Does your mother know you're here?

Understanding software artifact provenance

Mike Godfrey

Software Architecture Group, UWaterloo, Canada [visiting CWI / SWAT, Amsterdam until July 2012]

Software artifact provenance

An emerging problem area

"Provenance"

A set of documentary evidence pertaining to the origin, history, or ownership of an artifact.

[From "provenir", French for "to come from"]

Software artifact provenance

Origin analysis + copyright violation

[Many authors]

Software artifact provenance

Developer email topic mining

Software artifact provenance Mylyn and inferring context

Summary: Software artifact provenance

- Given a chunk of code, test suite, developer email topic, maintenance task, ... we want to investigate its origin, evolution, and the supporting evidence:
 - Who are you, really?
 - Where did you come from?
 - Does your mother know you're here?
- Some problems:
 - Ground truth?
 - Artifact linkage?
 - Running matching algorithms on big data? **

Software Bertillonage

A metaphor for attacking the provenance problem

Who are you?

Alphonse Bertillon (1853-1914)

The nose, as it cannot be disguised, is extremely important in identification. The types above, taking them from the left, show a low, narrow nose, a hooked nose, a straight nose, a snub nose, and a high, wide nose.

RELEVÉ

Dυ

SIGNALEMENT ANTHROPOMÉTRIQUE

1. Taille. - 2. Envergure. - 3. Buste. --

Longueur de la tête. — 5. Largeur de la tête. — 6. Oreille droite. —
 Pied gauche. — 8. Médius gauche. — 9. Condée gauche.

Forensic Bertillonage

- 1. Height
- 2. Stretch: Length of body from left shoulder to right middle finger when arm is raised
- Bust: Length of torso from head to seat, taken when seated
- 4. Length of head: Crown to forehead
- 5. Width of head: Temple to temple
- Length of right ear
- 7. Length of left foot
- 8. Length of left middle finger
- 9. Length of left cubit: Elbow to tip of middle finger
- 10. Width of cheeks

Software Bertillonage

- It's not fingerprinting or DNA analysis!
 - There may be not enough info / too much noise to make positive ID
 - You may be looking for a cousin or ancestor
 - You may be synthesizing something that doesn't exist elsewhere
- A good software Bertillonage metric should:
 - be computationally inexpensive
 - be applicable to the desired level of granularity / prog. language
 - catch most of the bad guys (recall)
 - significantly reduce the search space (precision)

Software Bertillonage

Matching library usage fingerprints

Software Bertillonage Matching anchored signatures

Q: Which version of library httpclient.jar is included in this Java application?

Our approach:

- Build master repos of class / method sig hashes from Mayen2
- 2. Compare sig hashes of target app against master repos

Software Bertillonage Matching anchored signatures

Q: Which version of library httpclient.jar is included in this Java application?

Our approach:

- Consider only class / method signatures
 - May not have source, compiler options may differ, ...
- Build master repos of signature hashes from Maven2
 - Which has gaps, duplication, errors,
- Compare sig. hashes of target application against master repos
 - There will be false positives when API does not evolve
 - ... so the effectiveness of narrowing search space depends on how much
 APIs evolve

[Davis, German, Godfrey, Hindle: MSR-11 and EMSE to appear]

Testing the extractor, sampling the data

- Randomly picked 1000 binary jars (from the 140K) for which there was also a source jar in Maven2
 - # of classes per binary archive: median: 5, max: 2138
- Binary-to-binary matching (bin2bin):
 - Each binary archive matched itself ©
 - # of exact matches in Maven (due to duplication or unchanging API)
 - median: 5, max: 487
- Binary-to-source matching (bin2src):
 - Correct match was among top matches (median:4, max: 158):
 - Something else was a better match (test classes):30 times
 - No matches suggested (compiler/extractor issues):4 times

Industrial case study

Target system: An industrial e-commerce app containing 84 jars

Q: How useful is the signature similarity index in finding the original *binary* archive for a given binary archive?

Q: How useful is the signature similarity index at finding the original *source* archive for a given binary archive?

Summary

Who are you?

Software artifact *provenance* is a growing & important problem

Software Bertillonage

Cheap techniques applied widely, then expensive techniques applied narrowly

de la tête. - 5, Largeur de la tête. - 6. Oreille droite.

Does your mother know you're here?

Understanding software artifact provenance

Mike Godfrey

Software Architecture Group, UWaterloo, Canada [visiting CWI / SWAT, Amsterdam until July 2012]

