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In fact, if

a‘ﬁ' W U W, Ueeol oy

. then we have x(s) = y(s), { which implies :

n(r(s)-y(s)) = v(n,s)z.

If s € Vu for some y = 1,2,...,k, we have the cstimate

n(r(s)-y,(s))

ne o (Py)v(ey(py)s8)z

'

V(H.S)z- ’ I g

.

This is clear for 1 '= co(pi) and=i§ follows from
neo(p)¥(ey(p,),8)z "= ~¥(e (p,),8)z i " ).
20 = Y(n,s)z, i g adhda

in the case i g il-eo(pn). So, if 's € W, U W, U...U W, we

have Uevey
k %
n(r(s)-y(s)) =) sip (s)(x(s)-y,(s)) ii-v i)
: =0 e : .

N i oo X

< po(8)V(n,9)z 4 T (s)¥(n,8)z
sEWn

n£0
= v(n,s)z, :

which proves the claim,

Next we show that (r,z) is a strongly unique solution

of MPR(y). For this, define for each

the set
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By definition of the wu there exists an Ng € {-1,1}] such i

that n_ = co(pn) for each x € 4_ . Let ¢ L B
. €: V, UV, u..u Vo {-1,1) ; :

be the signature defined by ¢(s) = L : P

For each s € V; UV, U...U V, we have s ¢ W . Thus,

it follows ° fis 3

ng(r(s)-y(s)) = ngA P, (s)ne (p,)Y(e (p,),s)z

-
o~
-
N

= I p“(s)YSﬂs,s)z = N(ns;a)z,-

nEb

which implies -’

M oi= {(n,s) € T | n(x(s)-¥(s)) = ¥(n,s)zl2> M/« 3§ v

Since, by construction, :Mo C”Mc'” itufollqys that M  is ¢ériti-
cal with respéctJt6~-r.giMoreover, we' can: assume without loss fof
generality that - z; o So, it follows from theorem 1.1, that-
(r,z) is a solution of MPR(y). As ‘M contains a neighborhood
of Mo’ it contgins also a maximal critical set, Hence condi-
tion (a) ‘of theorem 4.1 of [3] is satisfied, which implies that

(r,z) is a strongly unique solution of MPR(Y).
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§3. MAIN RESULTS

.-THEOREM 3.1. Let : ‘. '

9 := {x € £ | MPR(x) has a unique solution]

ﬂ*:: {xe £ |.MPR(x) has a strongly unique solution]}

SL 1= (x€ £ | 25 Ao}s | /7 1 1.

.

Then we have 1 @

- = i . 5
!Ii N SL D 94N SL..T.

PROOF. Let x .be in: ¥ N SL. By lemma 2.2 each neighborhood of,

Mo contains a maximal critical set. - Hence, the result follows-.i:

]

from lemma 2.3. A 2, 4,

#
THEOREM 3.2. ::Consider .the following conditions: 177, .2
(i) wNSLo L AISLEL = £ 0 sL
(1) af AsLD £ sLu oy oo

(iii) For each r € V: If an open set WC T contains a
critical set M with respect to r, then W contains-

also a maximal critical set with respect to r. - ..~
Then (i) and (ii) are equivalent and (iii) implies (ii).

PROOF. (i) = (ii): Using theorem 3.1 we have

-ﬁﬂSLCﬁﬂSLC!l'ﬂSL. . EL.™

(i1) = (i): clear.:)- = ...

(iii) » (4i): Let x 'in £ N SL be given and (r,z) be a so-"
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lution of MPR(x). Then M  is critical with respect to =r
(compare [ 3], theorem 1.1). By assumption.'each neighborhood
of Mo contains a maximal critical set with respect to r.

So, (ii) follows by lemma 2.3.
THEOREM 3.3. Assume #S < ®», Then the following conditions are
equivalents: )

(1) (r,z) is the unique solution of MPR(x);

(ii) (r,z) 4is the strongly unique solution of MiR(x);

(idid) M  contains a maximal criticzl set with w»egpect to r.

PROOF. The implication (ii) = (i) is elecar and the implication

- (iii) = (4i) is proved in theorem 4.1 of [[3]. To prove (i) = (iii
\ '

' we observe that Mo is open. Thus, by  z2rama 2.2, it centains

a maximal critical set with re. pect to r.
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B §4. EXTENSION TO cots]

v
Let S, be‘a locally .compact Hausdorff space,’ S, & oy vy
and denote by -Co[slj. the rea%,vector space of all continuous
functions x: §, * R which vanish at 'infinity, d.e. for each

€ > 0 the set P I
(s€ sy | Ix(s)logedi-{ 2] - <}

is compact, and define the locally compact Hausdorff-space

-ﬂLeﬁ B,C:. 5, .» RNf-be qontiﬁhous functions -

T HE [—l,l] ‘X S 1

1 1%
such that the.sget hal Lho o
N | (B,v) ita Y90 . .
U t= R ¢ s oo
(ve Em ,‘1)11", .

NN (ver ] (c(s), W >0} o
sESl ‘CS’

is non-cmpty.: LetantﬁTl +. R be cqntinuoUS non-negative such;, ¢ i~
that p ek

¥(1,0)~ay & L00y) e g vi-tsr tea

are in cotsl] for suitable real numbers RN =05 g o=y
For each x:€ COESi] we consider the minimization ks e

problem

MPRO(x). Minimize p(v,z) = z

- subject to ! I=. ! ‘@

<B(S)'V) = g z's nx(s).’
(moayer, | <eCeram, T iRz E (o)

Thi: minimization ‘problem “is- reldted: to the minimization-i: iwi -
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problem described in the introduction by considering the one-point

compactification § := s, v {»] of S, Since the functions.

X, Y(lv')'alv Y(-l")—a_ln %g%%% for V:E 3’ " v s

are in Co[Sl], they can be extended to functions in cls], «
which have a zero in the point =, We denote the extended func-
tions by the same symbol. Then, given  'x yin,'Co[Sl], :paiﬁrct‘,
(ryz) 4in VxR is a solution of the minimization problem T... .
MPRo(x) if and only if (r,z) - is a 'solution of MPR(x) :with the

additional side condition r(») = 0. We remark that, if a, >0

2

and a 1 > 0, theq the point o does not belong to the 'set !
[(ﬂ!s) €T I n(r(s)-x(s)) = y(n,s)z). tEy Nek,
This is an immediate consequence of the inequalities . | 13t lux

n(x(e)-x(=)) =0 )<.-min'('ui-,a»_i)z.:g.."Y.(in,m)LZ‘._,‘ s v lq.r)7.

=,Then, from the 'results ‘of §3,:we:can derive: the: following ~the< 1o iy

orems: ¢ '

THEOREM 4.1. Consider the minimization problem MPRo(x) and "~

# =

assume a., > O and:a_, > 0. " Then we have™ 9" N SL o U ﬁ SL-t,

1 3

PROOF. It was provided in the proof of lemma 2.3 :that the func-
tion y can be constructed such that y(s) = o0, if x(5) = o,
for some fixed 3§ € S\DoM(e_ ). So, we can obtain y(e) = O and -:

apply the proof of theorem 3.1. t
# £
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THEOREM 4.2. Let Sl be a discrete space and Qisa_y > 0.
Then the following conditions are equivalent:
' 4
(1) r is the unique solution of MPRd(x);n oo duly

(2) r is the strongly unique solution, of MPRO(x)-v e L

(3) Mo contains a maximal critical set with respect to r.,

PROOF. It suffices .to observe that;,since~’°v¢,M6,'uthen;'M6 A

is open. So the proof of thccrem 3.3 applies.t. @ o i =,

: . # <
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