






















































































" Case 2a. J": = {j E J': d(s. - l,Y.) > e} is infinite. 
J J 

Our assumption (5.5) on v
1 

implies that 

(5.11) 

Fix k . E O'JO N. 

and 2e ,ko (t"' ) 
y. 
AJ 

with V E'!J) ( Y.) 
' J 

arbitrary, 

(5.12) 

lim 2e,k(s) < 00 for every k EN. 
s 

Then by (5.11) there is a j E J" such that 

/' 

< y ,. 
J 

and 

lim 
s 

Since d(s . 

V2,k0 
J 

D (t" ) < 
y. 

J 

< 00 

A 
1, Y.) > e, there is some 

J 
A A 
Y. by Rule R4. Since 
J 

j 

jo 

> . 
- Jo 

V > V 
2 

is 

Since k
0 

was also arbitrary, (5.12) implies that infinitely many elements 

of A - B cause v
2 

E ~(D). But each of these elements causes some 

V' E g(c) for some V'a,2. v
2 

(namely at the stage immediately before they 

cause d v
2 

E ~(D).) 

Case 2b. For almost eve ry j E J', d(s . -1,y.) = e. 
J J 

Since the claim holds for v
3

, there is according to Claim 1 a state 

v
0 

T~ v
3 

s uch tha t infinite ly ma ny e l eme nts of A - B cause v
0 

in (D). By Lemma 5 . 4 we can choose v0 so that v
0 

E '/7'/. (;) for 
A A " 

a lmos t e ve ry XE A - B. Fix ko,jo E N. By the hypothe sis on VO, 
vo,ko A 

lim D (s) < 00. Thus the r e is a j > jo such that j E J', d(s . -1,Y.) 
s 

vo,ko 
J J 

A 

'/7'/.( yj) and D (t A ) < " A 

Vo E yj" Since y. was put into state v2 at y. 
J J 

= e , 



stage s. 
J 

by Rule we have for 

k
0 

< k <kV. Further, we have that 
\)0 - 2 

j
0 

is arbitrary, the Marker Lemma implies that lim 
s 

"' < Y.. Since 
J 

V2' kO 
D (s) < oo 

and since k
0 

was arbitrary, there are infinitely many elements of A - B 

which cause v2 E g(D). This again contradicts the hypothesis on v
2 

for the re is now some \) I > \) 
- 2 

A - B cause V' E 8(C) . 

Now to prove the lemma we 

such that infinitely many elements of 

note that \)1 occurs infinitely often 

Thus Claims 2 and 3 together imply that \)1 E ~(x) for almost every 

"' XE A - B. This contradicts our choice of vl (specifically (5.5)). 

ii) is p roved similarly. 

"' "' 

in 

Lemma 5.6. If infinitely many elements of A - B remain finally 

"' in pocket Q in final state v
1 

then infinitely many e lements of 

A - B remain finally in pocket P in final state v. 

Proof. Assume 

"' "' "' I "' S: = {x EA - B x "' remain finally in Q in final state V'} is 

~ E "' infinite. Conside r for s the stage S"' + 1 where X enters 
X 

A A 

pocket Q for the last time. Because of Rule R4 we have 

A A 

771 (~) 
A 

v (s" + l,d(s",x) ,x) E in case that d(s , x) > 0. Further 
X X X 

V(s " , ~ 1 ~) 

A A 

is ¾ = \) (v "IX Ix) where V " < S" maximal such that is on 
X X X X 

track D at the end of stage V"' • 
X 

We can then apply Lemma 5.5i) with 

X : = D. This implies that for e v e ry e EN there are only finitely 

!r. 



"' many x ES with d(s"',x) < e. 
X 

It follows from Lemma 5.1 that lim q(s,v") exists for every 
s 

v" < v'. Fix some e
0 

E N such that 

W" < v• vs.:':_ e
0

(q~s,V") = q~e
0

,v")). 

We consider some state Vo > V' such that !vol > e and 
- 0 

{; E S I 
A 

VO} SO: = X has final state is infinite. By the preceding 

"' ~E we have d(s"',x) > e for almost all so. Therefore 
X - 0 

A A A 

v
0 
~ limt v(t,d(s~ 1 x) ,x) = V(s"' + l,d(s"',x) ,x) E 71/(x) 

X X 
for almost all 

This implies that for almost all x E s
0 

there is some V ~ v
0 

with v E 7'{~) and thus 3V (t"') < ~-
x 

Since V v ~ v
0 

Vs EN (3Vo(s) < 3v(s)) This implies that 

Vo A A 

3 (t;) < x for almost all x E s
0

• Therefore 
, 

Vo 
lim 3 (s) < 00 and 

s 

box has a stable element by the definition of marker 
Vo 

3 (s) • 

Further e very element has state V' at the stage where it enters Bv 

and it doesn't change its state as long as it remains there. 

If v is as in the assumption of the Lemma there are states V' ?;- V 

of arbitrary l e ngth such that{~ EA B"' I x"' remains finally in pocket 

Q in final state v•} is infinite . Thus the claim follows from the 

preceding . 

Le mma 5.7. If infinite ly many eleme nts remain finally in pocket 

P (P ) in final state v, then infinite ly many e leme nts r e main finally in 

"' pocket Q(Q) in final state V. 



Proof. Assume that S is an infinite set such that every element 

of S remains finally in P in final state V. For every x Es there 

is a state V such that V ~ V or v~< V and x remains finally in 
X X X 

QOX B . Because of Step 1 in Rule R2 lim q(s,V) exists for every 
V · X 

X S 

x ES. Further only finitely many elements remain finally in a single 

box. Therefore {v I x E S} 
X 

" the element lim q(s,V ) in 
X 

S -

Lemmas 5.6 and 5.7 (and 

{x EA - B: x 

{x" " " EA - B: X 

is infinite. Finally for every x E S 

" Q has final state V . 
X 

their duals) together guarantee that 

has final state 

has final state 

v} 

v} 

is infinite iff 

is infinite. 

As we argued before (in Section 4) this guarantees that the desired 

isomorphism exists. 



6. Corollaries, Remarks, open questions. 

A 

Corollary 6.1. Suppose that R,R are r-rnaximal sets with maximal 

supersets. Then * - * A & (R) ;; & (R) • 

Corollary 6.1 does not classify the automorphism type of such sets R 

Al 

however . For given a maximal set M, there are r.e. sets R and R 

such that RC M and 
sm 

A 

RC M but not 
rn 

A 

RC M. 
s 

A 

R and R cannot be 

automorphic. The classification of automorphism types of r-maximal sets 

remains an important open question. 

Recall that 77/ * = 8. * (A - B) where B C A. 
rn 

Using the theorem and 

existence theorems for major subsets it is now easy to see that r!( is 

I 

a dense countable distributive lattice with each subinterval of 771 * 

again isomorphic to 'm*. The countable atomless Boolean algebra is such 

a lattice but ?ll* is not a Boolean algebra . 

The v]-theory of is decidable; an important open que stion is 

the decidability of the whole theory of 'm * Of course undecidability 

would yield undecidability of the theory of &* 

Anothe r obvious and r e late d open question is to characterize the 

structure of '171 *. .,.,,. * Since ' '( arises as the isomorphism type of &*(A) 

for some r.e. sets A, this is an example of such an isomorphism type 

which i s not a Boolean algebra. Greater unde rstanding of these i s needed 

to completely characterize Aut(&). 
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