
Understanding and
Simplifying
Software

with the Rascal
Meta-Programming

Language

C W I L e c t u r e s

J u r g e n J . V i n j u
Friday, June 15, 12

Software is Complex

Friday, June 15, 12

Software is Complex
The principles of software are easy

Friday, June 15, 12

Software is Complex
The principles of software are easy

Just a bunch of computer instructions

Friday, June 15, 12

Software is Complex
The principles of software are easy

Just a bunch of computer instructions

IO, arithmetic, control, done.

Friday, June 15, 12

Software is Complex
The principles of software are easy

Just a bunch of computer instructions

IO, arithmetic, control, done.

The practice of software is incomprehensible

Friday, June 15, 12

Software is Complex
The principles of software are easy

Just a bunch of computer instructions

IO, arithmetic, control, done.

The practice of software is incomprehensible

There is too much code

Friday, June 15, 12

Software is Complex
The principles of software are easy

Just a bunch of computer instructions

IO, arithmetic, control, done.

The practice of software is incomprehensible

There is too much code

There is too much diversity

Friday, June 15, 12

Software is Complex
The principles of software are easy

Just a bunch of computer instructions

IO, arithmetic, control, done.

The practice of software is incomprehensible

There is too much code

There is too much diversity

The CPU is too fast

Friday, June 15, 12

Software is Complex
The principles of software are easy

Just a bunch of computer instructions

IO, arithmetic, control, done.

The practice of software is incomprehensible

There is too much code

There is too much diversity

The CPU is too fast

There is too much memory

Friday, June 15, 12

Instruments

Friday, June 15, 12

Instruments

Higher level programming

Model Driven Engineering

Domain Specific Languages

Friday, June 15, 12

Instruments

Higher level programming

Model Driven Engineering

Domain Specific Languages

Program comprehension

Static & dynamic analysis

IDEs

Friday, June 15, 12

Instruments

Higher level programming

Model Driven Engineering

Domain Specific Languages

Program comprehension

Static & dynamic analysis

IDEs

Observing Software

Mining Software Repositories

Measurement & benchmarking

Friday, June 15, 12

Instruments

Higher level programming

Model Driven Engineering

Domain Specific Languages

Program comprehension

Static & dynamic analysis

IDEs

Observing Software

Mining Software Repositories

Measurement & benchmarking

Code

Model

Picture

Friday, June 15, 12

problem

Friday, June 15, 12

problem

Instruments are costly

Friday, June 15, 12

problem

Instruments are costly

Diverse

Friday, June 15, 12

problem

Instruments are costly

Multi-disciplinary

Diverse

Friday, June 15, 12

problem

Instruments are costly

Multi-disciplinary

Diverse

Accurate/Efficient

Friday, June 15, 12

Research Application

Rascal

enables

Friday, June 15, 12

Research Application

Rascal A new tool
every week

enables

Friday, June 15, 12

Research Application

Rascal A new tool
every week

One-stop-
shop

enables

Friday, June 15, 12

Rascal is EASY

Code

Model

Picture

Friday, June 15, 12

Rascal is EASY
Extract,

Parse DSLs and (legacy) GPLs

Create abstract relational models (like call graphs)
Code

Model

Picture

Friday, June 15, 12

Rascal is EASY
Extract,

Parse DSLs and (legacy) GPLs

Create abstract relational models (like call graphs)

Analyze

Query abstract/concrete syntax trees

Query relational models

Code

Model

Picture

Friday, June 15, 12

Rascal is EASY
Extract,

Parse DSLs and (legacy) GPLs

Create abstract relational models (like call graphs)

Analyze

Query abstract/concrete syntax trees

Query relational models

SYnthesize

Generate code

Transform code

Produce data and visuals

Code

Model

Picture

Friday, June 15, 12

Rascal is EASY

Code

Model

Picture

Friday, June 15, 12

Rascal is EASY
Extract,

Fast context-free general top-down parsing

Pattern matching & generic traversal
Code

Model

Picture

Friday, June 15, 12

Rascal is EASY
Extract,

Fast context-free general top-down parsing

Pattern matching & generic traversal

Analyze

Relational queries and comprehensions

Backtracking, fixed point computation, ...

Code

Model

Picture

Friday, June 15, 12

Rascal is EASY
Extract,

Fast context-free general top-down parsing

Pattern matching & generic traversal

Analyze

Relational queries and comprehensions

Backtracking, fixed point computation, ...

SYnthesize

String templates

Concrete syntax

Interactive visualization generator

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
metro {

 Centraal Waterloo Weesperplein Wibautstraat Amstel;

 Amstel Spaklerweg Overamstel Rai Zuid;

 Rai Zuid Amstelveenseweg Lelylaan Sloterdijk;

 Centraal Rokin FerdinandBol Zuid;

}

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
metro {

 Centraal Waterloo Weesperplein Wibautstraat Amstel;

 Amstel Spaklerweg Overamstel Rai Zuid;

 Rai Zuid Amstelveenseweg Lelylaan Sloterdijk;

 Centraal Rokin FerdinandBol Zuid;

}

{ <“Centraal”, “Waterloo”>,

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
metro {

 Centraal Waterloo Weesperplein Wibautstraat Amstel;

 Amstel Spaklerweg Overamstel Rai Zuid;

 Rai Zuid Amstelveenseweg Lelylaan Sloterdijk;

 Centraal Rokin FerdinandBol Zuid;

}

{ <“Centraal”, “Waterloo”>,

 <“Waterloo”,” Weesperplein”>, … }

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
metro {

 Centraal Waterloo Weesperplein Wibautstraat Amstel;

 Amstel Spaklerweg Overamstel Rai Zuid;

 Rai Zuid Amstelveenseweg Lelylaan Sloterdijk;

 Centraal Rokin FerdinandBol Zuid;

}

{ <“Centraal”, “Waterloo”>,

 <“Waterloo”,” Weesperplein”>, … }

Code

Model

Picture

digraph Metro {

 node [shape=box]

 Centraal -> Waterloo

 Waterloo -> Weesperplein ...

 Centraal [shape=ellipse]

}

Friday, June 15, 12

A one-slide DSL
Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;
Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

 ‘ <from> -\> <to><}>

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

 ‘ <from> -\> <to><}>

 ‘<for (st <- metro<from>, isHub(metro, st)){>

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

 ‘ <from> -\> <to><}>

 ‘<for (st <- metro<from>, isHub(metro, st)){>

 ‘ <st> [shape=ellipse]<}>

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

 ‘ <from> -\> <to><}>

 ‘<for (st <- metro<from>, isHub(metro, st)){>

 ‘ <st> [shape=ellipse]<}>

 ‘}”);

Code

Model

Picture

Friday, June 15, 12

A one-slide DSL
module Metro

start syntax System = “metro” “{“ Track* tracks “}”;

syntax Track = Id+ stations “;” ;

lexical Id = [A-Za-z][A-Za-z0-9]*;

layout WS = [\ \t\n\r]*;

rel[Id,Id] extractMetroGraph(loc source) =

 {<from, to> | /Track t := parse(#start[System], source),

 (Track) `<Id+ _> <Id from> <Id to> <Id+ _>;` := t};

bool isHub(rel[Id,Id] metro, Id station) = size(metro[Id]) > 1;

void synthesizeDotGraph(loc target, rel[Id from,Id to] metro) {

 writeFile(target,”digraph Metro { node [shape=box]

 ‘<for (<from, to> <- metro) {>

 ‘ <from> -\> <to><}>

 ‘<for (st <- metro<from>, isHub(metro, st)){>

 ‘ <st> [shape=ellipse]<}>

 ‘}”);

Code

Model

Picture

Friday, June 15, 12

a one-slide DSL

Code

Model

Picture

Friday, June 15, 12

a one-slide DSL
What is the point?

Rapid tool development

No boilerplate

No glue

No magic

Done. Next!

Code

Model

Picture

Friday, June 15, 12

a one-slide DSL
What is the point?

Rapid tool development

No boilerplate

No glue

No magic

Done. Next!

This works for

all kinds of meta-programming tools

all kinds of languages

Code

Model

Picture

Friday, June 15, 12

Library development

Code

Model

Picture

Friday, June 15, 12

Library development

Type-safe access to resources such as bug
databases, version management systems,
spreadsheets, webservices Code

Model

Picture

Friday, June 15, 12

Library development

Type-safe access to resources such as bug
databases, version management systems,
spreadsheets, webservices

Front-ends for programming languages

Code

Model

Picture

Friday, June 15, 12

Library development

Type-safe access to resources such as bug
databases, version management systems,
spreadsheets, webservices

Front-ends for programming languages

Generic analyses; statistics, constraints,
satisfiability, …

Code

Model

Picture

Friday, June 15, 12

Library development

Type-safe access to resources such as bug
databases, version management systems,
spreadsheets, webservices

Front-ends for programming languages

Generic analyses; statistics, constraints,
satisfiability, …

Visualization: one-stop-library for any
visualization (graph, chart, browser, …)

Code

Model

Picture

Friday, June 15, 12

State of the art

Friday, June 15, 12

State of the art

Rascal is beta quality, alpha guarantees

Friday, June 15, 12

State of the art

Rascal is beta quality, alpha guarantees

Experience

Software Evolution/Construction at UvA & OU

Bachelors Amsterdam University College (AUC)

Applications in SWAT (see posters)

Friday, June 15, 12

State of the art

Rascal is beta quality, alpha guarantees

Experience

Software Evolution/Construction at UvA & OU

Bachelors Amsterdam University College (AUC)

Applications in SWAT (see posters)

Currently applying lessons-learned

Friday, June 15, 12

Friday, June 15, 12

for research in
analysis

and synthesis
of complex
software
artifacts

Friday, June 15, 12

Software
may be hard

but
Rascal is easy

for research in
analysis

and synthesis
of complex
software
artifacts

Friday, June 15, 12

Software
may be hard

but
Rascal is easy

http://www.rascal-mpl.org

for research in
analysis

and synthesis
of complex
software
artifacts

Friday, June 15, 12

http://www.rascal-mpl.org
http://www.rascal-mpl.org

