




































As far as I can see, there is nothing that can be done in Allen's system 
that cannot be done in the revised version, and the latter has the advantage 
over the former of making it possible to reason about both continuous change 
and instantaneous events, both of which, I believe, ought to be accountable 
for in any general theory of temporal phenomena. I should like to stress, 
though, that despite the apparent severity of my revisions, the system I have 
proposed remains very close in spirit to Allen's. 

APPENDIX: PROOFS OF THE THEOREMS 

(Tl) HOLDS-IN(f,!) & IN(~, .!)=> HOLDS-IN(£,!). 
Suppose (a) HOLDS-IN(2,1), and (b) IN(1,J). Then by (a) and (Dl) there is an 
instant I such that (c) WITHIN(I,S) and (d) HOLDS-AT(p,l). By (Il), (b), and 
(c), we have (e) WITHIN(l,!), whi~h by (Dl) and (d) gives us HOLDS-IN(£,!). 

(T2) HOLDS-0N(2,!) & IN(~,!)=> HOLDS-ON(£,~). 
Suppose (a) HOLDS-ON(£,!), and (b) IN(1,J). Let 1 be any instant in~. so we 
have (c) WITHIN(I,S) . By (b), (c) and (Il), we have (d) WITHIN(I,T). By (a), 
(d) and (D2), HOLDS-AT(2,l). This holds for every 1 in 1, so by (D2), HOLDS
ON(2,~). 

(T3) HOLDS-ON(2,!) => HOLDS-IN(£,!). 
Suppose (a) HOLDS-0N(2,I). By (12), there is an 
(b) WITHIN(I,T), and by (a), (b), and (D2) we have (c) 
from (b) , (~)-and (Dl) we deduce HOLDS-IN(2,!). 

instant I such that 
HOLDS-AT(£:!). Finally, 

(T4) H0LDS-ON(2,I) => (V!)[IN(!,!) => HOLDS-IN(£,!)]. 
Suppose (a) HOLDS-ON(2,!), and let 1 be any interval. Suppose (b) 
Then by (a), (b) and (T2), we have (c) HOLDS-ON(2,~) . . From (c) and 
have (d) HOLDS-IN(2,1). The inference from (b) to (d) holds for any 
1, so we have (V!)[IN(!,!) => HOLDS- IN(£,!)]. 

(TS) (f!)[IN(!,!) & HOLDS-ON(£,!)] => HOLDS-IN(£,!). 

IN(~,I). 
(T3), we 
interval 

Suppose (a) IN(!,!) and (b) H0LDS-ON(2,!). By (b) and (T3), we have (c) 
HOLDS- IN(£,!), and by (a), (c) and (Tl), HOLDS-IN(£,!). 

(T6) HOLDS- AT(2,l) => (V!)[WITHIN(l,!) => HOLDS-IN(£,!)]. 
Suppose (a) HOLDS- AT(£,1), and let T be any interval. Suppose (b) 
WITHIN(I,T) . By (a), (b), and (Dl), we have (c) HOLDS-IN(£,!). The inference 
from (b)- to (c) holds for any i nterval!, so we have (V!)[WITHIN(I,!) => 
HOLDS- IN(£,!) ]. 

(T7) (ft)[WITHIN(I,t) & HOLDS- ON(2,!)] => HOLDS-AT(£,1). 
Suppose - (a) WITHIN(I,T) and (b) HOLDS-ON(2,!). Then by (a), (b) and (Dl), 
HOLDS- AT(2, l ) . - -

(T8) HOLDS- IN(not(E) ,!) <=> ~HOLDS-ON(2,!). 
We have the following chain of equivalences: 

HOLDS- IN(not(2),!) <=> (fi) [WITHIN(i,T) & HOLDS-AT(not(2),i)] 
<=> <+I)[WITHIN<I,I) & ~HoLDS-AT(£,i)J 
<=> ~cvi)[WITHIN(i,!) => HOLDS-AT(£,i)] 
<=> ~HOLDS-ON(£,!) 

(T9) HOLDS-ON(not(2) ,!) <=> ~HOLDS-IN(£,!). 

(by ( Dl)) 
(by ( D3)) 

(by (D2)) 

This is proved by an exact l y analogous argument to that used in proving (T8). 
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(TIO) HOLDS-AT(not(not(2)),!) <=> HOLDS-AT(£,!). 
We have a chain of equivalences: 

HOLDS-AT(not(not(2)),!) <=> ~HOLDS-AT(not(£),!) 
<=> ~~HOLDS-AT(2,!) 
<=> HOLDS-AT(£,!). 

(by (D3)) 
(by (D3)) 

(TllP) (V!)[IN(!,!) => HOLDS-IN(£,!)] => HOLDS-ON(£,!). 
Suppose (a) (V!)[IN(!,!) => HOLDS-IN(2,!)] , and let! be any instant. Suppose 
(b) WITHIN (!,!). Let~ be any interval, and suppose (c) WITHIN(!,~). By 
(b), (c), and (13), there is an interval U such that (d) IN(U,T) and (e) 
IN(U,S). By (a) and (d), we have (f) HOLDs=rN(£,U). By (e), {fT, and (Tl), 
we -have (g) HOLDS-IN(p,S). The inference from Tc) to (g) holds for any 
interval~. so by (SP) we have (h) HOLDS-AT(£,!). Finally, the inference from 
(b) to (h) holds for any!, so by (D2) we have HOLDS-ON(£,!). 

(Tl2P) HOLDS-ON(£,!) & LIMITS(!,!)=> HOLDS-AT(£,l). 
Suppose (a) HOLDS-ON(£,!) and (b) LIMITS(!,!), and let~ be any interval• 
Suppose (c) WITHIN(!,~). Then from (b), (c) and (14), there is an interval Q 
such that (d) IN(U,S) and (e) IN(U,T). From (a), (e), and (T2), we infer (f) 
HOLDS-ON(2,Q), wh;n~e, by (T3), w; have (g) HOLDS-IN(£,Q). But from (d), (g), 
and (Tl), we have (h) HOLDS-IN(£,~). The inference from (c) to (h) holds for 
any interval~. so by (SP) we have HOLDS-AT(£,!). 

(T13P) HOLDS-AT(not(£),!) => (f!)[WITHIN(!,!) & HOLDS-ON(not(£),!)]. 
Suppose (a) HOLDS-AT(not(2),!). Then by (a) and (D3), we have (b) ~HOLDS~ 
AT(£,!) . From (b) and (SP) we infer that there must be an interval T such 
that (c) WITHIN(!,!) and (d) ~HOLDS-IN(2,!). From (d) and (T9) we have (e) 
HOLDS-ON(not(£),!); the conjunction of (c) and (e) gives us the required 
resul t. 

(TllM) HOLDS- IN(£,!)=> (f!)[IN(!,!) & HOLDS-ON(£,!)]. 
Suppose (a) HOLDS-IN(2,!). By (a) and (DlJ, there is an instant I such that 
(b) WITHIN(!,!), and (c) HOLDS-AT(£,!). From (c) and (SM), there is an 
interval~ such that (d) WITHIN(!,~) and (e) HOLDS-ON(£,~). By (b), (d) and 
(13), there is an interval U such that (f) IN(U,T) and (g) IN(U,S). By (e), 
(g) and (T2), we have (h) HOLDS- ON(2,Q). The c~njunction of (f) ~nd (h) gives 
us the required result. 

(Tl2M) HOLDS- AT(2,!) & LIMITS(! ,!)=> HOLDS-IN(£,!). 
Suppose (a) HOLDS-AT(£,!), and (b) LIMITS(!,!). By (a) and (SM), there is an 
interva l ~ such that (c) WITHIN(!,~) and (d) HOLDS-ON(£,~). By (b), (c) and 
(14), there is an interval U such that (e) IN(U,S) and (f) IN(U,T). By (d), 
(e) and (T2), we have (g) HOLDS-ON(2,Q), whence~ by (T3), we dedu~e (h) HOLDS
IN(£,Q). Finally, from (f) , (h), and (Tl), we have HOLDS-IN(£,!). 

(Tl3M) (V!)[WITHIN(!,!) => HOLDS-IN(not(£),!)] => HOLDS-AT(not(£),l). 
Suppose (a) (V!)[WITHIN(!,!) => HOLDS-IN(not(2),!)], and let T be any 
interval. Suppose (b) WITHIN(I,T). Then by (a) and (b) we have HOLDS
IN(not(2),!) , which by (T8) is -equivalent to (c) ~HOLDS-ON(£,!). The 
inference from (b) to (c) is general, so we have 

(V!)[WITHIN(!,!) => ~HOLDS-ON(£,!)] 
which is straightforwardly equivalent to 

(d) ~(t!)[WITHIN(!,!) & HOLDS-ON(£,!)]. 
By (d) and (SM), we have (e) ~HOLDS-AT(2,!), which by (D3) is equivalent to 
HOLDS-AT(not(2),!), as required. 
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