblivious Routing (Räcke): The network forwards traffic using
a pre-computed probability distribution on carefully constructed
overlays. The distribution is constructed in such a way that
guarantees worst-case congestion within a polylogarithmic factor
of the optimal scheme, regardless of the demands for traffic.

Note that all of these schemes rely on some form of randomization
and hence are probabilistic in nature.

Traffic Model. Network operators often use traffic models con-
structed from historical data to predict future performance. We built
a small OCaml tool that translates traffic models into ProbNetKAT
programs using a simple encoding. Assume that we are given a
traffic matrix (TM) that relates pairs of hosts (u, v) to the amount of
traffic that will be sent from u to v. By normalizing each TM entry
using the aggregate demand

P
(u,v) TM(u, v), we get a probability

distribution d over pairs of hosts. For a pair of source and destination
(u, v), the associated probability d(u, v) denotes the amount of traf-
fic from u to v relative to the total traffic. Assuming uniform packet
sizes, this is also the probability that a random packet generated in
the network has source u and destination v. So, we can encode a
TM as a program that generates packets according to d:

inp , �d(u,v)⇡(u,v)!

where, ⇡(u,v)! , src u ; dst v ; sw u

⇡(u,v)! generates a packet at u with source u and destination v. For
any (non-empty) input, inp generates a distribution µ on packet
histories which can be fed to the network program. For instance,
consider a uniform traffic distribution for our 4-switch example
where each node sends equal traffic to every other node. There
are twelve (u, v) pairs with u 6= v. So, d(u, v)u 6=v =

1
12 and

d(u, u) = 0. We also store the aggregate demand as it is needed to
model queries such as expected link congestion, throughput etc.

Queries. Our implementation can be used to answer probabilistic
queries about a variety of network performance properties. §2
showed an example of using a query to compute expected congestion.
We can also measure expected mean latency in terms of path length:

let path_length (h:Hist.t) : Real.t =
Real.of_int ((Hist.length h)/2 + 1)

let lift_query_avg
(q:Hist.t -> Real.t) : (HSet.t -> Real.t) =
fun hset ->
let n = HSet.length hset in
if n = 0 then Real.zero else
let sum = HSet.fold hset ⇠init:Real.zero

⇠f:(fun acc h -> Real.(acc + q h)) in
Real.(sum / of_int n)

The latency function (path length) counts the number of
switches in a history. We lift this function to sets and compute
the expectation (lift query avg) by computing the average
over all histories in the set (after discarding empty sets).

Case Study: Abilene. To demonstrate the applicability of Prob-
NetKAT for reasoning about a real network, we performed a case
study based on the topology and traffic demands from Internet2’s
Abilene backbone network as shown in Figure 5 (a). We evaluate the
traffic engineering approaches discussed above by modeling traffic
matrices based on NetFlow traces gathered from the production
network. A sample TM is depicted in Figure 5 (b).

Figures 5 (c,d,g) show the expected maximum congestion,
throughput and mean latency. Because we model a network using
the Kleene star operator, we see that the values converge monotoni-
cally as the number of iterations used to approximate Kleene star
increases, as guaranteed by Theorem 22.

Failures. Network failures such as a faulty router or a link going
down are common in large networks [16]. Hence, it is important to
be able to understand the behavior and performance of a network in
the presence of failures. We can incorporate a failure models by as-
signing empirically measured probabilities to various components—
e.g., we can modify our encoding of the topology so that every link
in the network drops packets with probability 1

10 :

`1,2 , sw=S1 ; pt=2 ; dup ; ((sw S2 ; pt 1 ; dup)�0.9 0)

& sw=S2 ; pt=1 ; dup ; ((sw S1 ; pt 2 ; dup)�0.9 0)

Figures 5 (e-f) show the network performance for Abilene under
this failure model. As expected, congestion and throughput decrease
as more packets are dropped. As every links drops packets proba-
bilistically, the relative fraction of packets delivered using longer
links decreases—hence, there is a decrease in mean latency.

Loop detection. Forwarding loops in a network are extremely
undesirable as they increase congestion and can even lead to black
holes. With probabilistic routing, not all loops will necessarily
result in a black hole—if there is a non-zero probability of exiting
a loop, every packet entering it will eventually exit. Consider
the example of random walk routing in the four-node topology
from Figure 1. In a random walk, a switch either forwards traffic
directly to its destination or to to a random neighbor. As packets
are never duplicated and only exit the network when they reach
their destination, the total throughput is equivalent to the fraction of
packets that exit the network. Figure 5 (h) shows that the fraction of
packets exiting increases monotonically with number of iterations
and converges to 1. Moreover, histories can be queried to test if it
encountered a topological loop by checking for duplicate locations.
Hence, given a model that computes all possible history prefixes
that appear in the network, we can query it for presence of loops.
We do this by removing out from our standard network model and
using in ; (p ; t)⇤ ; p instead. This program generates the required
distribution on history prefixes. Moreover, if we generalize packets
with wildcard fields, similar to HSA [32], we can check for loops
symbolically. We have extended our implementation in this way,
and used it to check whether the network exhibits loops on a number
of routing schemes based on probabilistic forwarding.

10. Related Work
This paper builds on previous work on NetKAT [3, 14] and
ProbNetKAT [15]. The main contribution of this paper is to de-
velop a new semantics for ProbNetKAT based on ordered domains
as well as applciations to real-world networking problems.

Domain Theory. The domain-theoretic treatment of probability
measures goes back to the seminal work of Saheb-Djahromi [63],

who was the first to identify and study the CPO of probability
measures. Jones and Plotkin [28, 29] generalized and extended this
work by giving a category-theoretical treatment and proving that
the probabilistic powerdomain is a monad. It is an open problem
if there exists a cartesian-closed category of continuous DCPOs
that is closed under the probabilistic powerdomain; see [30] for a
discussion. This is an issue for higher-order probabilistic languages,
but not for ProbNetKAT, which is strictly first-order. Edalat [10–12]
gives a computational account of measure theory and integration for
general metric spaces based on domain theory. More recent papers
on probabilistic powerdomains are [19, 23, 30]. All this work is
ultimately based on the pioneering ideas of Scott [64].

Probabilistic Logic and Semantics. Computational models and
logics for probabilistic programming have been extensively studied.
Denotational and operational semantics for probabilistic while
programs were first studied by Kozen [37]. Early logical systems
for reasoning about probabilistic programs were proposed in [38,
59, 62]. There are also numerous recent efforts [18, 20, 39, 42, 47].
Probabilistic programming in the context of artificial intelligence has
also been extensively studied in recent years [5, 61]. Probabilistic
automata in several forms have been a popular model going back to
the early work of Paz [54], as well as more recent efforts [45, 65, 66].
Denotational models combining probability and nondeterminism
have been proposed by several authors [44, 69, 70], and general
models for labeled Markov processes, primarily based on Markov
kernels, have been studied extensively [8, 51, 52].

Our semantics is also related to the work on event structures [50,
71]. A (Prob)NetKAT program denotes a simple (probabilistic)
event structure: packet histories are events with causal dependency
given by extension and with all finite subsets consistent. We have
to yet explore whether the event structure perspective on our
semantics could lead to further applications and connections to
e.g. (concurrent) games.

Networking. Network calculus is a general framework for analyz-
ing network behavior using tools from queuing theory [6]. It has
been used to reason about quantitative properties such as latency,
bandwidth, and congestion. The stochastic branch of network cal-
culus provides tools for reasoning about the probabilistic behavior,
especially in the presence of statistical multiplexing, but is often con-
sidered difficult to use. In contrast, ProbNetKAT is a self-contained
framework based on a precise denotational semantics.

Traffic engineering has been extensively studied in recent years
and a wide variety of approaches have been proposed for data-center
networks [2, 27, 55, 67, 73] and wide-area networks [4, 22, 24, 26,
31, 48, 57, 68]. These approaches try to optimize various metrics
such as congestion, throughput, latency, fault tolerance, fairness
etc. Optimal techniques often have high overheads [7]. As a result,
oblivious [4, 34] and hybrid approaches [24, 26] with near-optimal
performance have gained adoption.

11. Conclusion
This paper presents a new order-theoretic semantics for ProbNetKAT
in the style of classical domain theory. The semantics allows a
standard least-fixpoint treatment of iteration, and enables new modes
of reasoning about the probabilistic network behavior. We have
used these theoretical tools to analyze several randomized routing
protocols on real-world data.

Previous work on deterministic NetKAT included a decision pro-
cedure and a sound and complete axiomatization. In the presence
of probabilities we expect a decision procedure will be hard to de-
vise, as witnessed by several undecidability results on probabilistic
automata. We intend to explore decision procedures for restricted
fragments of the language. Another interesting direction is to com-
pile ProbNetKAT programs into suitable automata that can then be

Failures

Routing
Equal Cost Multipath Routing

(ECMP)

k-Shortest Paths (KSP)

Multipath Routing (Multi)

Oblivious Routing (Raecke)

