
Understanding
Technological Spaces

Ralf Lämmel
Software Languages Team

University of Koblenz-Landau

14 June 2012CWI, NL

Specware

La
mbd

aw
ar

e

XM
Lw

ar
e

Grammarware

Java
ware

O
bjectware

Modelware

CSVware

Wednesday, June 20, 12

Binging/Googling
“Technological spaces”

Wednesday, June 20, 12

Wednesday, June 20, 12

Bing ➔ Google

Wednesday, June 20, 12

Singular ➔ Plural

Wednesday, June 20, 12

Images ➔ Text

Wednesday, June 20, 12

Wednesday, June 20, 12

Wednesday, June 20, 12

Wednesday, June 20, 12

A technological space is a working context with a set
of associated concepts, body of knowledge,tools,
required skills, and possibilities. It is often associated
to a given user community with shared know-how,
educational support, common literature and even workshop
and conference meetings. It is at the same time a zone of
established expertise and ongoing research and a repository
for abstract and concrete resources.

Wednesday, June 20, 12

Let’s try “Aksit”

Wednesday, June 20, 12

Wednesday, June 20, 12

Technical space comprises one or more modeling spaces

Djuric, D., Gaševic, D., Devedžic, V.,: "The Tao of Modeling Spaces", in Journal of Object Technology, vol. 5.
no. 8, Novmeber-December 2006, pp. 125-147.http://www.jot.fm/issues/issue_2006_11/article4

Wednesday, June 20, 12

http://www.jot.fm/issues/issue_2006_11/article4
http://www.jot.fm/issues/issue_2006_11/article4

Let’s try “Bezivin”

Wednesday, June 20, 12

Wednesday, June 20, 12

http://www.dagstuhl.de/04101
29.02.04 — 05.03.04, Seminar 04101

Language Engineering for
Model-Driven Software Development

Organizers J. Bézivin and R. Heckel
Wednesday, June 20, 12

http://www.dagstuhl.de/04101
http://www.dagstuhl.de/04101

http://www.dagstuhl.de/04101
29.02.04 — 05.03.04, Seminar 04101

Language Engineering for
Model-Driven Software Development

Organizers J. Bézivin and R. Heckel
Wednesday, June 20, 12

http://www.dagstuhl.de/04101
http://www.dagstuhl.de/04101

http://www.dagstuhl.de/04101
29.02.04 — 05.03.04, Seminar 04101

Language Engineering for
Model-Driven Software Development

Organizers J. Bézivin and R. Heckel
Wednesday, June 20, 12

http://www.dagstuhl.de/04101
http://www.dagstuhl.de/04101

http://www.dagstuhl.de/04101
29.02.04 — 05.03.04, Seminar 04101

Language Engineering for
Model-Driven Software Development

Organizers J. Bézivin and R. Heckel
Wednesday, June 20, 12

http://www.dagstuhl.de/04101
http://www.dagstuhl.de/04101

http://www.dagstuhl.de/04101
29.02.04 — 05.03.04, Seminar 04101

Language Engineering for
Model-Driven Software Development

Organizers J. Bézivin and R. Heckel
Wednesday, June 20, 12

http://www.dagstuhl.de/04101
http://www.dagstuhl.de/04101

http://www.dagstuhl.de/04101
29.02.04 — 05.03.04, Seminar 04101

Language Engineering for
Model-Driven Software Development

Organizers J. Bézivin and R. Heckel

Where you there?

Wednesday, June 20, 12

http://www.dagstuhl.de/04101
http://www.dagstuhl.de/04101

Bezivin ➔ Jean Bezivin

Wednesday, June 20, 12

This is not
Jean Bezivin.

Wednesday, June 20, 12

This is
Jean-Marie Favre.

Wednesday, June 20, 12

This is, in fact,
an image of

Jean-Marie Favre.

Wednesday, June 20, 12

Google ➔ Bing

Wednesday, June 20, 12

Google ➔ Bing

Wednesday, June 20, 12

© 2012, 101companies

Technological space
= Technology and community context

in software engineering

• Objectware

• Modelware

• Grammarware

• XMLware

• Ontoware

• Tableware

• ...

Wednesday, June 20, 12

© 2012, 101companies

More technological spaces ...

Wednesday, June 20, 12

© 2012, 101companies

More technological spaces ...

Data driven journalism

CSVware

Lambdaware

Javaware

Rubyware

TOOLS 2007-2012 ✟

Specware

???

Wednesday, June 20, 12

101companies
to the rescue

101companies: a community project on software technologies and software languages
by Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz, Andrei Varanovich.
In Proceedings of TOOLS 2012. http://softlang.uni-koblenz.de/101companies/inauguration/

Wednesday, June 20, 12

http://softlang.uni-koblenz.de/101companies/inauguration/
http://softlang.uni-koblenz.de/101companies/inauguration/

© 2012, 101companies

Kind regards from Jean-Marie Favre

We have a problem!

Wednesday, June 20, 12

© 2012, 101companies

Too much software technologies.
Too much software languages.

Too little time.
EMF

SQL

TENEO

Java

XSD

DOM

Antlr

OWL

UML

XMI

Ecore

SQL DDL

XLST
Saxon

Hibernate

Awk

Json

Yacc

JAXP

Rest
OWL

RDF

ATOM

SparQL
XSLT

DTD

BNF

XSD

OCL

Prolog

grep

MOF

OMG

QVT

jDOM
Rose

Protegé

XQuery

ODM

XMLSpy

JPA

JAXB

JDBC

ODBC

MySQL
ArgoUML

Jean

Jena

Jena

Ralf

Dragan

TXL

VLDB

EMF.gen

ORACLE

TCS

XText

Teneo

Jersey

GWT

Sesame

Stratego

XPATH

JeanBeans

UTF8

ASCII

RDFa

RDF(S)

RDFS

CFG

LALR

ER

SLE2010xerces

xalan

saxon
sax

sed

XSD

JMI JMF

SBVR

Kind regards from Jean-Marie Favre

We have a problem!

Wednesday, June 20, 12

What’s 101companies?

Wednesday, June 20, 12

What’s 101companies?
It is ...

The Hitchhiker's Guide to the Software Galaxy

Wednesday, June 20, 12

http://www.nasa.gov/images/content/63114main_highway_med.jpg

Software developers need to
be space travelers!

Wednesday, June 20, 12

http://www.nasa.gov/images/content/63114main_highway_med.jpg
http://www.nasa.gov/images/content/63114main_highway_med.jpg

Why is space travel a burden?

• Computational models

• Type systems

• Culture

• Conventions, terminology

• Graphs vs. trees vs. ...

• ...

• Accidental complexity

Wednesday, June 20, 12

http://upload.wikimedia.org/wikipedia/en/thumb/6/66/E_t_the_extra_terrestrial_ver3.jpg/220px-E_t_the_extra_terrestrial_ver3.jpg

What’s 101companies?

Wednesday, June 20, 12

http://upload.wikimedia.org/wikipedia/en/thumb/6/66/E_t_the_extra_terrestrial_ver3.jpg/220px-E_t_the_extra_terrestrial_ver3.jpg
http://upload.wikimedia.org/wikipedia/en/thumb/6/66/E_t_the_extra_terrestrial_ver3.jpg/220px-E_t_the_extra_terrestrial_ver3.jpg

http://upload.wikimedia.org/wikipedia/en/thumb/6/66/E_t_the_extra_terrestrial_ver3.jpg/220px-E_t_the_extra_terrestrial_ver3.jpg

What’s 101companies?

It is a knowledge resource for technological space travel.

Wednesday, June 20, 12

http://upload.wikimedia.org/wikipedia/en/thumb/6/66/E_t_the_extra_terrestrial_ver3.jpg/220px-E_t_the_extra_terrestrial_ver3.jpg
http://upload.wikimedia.org/wikipedia/en/thumb/6/66/E_t_the_extra_terrestrial_ver3.jpg/220px-E_t_the_extra_terrestrial_ver3.jpg

© 2012, 101companies

Modelware
XMLware

Javaware

Dataware
Ontoware

What’s 101companies?

Wednesday, June 20, 12

Sesame

© 2012, 101companies

XMIModelware
XMLware

Javaware
JDBC

Dataware

JDOM

Ontoware

Jena
Hibernate

EMF.gen
JMITeneo JAXB

JPA

What’s 101companies?

It is a knowledge resource for technological space travel.

Wednesday, June 20, 12

© 2012, 101companies

Company X:
Swing + JDBC

Company Y:
SWT + Hibernate

Company Z:
GWT + MongoDB

...

A community project aiming at a

knowledge base about software

technologies and languages

based on implementations of a human-

resources management system.

What’s 101companies?

Wednesday, June 20, 12

© 2012, 101companies

Company X:
Swing + JDBC

Company Y:
SWT + Hibernate

Company Z:
GWT + MongoDB

...

101 ways of building a HRMS.

Building a HRMS for 101 companies.

Why is it called “101companies”?

Wednesday, June 20, 12

© 2012, 101companies

A Human Resources Management System

• Total salaries

• Increase salaries

• Cut salaries

• Edit employee data

• Import / export company data

Wednesday, June 20, 12

© 2012, 101companies

8

442

#Files per implementation Technologies

Languages LOC per implementation

The 101companies Repository

Wednesday, June 20, 12

© 2012, 101companies

The 101companies Wiki

Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies

The 101companies Wiki

Wednesday, June 20, 12

© 2012, 101companies

Feature model

Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies

The 101companies Wiki

Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies

The 101companies Wiki

Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies

The 101companies Wiki

Wednesday, June 20, 12

© 2012, 101companies

The 101companies CONTRIBUTORS

Wednesday, June 20, 12

© 2012, 101companies

The 101companies CONTRIBUTORS

Wednesday, June 20, 12

© 2012, 101companies

The 101companies Wiki

Wednesday, June 20, 12

© 2012, 101companies

The 101companies Ontology

Wednesday, June 20, 12

• 101companies contribution X ...

• ... uses languages L

• ... uses technology T

• ... implements features F

• ... demonstrates concepts C

• 101companies developer D ...

• ... has skills regarding language L

• ... has skills regarding technology T

• ...

The 101companies Ontology

Wednesday, June 20, 12

© 2012, 101companies

The 101companies Explorer

Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies
Wednesday, June 20, 12

© 2012, 101companies

What’s in for research?
• Megamodeling for software technologies
• Knowledge representation and management
• Education on programming technologies
• Ontologies in the fields PL, SE, SL, ...
• Empirical research

– Language usage analysis
– Technology usage analysis

• Generic language technology
• ...

61

Wednesday, June 20, 12

Acknowledgement

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

• Jean-Marie Favre (University of Grenoble)

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

• Jean-Marie Favre (University of Grenoble)

• Dragan Gasevic (Athabasca University)

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

• Jean-Marie Favre (University of Grenoble)

• Dragan Gasevic (Athabasca University)

• Student of the first hour

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

• Jean-Marie Favre (University of Grenoble)

• Dragan Gasevic (Athabasca University)

• Student of the first hour

• Thomas Schmorleiz

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

• Jean-Marie Favre (University of Grenoble)

• Dragan Gasevic (Athabasca University)

• Student of the first hour

• Thomas Schmorleiz

• Principle PhD student

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

• Jean-Marie Favre (University of Grenoble)

• Dragan Gasevic (Athabasca University)

• Student of the first hour

• Thomas Schmorleiz

• Principle PhD student

• Andrei Varanovich

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

• Jean-Marie Favre (University of Grenoble)

• Dragan Gasevic (Athabasca University)

• Student of the first hour

• Thomas Schmorleiz

• Principle PhD student

• Andrei Varanovich

• Students of the current hour

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

• Jean-Marie Favre (University of Grenoble)

• Dragan Gasevic (Athabasca University)

• Student of the first hour

• Thomas Schmorleiz

• Principle PhD student

• Andrei Varanovich

• Students of the current hour

• Martin Leinberger

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

• Jean-Marie Favre (University of Grenoble)

• Dragan Gasevic (Athabasca University)

• Student of the first hour

• Thomas Schmorleiz

• Principle PhD student

• Andrei Varanovich

• Students of the current hour

• Martin Leinberger

• ...

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

• Jean-Marie Favre (University of Grenoble)

• Dragan Gasevic (Athabasca University)

• Student of the first hour

• Thomas Schmorleiz

• Principle PhD student

• Andrei Varanovich

• Students of the current hour

• Martin Leinberger

• ...

Great to work with
you JM!

Wednesday, June 20, 12

Acknowledgement
• Co-initiators

• Jean-Marie Favre (University of Grenoble)

• Dragan Gasevic (Athabasca University)

• Student of the first hour

• Thomas Schmorleiz

• Principle PhD student

• Andrei Varanovich

• Students of the current hour

• Martin Leinberger

• ...

Great to work with
you JM!

Thank you Paul for forming me
at CWI back then!

Wednesday, June 20, 12

Understanding
Haskellware

Wednesday, June 20, 12

© 2012, 101companies

Haskell
ware

Wednesday, June 20, 12

© 2012, 101companies

Haskell
ware

Understanding
+1

Wednesday, June 20, 12

© 2012, 101companies

Haskell
ware

Understanding +1

Wednesday, June 20, 12

© 2012, 101companies

Haskell
ware

Understanding +1

$ ghci -v0

Wednesday, June 20, 12

© 2012, 101companies

Haskell
ware

Understanding +1

$ ghci -v0
Prelude> let inc = (+) 1

Wednesday, June 20, 12

© 2012, 101companies

Haskell
ware

Understanding +1

$ ghci -v0
Prelude> let inc = (+) 1
Prelude> inc 41

Wednesday, June 20, 12

© 2012, 101companies

Haskell
ware

Understanding +1

$ ghci -v0
Prelude> let inc = (+) 1
Prelude> inc 41
42

Wednesday, June 20, 12

© 2012, 101companies

Haskell
ware

Understanding +1

$ ghci -v0
Prelude> let inc = (+) 1
Prelude> inc 41
42
Prelude> :q

Wednesday, June 20, 12

© 2012, 101companies

Haskell
ware

Understanding +1

• “Data modeling” for numbers

• “Core functionality” for increment

• “De-/serialization” of numbers

• “Web/CL/GU interface” for incrementing numbers

• “Testing” for incrementing numbers

• “Performance profile” for incrementing numbers

• ...

$ ghci -v0
Prelude> let inc = (+) 1
Prelude> inc 41
42
Prelude> :q

Wednesday, June 20, 12

Haskell
ware

Impl. Headline #
F
e
a
tu

re
s

U
n
iq
u
e

#
L
a
n
g
u
a
g
e
s

U
n
iq
u
e

#
T
e
ch

n
o
lo
g
ie
s

U
n
iq
u
e

#
O
th

e
r
te

rm
s

U
n
iq
u
e

dph Data parallelism in Haskell with DPH 4 1 1 – 3 1 3 3
haskell Basic functional programming in Haskell 4 – 2 1 1 – 6 5
hdbc Database programming in Haskell with HDBC 4 – 2 – 4 – 4 1
mvar Concurrent programming in Haskell with MVars 4 – 1 – 1 – 3 1
parsec Parsing in Haskell with Parsec 4 1 1 – 2 – 5 3
tmvar Concurrent programming and STM in Haskell with TMVars 4 – 1 – 1 – 4 2
writerMonad Logging in Haskell with the Writer monad 4 – 1 – 1 1 2 2
haskellCGI CGI style Web programming in Haskell 5 1 3 – 2 – 7 1
hxt In-memory XML processing in Haskell with HXT 5 – 2 – 2 – 3 1
wxHaskell GUI programming in Haskell with wxHaskell 5 1 1 – 3 1 3 2
happstack Web programming in Haskell with Happstack 6 2 4 1 3 1 7 2
haskellDB Schema-aware database programming with HaskellDB 6 2 2 – 7 1 6 3
hxtPickler XML data binding for Haskell with HXTs XML pickler 6 1 2 – 3 – 5 3
syb Generic programming in Haskell with SYB 7 – 1 – 1 3 3 3

Table 1: Haskell implementations of 101companies (sorted by number of im-
plemented features)

PIH [Hut07] “Programming in Haskell”
RWH [OSG08] “Real World Haskell”
LYAH [Lip11] “Learn You a Haskell”

Rather than mining arbitrary terms from these books, we committed to the
index terms of the books as the relatively trusted seed set. There are several
hundreds of index terms. Our goal was to find a set of terms that is of manageable
size. Also, we would favor “important terms” in the sense of “inverse document
frequency” such that terms that appear in less chapters are favored over terms
that appear in more chapters.

We extracted the index entries from these books to build a candidate vocab-
ulary. The books use di�erent styles of describing sub-entries for main-entries.
We did not include sub-entries in any way. We normalized index entries in a
pattern-based manner to eliminate grammatical variations (as in “instance” in
favor of “instance of”). In order to prepare for stemming, matching, etc., we ap-
plied a normalization (except for abbreviations and module names) as follows.
That is, strings were converted to lower case. We applied lemmatization of the
Natural Language Toolkit (NLTK; [Elh10]). For instance, singular and plural
forms of a term are grouped to the singular form in this manner. As the result
of lemmatization we obtained a set of terms that is free of trivial redundancy.

We further filtered candidates terms by applying a stop list—a list of “com-
mon English words”. To this end, we leveraged WordCount4. We excluded candi-
dates terms based on lowWordCount rank. This result was obtained by gradually

4 http://www.wordcount.org/main.php

http://101companies.org/
Haskell-based implementations

Wednesday, June 20, 12

http://101companies.org/
http://101companies.org/

Haskell
ware

http://101companies.org/
Language usage of Haskell-based implementations

Language Headline #
Im

p
le
m
e
n
ta

ti
o
n
s

Haskell An advanced purely-functional programming language 14
CSS A style sheet language for Web programming 2
SQL A query language for databases 2
XHTML A markup language for documents on the Web 2
XML An extensible markup language 2
Haskell 98 A standardized version of Haskell 1
JavaScript A dynamic, prototype-based scripting language with first-class functions 1

Table 3: Languages used by the Haskell-based implementations of 101companies
(sorted by popularity)

Technology Headline #
Im

p
le
m
e
n
ta

ti
o
n
s

GHCi The Haskell interpreter as part of GHC 12
GHC A Haskell compiler 5
HDBC A library for embedded SQL programming in Haskell 2
HXT A toolkit for tree-based XML processing in Haskell 2
MySQL A relational database management system 2
ODBC A standard API for accessing database management systems 2
CGI A standard for website generation on a web server 1
DBDirect A program generator that derives Haskell types from database schemas 1
DPH A GHC extension for data parallelism 1
Happstack A framework for web programming in Haskell 1
HaskellDB A combinator library for expressing DBMS queries in Haskell 1
Heist An XHTML template engine for Haskell 1
Parsec A parser combinator library in Haskell 1
XML pickler An XML data binding technology for Haskell 1
wxHaskell A wxWidgets-based GUI library for Haskell 1

Table 4: Technologies used by the Haskell-based implementations of 101com-
panies (sorted by popularity)

Wednesday, June 20, 12

http://101companies.org/
http://101companies.org/

Haskell
ware

http://101companies.org/
Technology usage of Haskell-based implementations

Language Headline #
Im

p
le
m
e
n
ta

ti
o
n
s

Haskell An advanced purely-functional programming language 14
CSS A style sheet language for Web programming 2
SQL A query language for databases 2
XHTML A markup language for documents on the Web 2
XML An extensible markup language 2
Haskell 98 A standardized version of Haskell 1
JavaScript A dynamic, prototype-based scripting language with first-class functions 1

Table 3: Languages used by the Haskell-based implementations of 101companies
(sorted by popularity)

Technology Headline #
Im

p
le
m
e
n
ta

ti
o
n
s

GHCi The Haskell interpreter as part of GHC 12
GHC A Haskell compiler 5
HDBC A library for embedded SQL programming in Haskell 2
HXT A toolkit for tree-based XML processing in Haskell 2
MySQL A relational database management system 2
ODBC A standard API for accessing database management systems 2
CGI A standard for website generation on a web server 1
DBDirect A program generator that derives Haskell types from database schemas 1
DPH A GHC extension for data parallelism 1
Happstack A framework for web programming in Haskell 1
HaskellDB A combinator library for expressing DBMS queries in Haskell 1
Heist An XHTML template engine for Haskell 1
Parsec A parser combinator library in Haskell 1
XML pickler An XML data binding technology for Haskell 1
wxHaskell A wxWidgets-based GUI library for Haskell 1

Table 4: Technologies used by the Haskell-based implementations of 101com-
panies (sorted by popularity)

Wednesday, June 20, 12

http://101companies.org/
http://101companies.org/

http://www.haskell.org/

http://www.haskell.org/haskell-symposium/

#haskell irc channel

http://hackage.haskell.org/
Haskell

ware
Wednesday, June 20, 12

http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell

Haskell
ware

Term

Getting started with Haskell and GHCi
Basic types and definitions
Designing and writing programs
Data types tuples and lists
Programming with lists
Defining functions over lists
Playing the game IO in Haskell
Reasoning about programs
Generalization patterns of computation
Higher order functions
Developing higher order programs
Overloading type classes and type checking
Algebraic types
Case study Hu�man codes
Abstract data types
Lazy programming
Programming with monads
Domain Specific Languages
Time and space behaviour

action
•

algeb
raic

•
algeb

raic
ty
p
e

•
b
ase

case
•

b
o
ol

•
calcu

lation
•

•

class
•

co
d
e

•
co
d
in
g

•

com
m
an

d
•

com
p
lex

ity
•

con
stru

ctor
•

•
d
atab

ase
•

d
esign

•

eq
u
ality

•
evalu

ation
•

fi
le

•

fi
lter

•

fl
oat

•
fold

in
g

•

fold
r

•

G
H
C
i

•
gu

ard
•

h
ead

•

I/O
•

•

in
d
u
ction

•
in
fi
n
ite

list
•

IO
•

•
lo
cal

•

m
ap

•
•

m
ax

im
u
m

•

m
o
d
el

•

m
o
d
u
le

•
•

•
m
on

ad
•

•

op
erator

•
•

p
ackage

•
p
arser

•
p
artial

•
p
artial

ap
p
lication

•
p
attern

m
atch

in
g

•

p
ictu

re
•

•
•

p
relu

d
e

•

p
ro
of

•
q
u
eu

e
•

ran
d
om

•

recu
rsion

•
•

regu
lar

ex
p
ression

•
•

set
•

state
•

strict
•

testin
g

•
•

tex
t

•
•

tree
•

•
•

•

tu
p
le

•

ty
p
e
ch
eck

in
g

•
T
ab

le
6:

C
h
ap

ter
p
rofi

les
of

C
R
A
F
T

Chapters

Wednesday, June 20, 12

T
er
m

G
et
ti
n
g
st
ar
te
d
w
it
h
H
as
ke
ll
an

d
G
H
C
i

B
as
ic

ty
p
es

an
d
d
efi

n
it
io
n
s

D
es
ig
n
in
g
an

d
w
ri
ti
n
g
p
ro
gr
am

s
D
at
a
ty
p
es

tu
p
le
s
an

d
li
st
s

P
ro
gr
am

m
in
g
w
it
h
li
st
s

D
efi

n
in
g
fu
n
ct
io
n
s
ov
er

li
st
s

P
la
y
in
g
th
e
ga

m
e
IO

in
H
as
ke
ll

R
ea
so
n
in
g
ab

ou
t
p
ro
gr
am

s
G
en

er
al
iz
at
io
n
p
at
te
rn
s
of

co
m
p
u
ta
ti
on

H
ig
h
er

or
d
er

fu
n
ct
io
n
s

D
ev
el
op

in
g
h
ig
h
er

or
d
er

p
ro
gr
am

s
O
ve
rl
oa

d
in
g
ty
p
e
cl
as
se
s
an

d
ty
p
e
ch
ec
k
in
g

A
lg
eb

ra
ic

ty
p
es

C
as
e
st
u
d
y
H
u
�
m
an

co
d
es

A
b
st
ra
ct

d
at
a
ty
p
es

L
az
y
p
ro
gr
am

m
in
g

P
ro
gr
am

m
in
g
w
it
h
m
on

ad
s

D
om

ai
n
S
p
ec
ifi
c
L
an

gu
ag

es
T
im

e
an

d
sp
ac
e
b
eh

av
io
u
r

action •

algebraic •
algebraic type •
base case •

bool •
calculation • •

class •
code •
coding •

command •

complexity •
constructor • •
database •

design •

equality •
evaluation •
file •

filter •

float •
folding •

foldr •

GHCi •
guard •
head •

I/O • •

induction •
infinite list •
IO • •
local •

map • •
maximum •

model •

module • • •
monad • •

operator • •
package •
parser •
partial •
partial application •
pattern matching •

picture • • •
prelude •

proof •
queue •
random •

recursion • •

regular expression • •

set •
state •
strict •

testing • •

text • •

tree • • • •

tuple •

type checking •
Table 6: Chapter profiles of CRAFT

Haskell
ware

Terms

The following examples are based on Table 6. The term “class” contributes
to one chapter’s profile: “Overloading type classes and type checking”. Hence, it
is reasonable to assume that Haskell’s notion of “type class” is meant here. The
term “model” also contributes to one chapter’s profile: “Playing the game IO in
Haskell”. There is no obvious meaning, though, for “model” in this situation.

– action � Action
– algebraic type � Algebraic data type
– base case � Base case
– bool � Boolean
– calculation � Calculation
– class � Type class
– code � Code
– coding � Programming
– ...

Fig. 2. Mapping for the first few terms of CRAFT (as of Table 6)

Accumulator, Action, Algebraic data type, Applicative functor, Association list, Base
case, Bit, Boolean, Calculation, Catamorphism, Character, Code, Command, Com-
plexity, Condition, Core, Data constructor, Data structure, Data type, Database,
Declaration, Directory, Eager evaluation, Equality, Equation, Equational reasoning,
Evaluation strategy, Exception, Expression, Factorial, File, Filter function, Float,
Fmap function, Fold function, Foreign function interface, Function application, Func-
tion definition, Functor, Guard, Haskell package, Haskell script, Head, Higher-order
function, I/O system, Identity element, Import, Induction, Infinite list, Input, In-
teger, Lambda abstraction, Language:XML, Lazy evaluation, List comprehension,
Local scope, Loop, MVar, Map function, Maybe type, Module, Monad, Monad trans-
former, Monadic value, Monoid, Operator, Operator precedence, Output, Parser,
Parser combinator, Parsing, Partial application, Pattern, Pattern matching, Perfor-
mance, Pointer, Polymorphism, Predicate, Prelude, Process, Product function, Pro-
filing, Program design, Program optimization, Programming, Proof, Property, Pure
function, Query, Queue, Random number, Recursion, Regular expression, Reverse
function, Set, Stack, State, String, Sum function, TCP, Table, Tail, Technology:GHC,
Technology:GHCi, Technology:Glade, Technology:HPC, Technology:Parsec, Testing,
Text, Thread, Tree, Tuple, Type checking, Type class, Type definition, Type signa-
ture, Type system, Type-class instance, UDP, User interface, Zipper

Fig. 3. Consolidated terms for the Haskell textbooks

Figure 2 shows the first few mapping entries from raw to consolidated terms
for the CRAFT book. (We used a CSV format to enter these mappings for each
book.) We also used Wikipedia and the Haskell Wiki for deciding on the map-
ping. If a particular concept was directly represented as an individual page on

Wednesday, June 20, 12

Haskell
ware

The following examples are based on Table 6. The term “class” contributes
to one chapter’s profile: “Overloading type classes and type checking”. Hence, it
is reasonable to assume that Haskell’s notion of “type class” is meant here. The
term “model” also contributes to one chapter’s profile: “Playing the game IO in
Haskell”. There is no obvious meaning, though, for “model” in this situation.

– action � Action
– algebraic type � Algebraic data type
– base case � Base case
– bool � Boolean
– calculation � Calculation
– class � Type class
– code � Code
– coding � Programming
– ...

Fig. 2. Mapping for the first few terms of CRAFT (as of Table 6)

Accumulator, Action, Algebraic data type, Applicative functor, Association list, Base
case, Bit, Boolean, Calculation, Catamorphism, Character, Code, Command, Com-
plexity, Condition, Core, Data constructor, Data structure, Data type, Database,
Declaration, Directory, Eager evaluation, Equality, Equation, Equational reasoning,
Evaluation strategy, Exception, Expression, Factorial, File, Filter function, Float,
Fmap function, Fold function, Foreign function interface, Function application, Func-
tion definition, Functor, Guard, Haskell package, Haskell script, Head, Higher-order
function, I/O system, Identity element, Import, Induction, Infinite list, Input, In-
teger, Lambda abstraction, Language:XML, Lazy evaluation, List comprehension,
Local scope, Loop, MVar, Map function, Maybe type, Module, Monad, Monad trans-
former, Monadic value, Monoid, Operator, Operator precedence, Output, Parser,
Parser combinator, Parsing, Partial application, Pattern, Pattern matching, Perfor-
mance, Pointer, Polymorphism, Predicate, Prelude, Process, Product function, Pro-
filing, Program design, Program optimization, Programming, Proof, Property, Pure
function, Query, Queue, Random number, Recursion, Regular expression, Reverse
function, Set, Stack, State, String, Sum function, TCP, Table, Tail, Technology:GHC,
Technology:GHCi, Technology:Glade, Technology:HPC, Technology:Parsec, Testing,
Text, Thread, Tree, Tuple, Type checking, Type class, Type definition, Type signa-
ture, Type system, Type-class instance, UDP, User interface, Zipper

Fig. 3. Consolidated terms for the Haskell textbooks

Figure 2 shows the first few mapping entries from raw to consolidated terms
for the CRAFT book. (We used a CSV format to enter these mappings for each
book.) We also used Wikipedia and the Haskell Wiki for deciding on the map-
ping. If a particular concept was directly represented as an individual page on

Terms

Wednesday, June 20, 12

Haskell
ware

Terms

6 Review of the vocabulary

There are two aspects of review. We can compare vocabulary contributions
among the di�erent sources. In this manner, we can determine whether the
sources are essentially complementary. Also, we obtain a relatively objective
means of profiling the sources. We can also compare vocabulary contributions
between sources and the chrestomathy. In this manner, we can determine what
aspects of the sources are not covered by the chrestomathy and vice versa.

CRAFT only: Algebraic data type, Base case, Calculation, Code, Complexity,
Equality, Equational reasoning, Float, Head, Higher-order function, Infinite list,
Local scope, Partial application, Program design, Programming, Proof, Queue, Set,
Tuple, Type checking

PIH only: Declaration, Equation, Function application, Function definition, Haskell
script, Identity element, Lambda abstraction, Parser combinator, Product function,
Reverse function, String, Type-class instance

RWH only: Association list, Core, Data type, Directory, Exception, Foreign func-
tion interface, Language:XML, Loop, MVar, Monad transformer, Operator prece-
dence, Output, Parsing, Performance, Pointer, Polymorphism, Predicate, Process,
Profiling, Program optimization, Property, Pure function, Query, TCP, Table,
Technology:GHC, Technology:Glade, Technology:HPC, Technology:Parsec, Thread,
Type definition, Type signature, Type system, UDP, User interface

LYAH only: Accumulator, Applicative functor, Condition, Data structure, Expres-
sion, Factorial, Fmap function, Functor, Import, Input, Monadic value, Sum func-
tion, Zipper

Fig. 6. Comparison of the di�erent Haskell textbooks

6.1 Comparison of sources

Figure 6 shows unique contributions per textbook in the Haskell study. The
RWH book stands out with a substantial number of “more applied” terms. The
CRAFT book stands with various terms that are more fundamental to functional
programming. The LYAH book enters some advanced territory that is not covered
by any other book: specifically applicative functors. The PIH book contributes
very basic terms, which is well in line with its intended format as an introductory
book.

6.2 Comparison of documentation and textbooks

Figure 7 shows unique contributions of the implementations as they are docu-
mented on the wiki versus the textbooks. It should not be surprising that the

Wednesday, June 20, 12

Haskell
ware

Term Headline #
Im

p
le
m
e
n
ta

ti
o
n
s

P
ri
m
ar
y
re
so
u
rc
e

Algebraic data type A type for alternatives of groups of data components 3 X
Applicative functor A kind of functor that models some monad-like computations 1 X
Arrow A functional programming idiom for composing computations 2 X
CRUD The basic functions of persistent storage 1 X
Client-server architecture An architectural pattern divided into client and server 2 X
Closed serialization Potentially platform-dependent serialization 1
Concurrent programming Programming with collections of interacting processes 2 X
Cookie A client-side file storing data for the server of a web application 2 X
DBMS A database management system 2 X
Data parallelism Parallelism focused on distributing data across parallel computing nodes 1 X
Database An organized collection of data in digital form 5 X
Database programming The programming domain of accessing databases 2
Database schema A description of a databases structure 1 X
Framework A structured collection of reusable abstractions for programming 1 X
Functional programming A function-centric programming paradigm 1 X
GUI A graphical user interface 2 X
GUI programming The programming domain of GUI development 1
Generic function A polymorphic function that observes structure 1
Generic programming Programming for and with type-parametric abstractions 1
Library A collection of reusable abstractions for programming 4 X
MVar A thread synchronization variable in Haskell 4 X
Monoid A type with an associative binary operation and a neutral element 1
Parallel array An array-like data structure amenable to vector processing 1 X
Parser combinator A combinator for the composition of parser functions 1 X
Parsing The process of analyzing text to determine its grammatical structure 1 X
Pattern matching The process of matching values against patterns and bind variables 1 X
Prelude A standard module imported by default into all Haskell modules 1
Prepared statement A parametrized statement for repeated execution on a DBMS 1 X
Pure function A function whose result only depends on the arguments 1 X
Recursion The use of self-reference in defining abstractions 1 X
Relational algebra An algebra dealing with sets of finitary relations 1 X
STM A control mechanism in concurrent programming 2 X
SYB A generic programming style popularized by Haskell 3 X
Server A program that serves requests of clients 1 X
TMVar A transactional MVar for use with Haskells STM monad 2 X
Task parallelism The capability of task parallelism 1 X
Type class An abstraction mechanism for families of polymorphic functions 1 X
Type-class instance Type-specific definitions of type class members 1
Web application An application that leverages web resources or web technologies 2 X
Web browser A software application for retrieving and presenting Web resources 1 X
Web programming The programming domain of developing web applications 2
Writer monad A monad for synthesizing results or output 1
XML data binding Mapping between XML types and types of a programming language 1 X
XML processing Programming in the XML domain, i.e., on XML data 1
Zipper A data structure for location-based manipulation of a data structure 3 X

Table 5: (Other) terms referenced by the Haskell-based implementations of
101companies (sorted alphabetically)

...

We can compare vocabulary coverage of the
textbooks and the 101companies Wiki!

Wednesday, June 20, 12

Megamodels
to the rescue

What’s the essence of a
technology?

Wednesday, June 20, 12

© 2012, 101companies

What’s the essence of a language?

Wednesday, June 20, 12

© 2012, 101companies

What’s the essence of a technology?

Wednesday, June 20, 12

© 2012, 101companies

That’s a megamodel, too!

http://en.wikipedia.org/wiki/Tombstone_diagram

Wednesday, June 20, 12

http://en.wikipedia.org/wiki/Tombstone_diagram
http://en.wikipedia.org/wiki/Tombstone_diagram

© 2012, 101companies

Yet another megamodel!ATL Documentations
!

! ATL Starter’s Guide Date 07/12/2005

Page 2!

MMM

MMt

Ma Mb

MMa

Mt

MMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation

MMMMMM

MMtMMt

MaMa MbMb

MMaMMa

MtMt

MMbMMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation
Figure 1. An overview of model transformation

Figure 1 summarizes the full model transformation process. A model Ma, conforming to a metamodel
MMa, is here transformed into a model Mb that conforms to a metamodel MMb. The transformation is
defined by the model transformation model Mt which itself conforms to a model transformation
metamodel MMt. This last metamodel, along with the MMa and MMb metamodels, has to conform to a
metametamodel (such as MOF or Ecore).

3 A simple transformation example
This section introduces the transformation example that is going to be developed in the document. The
aim of this first example is to introduce users with the basic concepts of the ATL programming. To this
end, this example considers two similar metamodels, Author (Figure 2) and Person (Figure 3), that
both encode data relative to persons.

Figure 2. The Author metamodel

Figure 3. The Person metamodel

Both metamodels are composed of a single eponym element: Author for the Author metamodel and
Person for the Person metamodel. Both entities are characterized by the same couple of string
properties (name and surname).
The objective is here to design an ATL transformation enabling to generate a Person model from an
Author model. The transformation to be designed will have to implement the following (obvious)
semantics:

• A distinct Person element is generated for each source Author element;
o The name of the generated Person has to be initialized with the name of the source

Author;
o The surname of the generated Person has to be initialized with the name of the

source Author.

http://wiki.eclipse.org/ATL/Concepts#Model_Transformation

Model
transformations

with ATL

Wednesday, June 20, 12

http://wiki.eclipse.org/ATL/Concepts#Model_Transformation
http://wiki.eclipse.org/ATL/Concepts#Model_Transformation

© 2012, 101companies

Yet another megamodel!ATL Documentations
!

! ATL Starter’s Guide Date 07/12/2005

Page 2!

MMM

MMt

Ma Mb

MMa

Mt

MMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation

MMMMMM

MMtMMt

MaMa MbMb

MMaMMa

MtMt

MMbMMb

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

conformsTo

Transformation
Figure 1. An overview of model transformation

Figure 1 summarizes the full model transformation process. A model Ma, conforming to a metamodel
MMa, is here transformed into a model Mb that conforms to a metamodel MMb. The transformation is
defined by the model transformation model Mt which itself conforms to a model transformation
metamodel MMt. This last metamodel, along with the MMa and MMb metamodels, has to conform to a
metametamodel (such as MOF or Ecore).

3 A simple transformation example
This section introduces the transformation example that is going to be developed in the document. The
aim of this first example is to introduce users with the basic concepts of the ATL programming. To this
end, this example considers two similar metamodels, Author (Figure 2) and Person (Figure 3), that
both encode data relative to persons.

Figure 2. The Author metamodel

Figure 3. The Person metamodel

Both metamodels are composed of a single eponym element: Author for the Author metamodel and
Person for the Person metamodel. Both entities are characterized by the same couple of string
properties (name and surname).
The objective is here to design an ATL transformation enabling to generate a Person model from an
Author model. The transformation to be designed will have to implement the following (obvious)
semantics:

• A distinct Person element is generated for each source Author element;
o The name of the generated Person has to be initialized with the name of the source

Author;
o The surname of the generated Person has to be initialized with the name of the

source Author.

http://wiki.eclipse.org/ATL/Concepts#Model_Transformation

Model
transformations

with ATL
What to think
of this part?

Wednesday, June 20, 12

http://wiki.eclipse.org/ATL/Concepts#Model_Transformation
http://wiki.eclipse.org/ATL/Concepts#Model_Transformation

© 2012, 101companies

Megamodel of O/X mapping with xsd.exe

http://softlang.uni-koblenz.de/mega/

Wednesday, June 20, 12

http://userpages.uni-koblenz.de/~softlang/mega/
http://userpages.uni-koblenz.de/~softlang/mega/

© 2012, 101companies

Megamodel of a product using xsd.exe

http://black42.uni-koblenz.de/production/101worker/MegaModels/implementations/xsdClasses/

Wednesday, June 20, 12

http://black42.uni-koblenz.de/production/101worker/MegaModels/implementations/xsdClasses/
http://black42.uni-koblenz.de/production/101worker/MegaModels/implementations/xsdClasses/

© 2012, 101companies

Conclusion
• Please:

‣ Have a look and spread the message.

‣ Don’t expect perfect material “yet”.

‣ Contribute or encourage others to do so.

‣ Consider using the project in teaching.

‣ Engage in collaboration.

Thanks!Questions?

Wednesday, June 20, 12

