



































































































































A

stage s. by Rule R4, we have for k_ ,k as in Rule R

0 V2. vk, 4
ko_i kv f_kv . Further, we have that D S (t~ ) < y.. Since
0 2 - T kq
jO is arbitrary, the Marker Lemma implies that limS D (s) < =

and since ko was arbitrary, there are infinitely many elements of A - B

which cause VvV, € §(D). This again contradicts the hypothesis on V

2 2
for there is now some V' 2_v2 such that infinitely many elements of
A - B cause V' € ).

Now to prove the lemma we note that Vl occurs infinitely often in ¥.
Thus Claims 2 and 3 together imply that Ql € @(x) for almost every
X €A - B. This contradicts our choice of vy (specifically (5.5)).

ii) is proved similarly.

~ A
Lemma 5.6. If infinitely many elements of A - B remain finally
in pocket 6 in final state vl then infinitely many elements of

A - B remain finally in pocket P in final state V.

Proof. Assume
S: = {; €A-B %X remain finally in 6 in final state V'} -is
infinite. Consider for x € S the stage s; + 1 where X enters
" pocket 6 for the last time. Because of Rule §4 we have
v(s; + 1,d(s;,§),§) (= WH;) in case that d(sx,g) > 0. Further
v(s§,§,§) = v(v;,Q,Q) where i < s is maximal such that % 1is on

track D at the end of stage V;. We can then apply Lemma 5.5i) with

X : = D. This implies that for every e € N there are only finitely
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many x € S with d(s;,x) < e.
It follows from Lemma 5.1 that limS q(s,v") exists for every

v" < v'. Fix some 5 € N such that

W' <V Vs > e (als, V") = gley, V).

We consider some state V_ > V' such that ]v

>
0 > e and

O| 0

Sgt = {(x€s | %X has final state VO} is infinite. By the preceding

we have d(s;,§) z_eo for almost all x € SO' Therefore

v £ lim v(t,d(s;,Q),Q) = v(s§ + l,d(s;,i),ﬁ) EEWH;) for almost all

t
G -

This implies that for almost all x € SO there is some Vv > vo

with v € 7X) and thus 3V(¢}) < X.

. Vo v C

Since ¥ V 2 VO ¥s €N (3 (s) <3'(s)) This implies that
Yo A A Vo
3 (t;) < x for almost all x € SO. Therefore 1lim 3 “(s) < ® and
s
V

box BV, has a stable element by the definition of marker 3 0(s).

v

Further every element has state V' at the stage where it enters Bv
and it doesn't change its state as long as it remains there.
If Vv is as in the assumption of the Lemma there are states V' 2 V

of arbitrary length such that {; € A - B | x remains finally in pocket

é in final state v'} is infinite. Thus the claim follows from the

preceding.

Lemma 5.7. If infinitely many elements remain finally in pocket
P(ﬁ) in final state V, then infinitely many elements remain finally in

pocket Q(Q) in final state V.



Proof. Assume that S 1is an infinite set such that every element
of S remains finally in P in final state V. For every x € S there
is a state Vx such that vx-$ vV or v.¢{ Vx and x remains finally in
box Bv . Because of Step 1 in Rule R2 lim a(s,vx) exists for every

X s
x € S. Further only finitely many elements remain finally in a single
box. Therefore {vx | x € 8} is infinite. Finally for every x € S
the element lim a(s,vx) in § has final state Vx

S
Lemmas 5.6 and 5.7 (and their duals) together guarantee that

{x € A - B: x has final state V} is infinite iff

{X €A - B: X has final state v} is infinite.

1 ]
As we argued before (in Section 4) this guarantees that the desired

isomorphism exists.



6. Corollaries, Remarks, open questions.

Corollary 6.1. Suppose that R,R are r-maximal sets with maximal

— e R A
supersets. Then &*(R) = & (R).

Corollary 6.1 does not classify the automorphism type of such sets R
however. For given a maximal set M, there are r.e. sets R and E
such that R Csm M and R Cm M but not R Cs M. R and R cannot be
automorphic. The classification of automorphism types of r-maximal sets
remains an important open question.

Recall that M * = &*(A - B) where B C, A. Using the theorem and
existence theorems for major subsets it is now easy to see that Wf is
a dense countable distributive lattice wiLh each subinterval of M .
again isomorphic to 7*. The countable atomless Boolean algebra is such
a lattice but 7N* 1is not a Boolean algebra.

The V}—theory of x{ is decidable; an important open queétion is
the decidability of the whole theory of M *. Of course undecidability
would yield undecidability of the theory of g*.

Another obvious and related open question is to characterize the
structure of 77*. Since 77* arises as the isomorphism type of &*(R)
for some r.e. sets A, this is an example of such an isomorphism type
which is not a Boolean algebra. Greater understanding of these is needed

to completely characterize Aut(&).
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