
























































(T10) HOLDS-AT(not(not(p)),I) <=> HOLDS-AT(p,I).
We have a chain of equivalences:
HOLDS-AT(not (not(p)),I) <=> ~“HOLDS-AT(not(p),I) (by (D3))
<=> ~~HOLDS-AT(p,I) (by (D3))
<=> HOLDS-AT(p,I).

(T11P) (¥t)[IN(t,T) => HOLDS-IN(p,t)] => HOLDS-ON(p,T).

Suppose (a) (Vt)[IN(t T) => HOLDS-IN(p,t)], and let I be any instant. Suppose
(b) WITHIN (I,T). Let S be any interval, and suppose (c) WITHIN(I,S). By
(b), (c), and (I3), there is an interval U such that (d) IN(U,T) and (e)
IN(U,S). By (a) and (d), we have (f) HOLDS-IN(p,U). By (e), T£), and (T1),
we have (g) HOLDS-IN(p,S). The inference from Tc) to (g) holds for any
interval S, so by (SP) we have (h) HOLDS-AT(p,I). Finally, the inference from
(b) to (h7 holds for any I, so by (D2) we have HOLDS-ON(p,T).

(T12P) HOLDS-ON(p,T) & LIMITS(I,T) => HOLDS-AT(p,I).

Suppose (a) HOLDS-ON(p,T) and (b) LIMITS(I,T), and let S be any interval.
Suppose (c) WITHIN(I,S). Then from (b), (c) and (I4), there is an interval U
such that (d) IN(U, S) and (e) IN(U,T). From (a), (e), and (T2), we infer (£)
HOLDS-ON(p,U), whence, by (T3), we have (g) HOLDS-IN(p,U). But from (d), (g),
and (T1), we have (h) HOLDS-IN(R,§). The inference from (c) to (h) holds for
any interval S, so by (SP) we have HOLDS-AT(p,I).

(T13P) HOLDS-AT(not(p),I) => (4t)[WITHIN(I,t) & HOLDS-ON(not(p),t)].

Suppose (a) HOLDS-AT(not(p),I). Then by (a) and (D3), we have (b) ~HOLDS-
AT(p,I). From (b) and (SP) we infer that there must be an interval T such
that (c) WITHIN(I,T) and (d) “HOLDS-IN(p,T). From (d) and (T9) we have (e)
HOLDS-ON(not(p),T); the conjunction of (c) and (e) gives us the required
result.

(T11M) HOLDS-IN(p,T) => (4t)[IN(t,T) & HOLDS-ON(p,T)].

Suppose (a) HOLDS-IN(p,T). By (a) and (D1), there is an instant I such that
(b) WITHIN(I,T), and (c) HOLDS-AT(p,I). From (c) and (SM), there is an
interval S such that (d) WITHIN(I,S) and (e) HOLDS-ON(p,S). By (b), (d) and
(13), there is an interval U such that (f) IN(U,T) and (g) IN(U,S). By (e),
(g) and (T2), we have (h) HOLDS-ON(p,U). The conjunction of (£f) and (h) gives
us the required result.

(T12M) HOLDS-AT(p,I) & LIMITS(I,T) => HOLDS-IN(p,T).

Suppose (a) HOLDS- AT(R,I) and (b) LIMITS(I,T). By (a) and (SM), there is an
interval S such that (c) WITHIN(I,S) and (d) HOLDS- ON(p,S). By (b) (¢) and
(14), there is an interval U such that (e) IN(U,S) and (f) IN(U,T). By (d),
(e) and (T2), we have (g) HOLDS- -ON(p,U), whence, by (T3), we deduce (h) HOLDS-
IN(p,U). Finally, from (£), (h), and (Tl), we have HOLDS-IN(p,T).

(T13M) (¥t) [WITHIN(I,t) => HOLDS-IN(not(p),t)] => HOLDS-AT(not(p),I).
Suppose (a) (¥t)[WITHIN(I,t) => HOLDS-IN(not(p),t)], and let T be any
interval.  Suppose (b) WITHIN(I,T). Then by (a) and (b) we have HOLDS-
IN(not(p),T), which by (T8) is equivalent to (c) THOLDS-ON(p,T). The
inference from (b) to (c) is general, so we have
(¥t) [WITHIN(I,t) => “HOLDS-ON(p,t)]

which is straightforwardly equivalent to

(d) ~(3t) [WITHIN(I,t) & HOLDS-ON(p,t)].
By (d) and (SM), we have (e) “HOLDS-AT(p,I), which by (D3) is equivalent to
HOLDS-AT(not(p),I), as required.
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