Constraint-based Run-time State Migration
for Live Modeling

Ulyana Tikhonova
Centrum Wiskunde & Informatica (CWTI)
Amsterdam, The Netherlands
ulyana.tikhonova@cwi.nl

Tijs van der Storm
Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands
University of Groningen
Groningen, The Netherlands
t.van.der.storm@cwi.nl

Abstract

Live modeling enables modelers to incrementally update
models as they are running and get immediate feedback
about the impact of their changes. Changes introduced in a
model may trigger inconsistencies between the model and
its run-time state (e.g., deleting the current state in a statema-
chine); effectively requiring to migrate the run-time state to
comply with the updated model. In this paper, we introduce
an approach that enables to automatically migrate such run-
time state based on declarative constraints defined by the
language designer. We illustrate the approach using NEXTEP,
a meta-modeling language for defining invariants and mi-
gration constraints on run-time state models. When a model
changes, NEXTEP employs model finding techniques, backed
by a solver, to automatically infer a new run-time model
that satisfies the declared constraints. We apply NEXTEP to
define migration strategies for two DSLs, and report on its
expressiveness and performance.

CCS Concepts « Software and its engineering — Do-
main specific languages; Software prototyping; « Theory
of computation — Programming logic;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’18, November 5-6, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6029-6/18/11...$15.00
https://doi.org/10.1145/3276604.3276611

Jouke Stoel
Centrum Wiskunde & Informatica (CWTI)
Amsterdam, The Netherlands
Eindhoven University of Technology
Eindhoven, The Netherlands
jouke.stoel@cwi.nl

Thomas Degueule
Centrum Wiskunde & Informatica (CWTI)
Amsterdam, The Netherlands
thomas.degueule@cwi.nl

Keywords live modeling, run-time state migration, DSL,
relational model finding

ACM Reference Format:

Ulyana Tikhonova, Jouke Stoel, Tijs van der Storm, and Thomas
Degueule. 2018. Constraint-based Run-time State Migration for Live
Modeling. In Proceedings of the 11th ACM SIGPLAN International
Conference on Software Language Engineering (SLE ’18), November
5-6, 2018, Boston, MA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3276604.3276611

1 Introduction

Live modeling [21, 22] allows users of executable model-
ing languages to enjoy live, immediate feedback when edit-
ing their models, without having to restart execution. Live
modeling has its roots in live programming, which allows
developers to change program code and use the running ap-
plication simultaneously, without long edit-compile-restart
cycles [15?]. When the programmer changes the program
code, its execution state is updated accordingly on-the-fly.
This effectively bridges the “gulf of evaluation” [11] between
changing a program and the impact of these changes.

While the value of live modeling and live programming
is widely recognized [10, 11, 20], engineering live software
languages requires a lot of effort and a deep understanding of
the host language and its particular domain of application [3].

A central problem for live modeling languages is how to
reconcile changes to a model with the run-time state of its
execution. Changes to a model or program might invalidate
the current run-time state. That is, when the executing model
is modified, its run-time state still corresponds to the version
before the change. The problem is analogous to migrating
a database after a change to the database schema. So the
question we address in this paper is how to migrate run-time
state after a change to an executing model.

https://doi.org/10.1145/3276604.3276611
https://doi.org/10.1145/3276604.3276611

SLE ’18, November 5-6, 2018, Boston, MA, USA

Earlier work has explored (re)constructing the required
migration steps to the run-time state from the changes ap-
plied to the model [22]. Unfortunately, this requires intimate
operational knowledge of how the change of the model itself
is propagated to the runtime in the first place, leading to
brittle, imperative, and non-modular code.

In this work, we employ model finding techniques [13] to
migrate the run-time state of an executing model. A declara-
tive, constraint-based specification of invariants and migra-
tion policies on the run-time state is input to a solver to infer
a model that satisfies these constraints, given a representa-
tion of the old and new models, and the old run-time state.
The resulting model is taken as the new run-time state of
the updated version of the DSL program, and execution can
continue.

We illustrate this approach using NEXTEP, a prototype
meta-modeling language for defining the metamodel of both
modeling language and run-time state model, and migra-
tion policies as constraints. NEXTEP specifications are then
transformed to ALLEALLE, a language for relational model-
finding modulo theories. The ALLEALLE specification is then
processed by the Z3 [6] constraint solver to obtain a new
consistent run-time state instance.

The remainder of this paper is organized as follows. In
Section 2, we introduce a motivating example of live mod-
eling and detail the associated challenges. In Section 3, we
present a framework for structuring the constraints related
to run-time state migration. In Section 4, we introduce NEx-
TEP, our prototype language for live modeling. In Section 5,
we evaluate the performance and expressiveness of NEXTEP.
Finally, we discuss related work in Section 6 and draw some
conclusions in Section 7.

2 Motivating Example

Unlike General-Purpose Languages (GPL), DSLs capture the
syntax and semantics of a specific domain. As a result, the
cognitive distance between DSL models and their dynamic
behavior can be arbitrarily large. Live modeling can thus
be considered especially beneficial for DSLs because the
dynamic effect of a change in a DSL program is harder to
predict.

Throughout this paper, we use a simple finite-state ma-
chine (FSM) DSL as a running example to explain the ideas
and challenges of live modeling, and to illustrate our ap-
proach. A program in this DSL is a particular machine that
consists of a number of states and transitions. An example
scenario of live modeling for the FSM DSL is depicted in
Table 1. The starting point (Step #0) is a simple machine with
two states closed and opened and transitions between them.
We choose to model the run-time state of machines as the
combination of two elements: the current state of execution
current and a map visited that keeps track of how many
times each state has been visited. Note that the choice of

U. Tikhonova, J. Stoel, T. van der Storm, and T. Degueule

Table 1. Live modeling scenario ’Add New State for the FSM
DSL

Step DSL program Run-time state
current:
closed opened closed
#0 O isited
o g visited:
(initial)
closed — 0
opened — 0
current:
#1 closed opened opened
(interpreter Co\ visited:
step) closed — 1
opened — 0
closed opened current:

#2 O 727
(user edit) visited:
???

locked

what is part of the run-time state and how it is specified is up
to the language designer. In particular, it can be specified as
an extension of the static metamodel or as a separate seman-
tic domain [4]. Finally, we assume the FSM DSL is executed
by a step-based interpreter such that the user can trigger
events to trigger transitions, and consequently, modify the
run-time state. Changing the model pauses the interpreter
for an instant so that the new version can be reloaded.

At Step #0, the current state is initialized to the initial state
closed and every counter is initialized to 0. At Step #1, fol-
lowing the first step of execution, the user triggers an event,
which changes the current state to opened and increments
the visited counter for closed by one. At Step #2, the user
decides to insert a new state locked in the currently running
machine. As depicted in Table 1, the question that arises
is: what is the new run-time state at this point? Does the
newly added state locked become the current state? How
should locked be captured in the visited map?

These questions get even more complicated when con-
sidering the live modeling scenario depicted in Table 2. In
Step #2 of this scenario, the user chooses to delete the state
locked, which is at this point the current state of the machine.
Here an obvious question is: which state should be the new
current state of the updated machine? Should it be reverted
to the initial state of the machine?

A generic live modeling engine cannot provide answers to
these questions, because they are inherently domain-specific
and should thus comply with domain-specific run-time state
migration policies. Ultimately, it is the language designer’s

Constraint-based Run-time State Migration for Live Modeling

Table 2. Live modeling scenario 'Remove Current State’ for
the FSM DSL

Step DSL program Run-time state

current:

closed opened

closed

#0 visited:
(initial) closed — 0
opened — 0

locked locked — 0

current:
locked

visited:
closed — 1
opened — 0
locked — 0

closed opened
#1
(interpreter

step)
locked

current:
closed opened

#2 777
(user edit) @ visited:

77?7

responsibility to define these migration policies. We investi-
gate how a language designer can express them in the next
section.

3 Structuring Constraints for Run-time
State Migration

When considering a situation of live modeling, as described
in the previous section, we can distinguish two basic com-
ponents: a static model (denoted p) and a run-time model
(denoted x). The static model captures the structure (i.e.,
code) of the DSL program.' The run-time model captures the
state of the execution of the DSL program. As we focus on
the situation in which a DSL program is changed during its
execution, we distinguish two versions of the static and run-
time models: p and x before the program has been changed,
and p’ and x” after the program has been changed. Thus, we
can reformulate the problem of finding a new run-time state
as follows: given that p, x, and p” are known, how do we find
x'?

A potential approach would be to modify the model inter-
preter to repair the run-time state imperatively whenever
the program is changed. Unfortunately, as we discuss in
more detail in Section 5.3, this approach is error-prone and
non-modular. In this paper, we apply model-finding tech-
niques to infer the run-time state based on a set of declarative
constraints. Concretely this means identifying requirements

! Although according to the main idea of live modeling the static model is not
static anymore, we still use the term static for the sake of the terminology
legacy.

SLE ’18, November 5-6, 2018, Boston, MA, USA

U

H(x')

Figure 1. Partitioning and selection of the new run-time
model (x”)

for x” and representing these as a set of constraints in re-
lation to p, x, and p’, and then solving the constraints for
x’. We introduce the following two categories (subsets) of
constraints.

Semantic relations R(p’, x’): these constraints ensure
that the new run-time state x’ is semantically consis-
tent with the current (new) version of the DSL model
p’. Note though that there might be multiple—possibly
infinite—x’ that are semantically consistent with p’.

Migration rules M(p, x,p’,x’): these constraints pro-
vide the possibility to take into account what has
changed in the DSL model and project this change
onto the run-time state. Migration rules restrict the
choice of (semantically consistent) x” in preference for
those x’ that reflect the change that has happened to
the DSL (static) model.

The definition of a solution space by semantic relations
R(p’,x") and its filtering by migration rules M(p, x,p’, x")
is illustrated by the Venn diagram depicted in Figure 1. Al-
though migration rules restrict the choice of possible solu-
tions, there still can be many (potentially infinite) x’ that
satisfy the semantic constraints. Selecting an arbitrary ele-
ment of this set as the new run-time state for the updated DSL
program might not result in an intuitive new run-time state.
For instance, in our previously described FSM scenario "Add
New State’ (Table 1), it is perfectly valid to reset the current
to opened, and set the visited entities to 1000. Although this
would be a correct run-time state (i.e., a valid solution to our
set of constraints), it would only add confusion to the user
of the DSL.

To find the most suitable new run-time state, we need to
introduce a heuristic for selecting one of potentially many
solutions. We represent such a heuristic as H(x") in Figure 1.
What are good heuristics may depend on many variables
related to domain-specific semantics and usability. One ex-
ample of a heuristic that we will use in the remainder of
this paper is the minimum distance D(x, x’). The minimum

SLE ’18, November 5-6, 2018, Boston, MA, USA

distance heuristic requires that the new run-time state x’
should be as close as possible to the previous run-time state
x. Intuitively, this heuristic captures the principle of “first, do
no harm” (i.e., do not break parts of the run-time state that do
not have to change), and the “principle of least surprise” (i.e.,
prefer small incremental changes over invasive ones). In this
way, we support the incremental process of editing a DSL
model, providing live feedback in relation to the previous
run-time state of the DSL program.

To apply constraint-based run-time state migration, lan-
guage designers must specify the semantic relations R(p’, x”)
and migration rules M(p, x, p’, x”). Semantic relations can be
automatically extracted from the DSL definition itself (meta-
model, static and dynamic semantics). Migration constraints
are explicitly specified to relate p, p’, x, on the one hand, and
x’, on the other hand.

In the case of the FSM DSL, if the user chooses to delete
the state pointed to by current (Table 2), a possible strategy
is to reset current to the initial state of the machine. Another
strategy is to set the current to the state that was the “closest”
to the deleted state. Both policies are equally valid: this is
the designer’s responsibility to make a choice. In contrast,
the heuristic H(x”) is domain-agnostic and can be built into
the live modeling tool itself.

Note that our approach infers the new run-time state (x”)
only based on the directly preceding step of the execution (x),
i.e., migration constraints cannot be defined in terms of the
full execution trace. For example, in our FSM DSL we cannot
assign the new current to a state that had been current
previously in the execution. Taking the execution trace into
account is an essential direction for further research.

4 NEXTEP: a Language for State Migration

In this section we describe our proof-of-concept implemen-
tation of the approach described in Section 3, the NEXTEP
language. In particular, we discuss all described constraints
in detail and explain their implementation in NEXTEP for our
running example of the FSM DSL.

4.1 Syntax of NEXTEP

The NexTEP language allows for formulating preferences for
(i.e., for configuring) live modeling in the form of a set of con-
straints. As described earlier, such constraints are expressed
using the constructs of the static and run-time models of
a DSL. For this, NEXTEP uses a simplified version of the
Ecore metamodeling language to express classes and refer-
ences between them. An example NEXTEP definition for the
statemachine DSL is depicted in Listing 1.

A NEXTEP configuration consists of three parts: static,
runtime, and migration. The static part (lines 1-10 in List-
ing 1) describes the static model of the DSL and, in essence,
corresponds to (the core of) the DSL metamodel. In our
example, it consists of three classes (Machine, State, and

U. Tikhonova, J. Stoel, T. van der Storm, and T. Degueule

1 static

2 class Machine
states: Statex
initial: State

class State
transitions: Transx

9 class Trans
10 target: State

12 runtime

13 class Runtime

14 machine: Machine
15 current: State
16 visited: Visitx

18 invariants
19 current in machine.states

21 forall s: machine.states |
22 one (visited.state & s)

24 forall vl:visited, v2:visited |
25 vl I= v2 => vl.state != v2.state

class Visit
28 state: State
29 nr: int

31 invariant: nr >= 0

33 migration
34 not (old.current in new.machine.states)
35 => new.current = new.machine.initial

Listing 1. NEXTEP specification of the FSM DSL

Trans) and four references (states, initial, transitions,
and target).

References can be of two types: referencing exactly one
object (for example, target: State, line 10 in Listing 1) or
referencing a set of objects (such as states: Statex, line 3
in Listing 1). However, this is not a conceptual limitation of
NEXTEP, but rather a simplification for the sake of demon-
stration. For the sake of conciseness, we also omit static
constraints in the statemachine metamodel from the NEXTEP
specification, and assume that these are dealt with by other
means, such as parsers or type checkers.

The runtime part of a NEXTEP definition (lines 12-31 in
Listing 1) describes the run-time model of the DSL and the
semantic relations R(p’, x”). The run-time model is defined
in the same way as the static model, using classes and ref-
erences. The semantic relations are defined in the form of
invariants attached to these classes.

The class Runtime is a root class that stores references
to all components that constitute both the static and the
run-time models of the DSL. For the FSM DSL, these are
machine for the static model, and current and visited for
the run-time model (lines 14-16 in Listing 1). This way, the

Constraint-based Run-time State Migration for Live Modeling

Runtime class defines the scope for the semantic relations
R(p’,x’). We define the following semantic relations for the
FSM DSL:

o the current state of the machine is one of its states
(line 19 in Listing 1);

e the number of visits is defined exactly once for each
state of the statemachine (lines 21-22 in Listing 1);

o different entries in visited correspond to different
states of the statemachine, visited is a function (lines
24-25 in Listing 1);

e the number of visits for each state is greater than or
equal to zero (line 31 in Listing 1).

The migration part of a NEXTEP definition (lines 33-35
in Listing 1) describes the migration rules M(p, x, p’, x’).
Here the keywords old and new denote the instances of the
Runtime class corresponding to the old and new versions
of the run-time model, respectively. Since the Runtime class
refers to the static model, this also provides access to p and
p’. For the FSM DSL, we define the following migration
rule: if the current state has been deleted (i.e., not (old.
current in new.machine.states)), then the new current
state is assigned to the initial state (i.e., new.current = new
.machine.initial).

4.2 Semantics of NEXTEP

In order to implement model finding for our live DSLs, we
translate a NEXTEP definition of a DSL and its static and
run-time models into ALLEALLE. ALLEALLE® is a bounded
relational model finder. That is, ALLEALLE is a formalism
that allows for expressing a model using a combination of
first order logic and relational algebra and supports auto-
matic construction of relational instances of such a model
in a bounded scope (i.e., limited set of cases) based on the
constraints of the model. In addition, ALLEALLE supports dec-
laration of optimization criteria making it suitable for solving
optimization problems next to pure satisfiability problems.

As a back-end ALLEALLE uses Z3, an SMT (Satisfiability
Modulo Theories) solver [6].” That is, ALLEALLE translates a
model expressed in its input language into a corresponding
SMT formula and then invokes Z3 to find solution(s) to this
formula. The solution is then translated back into an instance
of the relational model.

ALLEALLE is comparable to the Alloy language and ana-
lyzer [9].* The major difference is that, unlike Alloy which
is built on top of a SAT solver, ALLEALLE is built on top of
the Z3 SMT solver, and thus, supports unbounded integer
numbers and allows for optimization criteria, which are used
by the solver to find the most suitable (optimal) solution.

In this section, we describe the semantics of NEXTEP in
the form of a translation to ALLEALLE. We illustrate our

Zhttp://github.com/cwi-swat/allealle
3http://github.com/Z3Prover/z3
4http://alloytools.org

N o U e W

SLE ’18, November 5-6, 2018, Boston, MA, USA

pn_Machine (mId: id) = {<doors>}
pn_State (sId: id) = {<closed>, <opened>, <locked>}
pn_states (mId: id, sId: id) =

{<doors, closed>, <doors, opened>, <doors, locked>}
pn_initial (mId: id, sId: id) = {<doors, closed>}

xo_current (mId: id,
xo_visited (sId: id,

sId: id) = {<doors, opened>}
val: int) = {<closed, 1>,
<opened, 0>}
xn_current (mId: id, sId: id) <=
{<doors, closed>, <doors, opened>, <doors, locked>,
<doors, sl>..<doors, s5>, <ml, sl>..<ml, s5>}
xn_visited (sId: id, val: int) <= {<closed, 7>,
<opened, ?>, <locked, ?>, <sl, ?>..<s5, 7>}

¥V m € pn_Machine | one xn_current x m

xn_current C pn_states
V s € pn_states | one (xn_visited x s)
¥ v € xn_visited | some (v where val >= 0)

—(xo_current[sId] C pn_states[sId]) =
xn_current[sId] = pn_initial[sId]

objectives:
minimize ((xo_current \ xn_current) U
(xn_current \ xo_current))[count()]

Listing 2. An excerpt of the generated ALLEALLE code for
the statemachine DSL

description using an excerpt of the ALLEALLE specification
(see Listing 2) that corresponds to the NEXTEP specification
described in the previous section (Listing 1).

Structure translation. All structural elements of both static
and dynamic parts of a NEXTEP definition are translated to
relations in ALLEALLE:

o NEXTEP classes are translated to ALLEALLE unary rela-
tions;
o NEXTEP references are translated to ALLEALLE binary
relations.
As the resulting ALLEALLE specification is used for solving
our initial problem “given p, x, and p’, what is x’?”, all the
listed relations are generated for the concrete instances of p,
x,p’, and x’.

For example, in Listing 2 relations with pn_ as their prefix
(lines 1-5) correspond to the new version of the program p’;
relations with xo_ as their prefix (lines 7-8) correspond to
the previous run-time state x; and relations with xn_ as their
prefix (lines 10-13) correspond to the new run-time state x’.

Bounds translation. As mentioned earlier, bounds are used
to restrict the scope of search for the back-end solver. In
particular, bounds introduce a set of atoms available for the
instantiation of relations in an ALLEALLE specification. In
the context of NEXTEP, p, x, and p’ are known and, thus,
determine the exact bounds for the corresponding ALLEALLE
relations. In other words, each of the relations that represent
the original p, x, and p’ are assigned specific values (i.e.,

http://github.com/cwi-swat/allealle
http://github.com/Z3Prover/z3
http://alloytools.org

SLE ’18, November 5-6, 2018, Boston, MA, USA

tuples) corresponding to the concrete instances of p, x, and
p’ (lines 1-9 in Listing 2, on the right side of the ‘=" symbol).

While p, x, and p’ are known, the new run-time model x’
is what we are searching for. Therefore, bounds for the Ar-
LEALLE relations representing x’ define an extended search
scope, not limited to the concrete instances of p, x, and p’. In
particular, the x’ relations are constrained by an upper bound
(lines 10-14 in Listing 2, on the right side of the ‘<=" symbol).
The upper bounds include the atoms from the instances of p,
x, and p’, and a finite number of auxiliary atoms of the same
type. For instance, in the example, this means that there is
one extra machine ml and five extra states s1..s5.

Constraints translation. Semantic relations and migra-
tion rules of a NEXTEP definition are translated to the corre-
sponding ALLEALLE constraints (formulas) instantiated for p,
x, p’, and x’ (lines 18-24 in Listing 2). Moreover, additional
ALLEALLE constraints are generated to capture the structural
properties of (static and runtime) classes: types and multi-
plicities of references (line 16 in Listing 2). The expressive
power of NEXTEP constraints is determined by the expres-
sive power of ALLEALLE formulas, which includes relational
algebra extended with transitive closure. Thus, NEXTEP sup-
ports set theory notation, first-order predicates, (reflexive)
transitive closure, and unbounded integer arithmetic. For
object navigation we use the standard dot notation.

Minimum distance. As described earlier in Section 3, the
heuristic for the minimum distance D(x, x”) is not specific to
each particular DSL. In particular, in ALLEALLE, the minimum
distance heuristic is generically represented as optimization
criteria. For this, D(x, x”) is represented as a set of metrics in
ALLEALLE, over which the minimization criteria are applied
(lines 26-28 in Listing 2).
Minimization is performed over the following metrics:

o the number of elements in the difference of two sets
representing x and x” correspondingly (such as current
in the statemachine DSL);

o the sum of absolute differences between integer values
of two vectors representing x and x” correspondingly
(such as visited in the statemachine DSL).

As a result, for instance, not modifying the current state
is preferred over modifying it, because in the former case
the set difference will be the empty set, which is minimal.
Similarly, minimization of integer values ensures that no
arbitrary values will be put in the map visited.

4.3 Output of NEXTEP

When applied to the two live modeling scenarios described
in Section 2, NEXTEP produces the following results. Tables 3
and 4 show the instances of p, x, and p’ and the correspond-
ing x’ for the scenarios of Table 1 and Table 2, respectively.

Here, the instances of x’ (right bottom corner in both
tables) represent the solutions found by the solver. They

U. Tikhonova, J. Stoel, T. van der Storm, and T. Degueule

are constructed by mapping an instance of the relational
model (calculated by Z3 and translated to ALLEALLE) on the
corresponding instance of the NEXTEP run-time model.

Table 3. NEXTEP migration for the statemachine scenario
’Add New State’

P X
states: closed, opened
transitions: current: opened
’ visited:
tar(gcict)'sed t1), (opened - t2) closed — 1
(t1 — opened), (t2 — closed) opened 0
p/ x/

states: closed, opened, locked

s current: opened
transitions: (closed + t1, t3), U p

visited:
tar(;,t(-gned — t2), (locked — t4) closed — 1
: opened — 0
(t1 = opened), (t2 = closed), locked - 0

(t3 > locked), (t4 - closed)

Table 4. NEXTEP migration for the statemachine scenario
"Remove Current State’

P x
states: closed, opened, locked

. t: locked
transitions: (closed — t1, t3), current: focke

visited:
tar(goé)t(.ened — t2), (locked — t4) closed b 1
(t1 — opened), (t2 — closed), i)pceknzd: OO
(t3 > locked), (t4 - closed) ocke
pl xl
:Ztnesi;;lg:?d’ opened current: closed
’ visited:
tar(;c:'sed > t1), (opened — t2) osed s 1

opened - 0

(t1 — opened), (t2 — closed)

As can be seen in Table 3, the addition of the locked state
does not change the runtime state, except for adding a new
entry to the visited map, initialized to zero. However, if
the current state is removed (i.e., locked in Table 4), the
current field is reset to the initial state, and the locked
entry is removed from the visited map.

The obtained results are determined by the domain-specific
migration policies in the NExTEP definition (in Listing 1). For
example, if we remove the migration rule from our NEXTEP
definition, the calculated x’ for the scenario 'Remove Current
State® would be some arbitrary state (e.g., opened), instead
of the initial state of the statemachine.

Constraint-based Run-time State Migration for Live Modeling

Time (in ms)

T T T T
15000 - H NEXTEP to ALLEALLE trans. (1)
[ALLEALLE to SMTLIB trans. (2)
[Z3 Solving Time (3) 1]
£ 10000 |
ks
o
£
=
5000 [~
;‘-ﬁﬁ“ﬂmw_
0 | \{ " " " +
5 10 15 20 25

States in Statemachine

a Scenario ’Add New State’.
7.3 timed out for 10,11,12,13,14,16,19,21 and 23

SLE ’18, November 5-6, 2018, Boston, MA, USA

15000 |- N

10000 |-

5000 -

5 10 15 20 25
States in Statemachine

b Scenario 'Remove Current State'.
73 timed out for 10,11,12,13,15,16,17,18,19,21,22,23 and 25

Figure 2. The Statemachine Case Study benchmark results

5 Evaluation

In this section, we use the NEXTEP implementation for an
early evaluation of our approach. In Section 5.1, we perform
a quantitative evaluation to estimate the performance of
NEXTEP. In Section 5.2, we perform a qualitative evaluation
to challenge the expressive power of NEXTEP by applying it
to a DSL for robotic arm control. Finally, in Section 5.3, we
conceptually compare NEXTEP with the manual encoding of
migration strategies as presented in previous work [22].

5.1 Statemachine DSL Case Study

To evaluate the performance of our method, we ran two
different scenarios for the FSM example.’

In the first scenario, we tested the live modeling situation
where one extra state and two new transitions are added to
the new program. The corresponding new run-time state
has its visited map extended with an entry for the newly
added state assigned to ’0’ visits. In the second scenario, we
tested the case where the current state is removed from the
statemachine. This forces the new current to be reset to the
initial keeping all the values for the visited map intact,
minus the removed state.

In both scenarios, we gradually increased the number of
states in the statemachine to assess the impact of model
size on performance. The results are shown in Figure 2. The
execution times reported in the figure include the follow-
ing three phases of our implementation: (1) translation of

>The source code of our benchmark experiments can be found
at https://github.com/cwi-swat/live-modeling/tree/master/nextstep/src/
benchmark/statemachine

the NEXTEP specification to the relational specification, (2)
translation of the relational specification to SMT constraints
(from ALLEALLE to SMTLIB), and (3) solving (model finding)
by Z3.

We ran the benchmarks on an early 2015 model Mac-
Book Pro with a 2.7 GHz quad core Intel processor with 8 GB
of DDR3 RAM. We ran each configuration of the benchmark
10 times, ensuring that each execution is independent of the
other (i.e., no shared memory, cache, etc.). Figure 2 reports
the mean time per configuration of each of the three different
phases.

The translation times reported in both scenarios show
a similar pattern. The translation of NEXTEP specifications
to ALLEALLE specifications in the different configurations
is fairly stable time-wise with a minimum of 943 ms and a
maximum of 1529 ms.

The translation times from ALLEALLE to SMTLIB also fol-
low a similar trend in both scenarios: the translation time
goes up as the NEXTEP specification grows. An explanation
is that increasing the size of NEXTEP specifications causes
the number of tuples in the ALLEALLE relational models to
increase as well. Then, the more tuples in an ALLEALLE spec-
ification, the longer it takes to translate from ALLEALLE to
SMTLIB. This is especially the case when quantifiers are used
in the ALLEALLE specifications—and NEXTEP relies heavily
on these quantifiers.

The solving times reported for Z3 tell a different story.
For many configurations, Z3 was not able to find an optimal
solution within a time limit of 3 seconds. We empirically set
this limit to 3 seconds after observing that Z3 either manages
to find a solution within a second or quickly explodes to

https://github.com/cwi-swat/live-modeling/tree/master/nextstep/src/benchmark/statemachine
https://github.com/cwi-swat/live-modeling/tree/master/nextstep/src/benchmark/statemachine

SLE ’18, November 5-6, 2018, Boston, MA, USA

multiple minutes. Since the time frame of multiple minutes
is not in line with the spirit of live modeling, we decided to
consider all solving times exceeding 3 seconds as timeouts.

For the first scenario, Z3 timed out for 9 configurations
out of 19. For the second scenario, it timed out for 13 config-
urations out of 19.

Discussion Our benchmark results suggest that there is
much room for improvement in our prototype. These im-
provements can be classified according to the different phases
of our method: improving the translation from NEXTEP to AL-
LEALLE, improving the translation from ALLEALLE to SMTLIB,
and improving the solving times by Z3.

A first improvement would be to optimize the transla-
tion from NEXTEP to ALLEALLE. As mentioned earlier, the
current implementation of NEXTEP is an early prototype
that has not been aggressively optimized yet. Both the per-
formance of the translation and the generated ALLEALLE
specifications can be improved. In particular, improving the
latter would help in speeding up the total execution time
of our method. To verify this intuition, we optimized some
ALLEALLE specifications manually, bypassing the automatic
translation phase of our approach while keeping the exact
semantics of the original NEXTEP specification, and observed
substantial improvements on performance. Generating an
optimized ALLEALLE specification would help in minimizing
the translation time from ALLEALLE to SMTLIB as well, as we
have observed that translation times decrease when the AL-
LEALLE specification shrinks. Finally, generating optimized
A1LLEALLE specifications would also help Z3 to find optimal
solutions quicker: the smaller the ALLEALLE specification
the less variables are declared in the resulting SMT formula,
often making it easier for the solver to find optimal solutions.

Next to optimizing NEXTEP, we could look at optimizing
ALLEALLE. The current implementation of ALLEALLE is also
in a prototype phase. Early experiments with an optimized
native Java version of the ALLEALLE model finder suggest
that translation times can potentially be improved by a factor
10 to 15.

Improving the stability of the solving times of Z3 is the
hardest challenge which for now is considered an open ques-
tion. As mentioned earlier, generating optimized ALLEALLE
specifications will help to improve the solving times for Z3.
However, whether solving time can be predicted upfront
from a given NEXTEP specification remains an open ques-
tion.

5.2 Robotic Arm DSL Case Study

The Robotic Arm DSL is used for controlling industrial robots
that consist of various subsystems (i.e., mechanical and/or
electrical parts). For example, a robot can consist of a hand,
responsible for manipulating objects, an arm, responsible
for moving the hand to a particular position, and smaller
subsystems like triggers and actuators. A program in the

U. Tikhonova, J. Stoel, T. van der Storm, and T. Degueule

Robotic Arm DSL describes the coordination of subsystems
of arobot during its execution. An example of such a program
is shown in the middle column of Table 5.

To perform a certain task, a robot executes specific actions
on its subsystems. Each subsystem can execute its actions
independently from other subsystems of the robot. However,
some of these actions should be executed in certain order, or
in other words, some actions have to wait for other actions
to be executed first; such dependencies are shown as arrows
in Robotic Arm programs. For example, the subsystem hand
should not execute the action grab before the subsystem arm
has executed the action down (see the DSL program in the
second row of Table 5).

The semantics of the Robotic Arm DSL maps a Robotic
Arm program to the following execution behavior. In order to
execute actions independently, each subsystem maintains a
queue of actions that should be executed. First, all actions are
collected in one Request pool (Step 0 in Table 5). Then, the
actions are taken from the Request one by one and pushed
to the corresponding subsystem Queue (Steps 1-2 in Table 5).
When an action is executed, it is removed from the queue. To
enforce the ordering of actions, an action cannot be queued
until all of the actions that this action depends on are in the
Request pool or in the Queues. An exception to this con-
straint is the situation in which both ordered actions belong
to the same subsystem. Then the actions can be queued in
the corresponding order. For example, in Step 2 of Table 5,
both actions down and up are queued, as they belong to the
same subsystem arm.

The bottom row of Table 5 introduces a live modeling
step for the Robotic Arm DSL. In particular, interrupting
the normal execution of the Robotic Arm program (Steps
0-2), in Step 3 the user updates the program by adding a
new subsystem trigger with a new action switch and a
new dependency between the actions up and switch. As a
result of this update, an obvious migration strategy for the
run-time state would be to add a new queue for the sub-
system trigger. It is not clear though what to do with the
action switch. According to the semantics of the Robotic
Arm DSL, the action switch can be executed independently
by trigger, and thus, does not need to appear in the Request
or Queues. However, intuition suggests that a newly added
action should (explicitly) show up in the execution. There-
fore, we introduce a migration rule that puts newly added
actions to the Request.

The Robotic Arm NEXTEP definition that captures the de-
scribed semantic relations and specifies the stated migration
rule is depicted in Listing 3. The new run-time state calcu-
lated according to this NEXTEP definition is shown in the
bottom right cell of Table 5. Note that in this new run-time
state, the newly added action switch is added to the Request
and, as a result, the action up is moved (back) to the Request.
This allows for observing the execution order according to
the newly added dependency.

Constraint-based Run-time State Migration for Live Modeling

Table 5. Update scenario for the Robotic Arm DSL

Step DSL program Run-time state

0 arm hand Request:
{grab, down, up}
@ Queues:
arm > []
‘!ii%ﬁl’ hand - []
1 arm hand Request:
{grab, up}
Queues:
arm — [down]
‘!iiaii’ hand - []
2 arm hand Request:
{grab}
Queues:
arm —
[down, up]
hand — []
3 arm | hand | trigger | Request:
{grab, switch, up}
Queues:
arm — [down]
‘!iiaii’ hand — []
trigger — []
-

SLE ’18, November 5-6, 2018, Boston, MA, USA

static
class Task
actions: Actionx*
order: OrderedPairx*

class Subsystem
ssa: Actionx

class Action

class OrderedPair

action: Action
succeeds: Action
runtime

class Queue
subsystem: Subsystem
actions: QueuedActionx*

invariant:
forall ga: actions | ga.item in subsystem.ssa

class QueuedAction
item: Action
index: int

class Runtime
request: Actionx
queues: Queuex
task: Task

invariants
request in task.actions

forall s: Subsystem | some (s.ssa & task.actions)
=> (exists g: queues | g.subsystem = s)

forall q: queues | no(q.actions & request.actions)

forall o: task.order |
o.succeeds in request => o.action in request

forall o: task.order |
(exists q: Queue | o.succeeds in g.actions.item
&& not (o.action in g.subsystem.ssa)) =>
not(exists q:Queue | o.action in g.actions.item)

forall o: task.order |
(exists q: Queue |
o.succeeds in g.actions.item &&
o.action in g.actions.item) =>
(forall gal: queues.actions,
ga2: queues.actions |
gal.item = o.succeeds && ga2.item = o.action
=> gal.index > ga2.index)

migration

(new.task.actions -- old.task.actions)
in new.request.actions

Listing 3. NExTEP definition for the Robotic Arm DSL

SLE ’18, November 5-6, 2018, Boston, MA, USA

The NEXTEP definition of Listing 3 defines classes for all
constructs introduced above: Task for a Robotic Arm pro-
gram, Subsystem for a robot subsystem, Action for a subsys-
tem action, OrderedPair to represent order dependencies,
Queue and QueuedAction to model a subsystem queue, and
Runtime for the run-time state.

The semantics of the Robotic Arm DSL is captured by the
following semantic relations:

1. a Queue contains only actions of its corresponding
subsystem (line 21);

2. a request contains only actions of the current task
(i.e., program being executed) (line 33);

3. if an action of a subsystem appears in the task, then
there should be a corresponding queue for this subsys-
tem (lines 35-36);

4. queues and request do not intersect (line 38), i.e.,
when an action is queued, it is removed from the
request;

5. an action, that succeeds another action which is stored
in the request, should be also in the request, i.e.,
should not be queued yet (lines 40-41);

6. an action, that succeeds an action stored in a queue,
should not be queued yet, unless these actions belong
to the same subsystem (lines 43-46);

7. if two ordered actions belong to the same subsystem
queue, then their indexes correspond to the order of
the actions (lines 48-55).

Finally, the result that we get for the scenario of Table 5 is
to a large extent determined by the migration rule specified
in lines 57-59 of Listing 3 according to our earlier design
decision. In particular, the constraint states that all actions
from the new task (new. task.actions) that are not in the old
task (-- old.task.actions) should be added to the request
(in new.request.actions).

To conclude, in this section we demonstrated how NEXTEP
can be applied for configuring live modeling for a DSL with
a more complicated semantics than our running example of
the FSM DSL. The obtained result (i.e., the calculated new
run-time state) corresponds to our expectations about the
semantic consistency of the DSL and to our intuition about
migration strategy of the run-time state.

5.3 Comparison to Manual Migration

Earlier work in live modeling explored an operational way
of encoding migration strategies, called RMPATCH [22]. RM-
PaTcH consists of the following steps:

1. after a user changes a DSL program (static model), a
delta is computed using a model-based differencing
algorithm;

2. a patch corresponding to the delta is then applied to
the run-time model, which is a copy of the static model
extended with the necessary run-time data;

U. Tikhonova, J. Stoel, T. van der Storm, and T. Degueule

3. the code that applies the patch to the run-time model is
specialized using inheritance and updates the run-time
data.

One of the take-aways of the experiment with RMPATCH is
that even for simple examples such as the statemachine lan-
guage, it is quite hard to correctly implement migrations, and
the code quickly becomes unwieldy. Below we consider the
main drawbacks of manually coded migrations in contrast
with NEXTEP.

Coupling between model and run-time state. RMPATCH
requires that run-time state is an instance of the runtime
meta-model which is a proper extension of the static meta-
model of the language. For instance, the State class defines
the number of visits as its own field. Similarly, the class
Machine contains the reference to the current state. Using
NEXTEP the representation of a run-time state is decoupled
from the meta-model, thus allowing for more flexibility for
languages where the relation between model and run-time
state is less clear cut.

Operational instead of declarative. Second, using program
code to encode migration policies requires careful scheduling

of operations, since there might be dependencies between

modification incurred by the user’s model change and mi-
gration side effects. In contrast, NEXTEP’s migration rules

are defined as declarative constraints, thus allowing for ab-
stracting away from any ordering constraints.

Hard to reason about correctness. The third problem of
encoding migration policies manually using code is that
migration is interleaved with the update of (the copy of)
the static model within the run-time model. As a result, the
run-time model is in an inconsistent state itself when the
migrations are being applied. Separating migration logic
until after the update has fully finished is non-trivial, since
migrations depend on the knowledge of what has changed
(i.e., the delta itself).

Scattering of migration logic. Another problem is that
migration logic often requires expressing and maintaining
global invariants on the run-time state. Modularizing the
code according to the type of model elements (e.g., State,
Transition, etc.), or delta operations (e.g., Add, Remove, etc.),
causes scattering of migration logic over multiple classes
and methods.

Lack of extensibility. Finally, as a result of the previous
point, migration logic is not modularly extensible. Extending
the DSL with new constructs and corresponding additional
invariants and rules requires invasive modification of the
existing migration code. With NEXTEP, migration rules and
invariants can simply be added to the NExTEP definition,
i.e.,, in conjunction with existing constraints. The potential
interactions between constraints are handled by the solver
back-end.

Constraint-based Run-time State Migration for Live Modeling

To summarize, NEXTEP improves upon the earlier migra-
tion work in that it provides a declarative, decoupled, and
modular way of expressing migration policies. The heavy
lifting of finding the new run-time state that is consistent
with the new version of the DSL program is delegated to the
solver.

6 Related Work & Discussion

In this section, we discuss the related work from three differ-
ent points of view: the problem of run-time state migration
(Section ??), the solutions based on constraint solving (Sec-
tion ??), and the area of DSL debugging (Section ??). Next to
highlighting the existing approaches, we discuss which of
their findings we can adopt in our work in order to improve
efficiency, expressiveness, and usability of our approach.

6.1 Model Synchronization

In this paper, we address the problem of finding a new run-
time state that is consistent with an updated DSL program.
In a broader perspective, this is a particular case of the prob-
lem of keeping different models in sync, which includes
well-known sub-problems: consistency checking between
different models, change propagation, co-evolution, model
repair, etc. As such, this problem has been studied in differ-
ent research fields and from multiple angles. For instance,
the field of views and viewpoints engineering studies the
problem of consistency checking between source models and
views. The corresponding approaches that address this prob-
lem include incremental backward change propagation [19],
lenses [8], and triple-graph grammars [18]. Our approach
distinguishes itself in letting the language designer specify
her own migration policies in a declarative way.

In Model-Driven Engineering (MDE), consistency rela-
tions between different models are typically defined through
model-to-model transformations. Such model transforma-
tions can be used to (re)construct a new (run-time) model for
an updated (static) model. Concretely, our work was inspired
by the work of Macedo et al. [12, 13], which implements
QVT-R bidirectional model transformations using Alloy and
its SAT solver to construct consistent models. In comparison,
in our work we use ALLEALLE and the SMT solver as a back-
end, which allows for more expressiveness when configuring
live modeling for a DSL.

? use UML and OCL to formalize a synchronization model
that includes both a change model and a consistency model [?
]. The synchronization model defines inter-model relations
and constraints (comparable to our NEXTEP definition); the
change model introduces all possible changes that can be
used to construct a new model and assigns a cost to each of
such changes. The USE model finder uses these cost values
to find the most suitable (optimal) model. On the one hand,
defining all possible changes (including language-agnostic,

SLE ’18, November 5-6, 2018, Boston, MA, USA

language-specific, and composite changes) requires oper-
ational thinking and can result in a tangled and complex
model. In our approach, we strive towards a declarative def-
inition. On the other hand, using cost values the authors
define five different heuristics for finding the most suitable
solution (including the least change strategy that we employ
in NexTEP). Thus, we plan to leverage their experience in
future work to extend NExTEP with additional heuristics.

6.2 Constraint-based Solving

In our approach, we use the SMT solver to find a new run-
time model that satisfies the specified constraints. Recently,
constraint solvers are being adopted in MDE for the au-
tomatic analysis of modeling languages. For instance, ?
present AlloyInEcore, a meta-modeling language that allows
for adding Alloy-like invariants into Ecore metamodels [?
]. Built on top of the Kodkod (SAT) solver, their tool auto-
matically detects inconsistent models and completes par-
tial models. As both AlloyInEcore and NEXTEP translate to
the relational logic (of Kodkod and ALLEALLE correspond-
ingly), the syntaxes of these two languages are similar. As
AlloyInEcore is a more developed and mature language com-
paring to NEXTEP, we consider learning from the design
decisions of AlloyInEcore in our future work.

? assess the performance of using constraint solvers (Kod-
kod in particular) for resolving inconsistencies in models [?].
They experiment with models that were reverse-engineered
from a set of open-source projects and further translated
to Kodkod, to which they add consistency rules formulated
directly in Kodkod. The model sizes range from 2064 to 8572
elements. The results obtained in this work demonstrate that
“the approach does not provide instantaneous resolution on
medium scale models”. These results suggest a potential
threshold for our approach. However, we believe that we can
still significantly improve the performance of NEXTEP.

An alternative approach to employing SAT/SMT solvers
is to use constraint programming systems. For instance,
? translate UML class diagrams extended with OCL con-
straints into Constraint Satisfaction Problems (CSPs) and the
ECLiPSe constraint programming system to construct model
instances [?]. ? use constraints embedded into an attribute
grammar to check the well-formedness of programs and to
compute repair alternatives for malformed programs [?].
Both these works propose various optimizations and search
algorithms in order to improve performance of constraint-

based model finding.

6.3 DSL Debugging

Although the objectives are different, live modeling is also
closely related to debugging. Debuggers enable program-
mers to monitor the execution of a program, set breakpoints,
inspect and modify runtime values, and, under certain con-
straints, hot swap some parts of the code itself. Over time, a

SLE ’18, November 5-6, 2018, Boston, MA, USA

number of debuggers have been developed for modeling lan-
guages, for instance for DEVS [16], fUML [14], or individual
diagrams of the Unified Modeling Language (e.g., [5, 7]).

Beyond classical forward-in-time debuggers, Bousse et al.
proposed a methodology for the development of generic
omniscient debuggers for DSLs [1] backed by efficient and
domain-specific execution trace management facilities [2].
Rath et al. use the VIATRA [23] framework to simulate Petri
nets. Users can edit models on-the-fly at simulation time, for
instance to resolve cases of non-determinism [17].

We expect many potential cross-fertilization between model
debugging and live modeling, and we would like to investi-
gate in the future how our constraint-based approach can
solve some of the current problems of debuggers, regarding,
for instance, migration of run-time state after code swapping.

7 Conclusion & Future Work

Conclusion Live modeling has the potential to improve
the experience of using executable DSLs. Immediate feed-
back allows DSL users to better assess the impact of the
changes they make to their models. A central problem for
live modeling languages is how to reconcile changes to a
model with the run-time state of its execution. In this pa-
per, we proposed to formulate the problem of run-time state
migration in terms of constraints on the run-time state.

We have identified two categories of such constraints:
semantic relations which ensure that the new run-time state
is consistent with the new version of the DSL model, and
domain-specific migration rules which are specified explicitly
by the language designer. To choose the most suitable run-
time state out of potentially many solutions, we used the
heuristic of minimum distance between the new and old
run-time states.

We have illustrated this approach using NEXTEP, a meta-
modeling language that allows to define such invariants and
migration policies. NEXTEP employs model finding technique,
backed by a solver, to automatically infer a new run-time
model that satisfies the declared constraints.

We have evaluated the performance of NEXTEP on a simple
FSM DSL. Initial results show that performance is satisfac-
tory, albeit unpredictable even for similar problem specifica-
tions. Furthermore, we have applied NEXTEP to an existing
DSL for robotic arm control, which is semantically richer
than the FSM DSL. Overall, our results show that constraint-
based state migration as realized by NEXTEP is a promising
technique for engineering live modeling languages.

Future Work A number of research questions stem from
our early prototype and evaluation which we hope to address
in future work.

First, we did not address all the steps of the live model-
ing experience. Once a new run-time state is inferred, how
should it be provided back in a seamless way to the user?

U. Tikhonova, J. Stoel, T. van der Storm, and T. Degueule

How should it be provided to the DSL interpreter itself to let
it resume the execution transparently?

Second, we believe user experience plays a crucial as-
pect in live modeling. How should a user interact with the
live modeling framework, through which interface? To be
adopted, live modeling must be as close to real time as possi-
ble to provide a seamless experience. How to optimize the
time it takes to find a new run-time state? We believe that
live modeling tools should be evaluated empirically with real
users to assess their benefits, and we hope to address these
questions in the future.

Finally, we consider the use of a generic minimum dis-
tance heuristic to guide the constraint solving process as
both a strength and a weakness of our approach. Investi-
gating whether other generic heuristics or domain-specific
heuristics could be employed requires more experience with
various kinds of DSLs and remains future work.

Acknowledgments

We would like to thank the anonymous reviewers for their

helpful comments. This work is partially supported by the

Agile Language Engineering (ALE) associate team (http://

gemoc.org/ale/), and the EU’s Horizon 2020 Project No. 732223
CROSSMINER.

References

[1] Erwan Bousse, Dorian Leroy, Benoit Combemale, Manuel Wimmer,
and Benoit Baudry. 2018. Omniscient debugging for executable DSLs.
Journal of Systems and Software 137 (2018), 261-288. https://doi.org/
10.1016/j.j55.2017.11.025

Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, and Benoit
Baudry. 2017. Advanced and efficient execution trace management for
executable domain-specific modeling languages. Software & Systems
Modeling (2017), 1-37.

Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean
McDirmid, Michal Moskal, Nikolai Tillmann, and Jun Kato. 2013.
It’s alive! continuous feedback in UI programming. In ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. 95-104. https:
//doi.org/10.1145/2462156.2462170

Benoit Combemale, Xavier Crégut, and Marc Pantel. 2012. A design
pattern to build executable DSMLs and associated V&V tools. In Soft-
ware Engineering Conference (APSEC), 2012 19th Asia-Pacific, Vol. 1.
IEEE, 282-287.

Michelle L. Crane and Jirgen Dingel. 2008. Towards a UML virtual
machine: implementing an interpreter for UML 2 actions and activities.
In Proceedings of the 2008 conference of the Centre for Advanced Studies
on Collaborative Research, October 27-30, 2008, Richmond Hill, Ontario,
Canada. 8. https://doi.org/10.1145/1463788.1463799

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 337-340.

Dolev Dotan and Andrei Kirshin. 2007. Debugging and testing be-
havioral UML models. In Companion to the 22nd Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada. 838-839. https://doi.org/10.1145/1297846.1297915

[2

—

3

[t

[4

[l

[5

—

G

—

[7

—

http://gemoc.org/ale/
http://gemoc.org/ale/
https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/10.1145/2462156.2462170
https://doi.org/10.1145/2462156.2462170
https://doi.org/10.1145/1463788.1463799
https://doi.org/10.1145/1297846.1297915

Constraint-based Run-time State Migration for Live Modeling

(8]

[11

—

(12]

(13]

(14

[l

(15]

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. 2007. Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-
update problem. ACM Trans. Program. Lang. Syst. 29, 3 (2007), 17.
https://doi.org/10.1145/1232420.1232424

D. Jackson. 2012. Software Abstractions - Logic, Language, and Analysis
(revised ed.). MIT press. 336 pages.

Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2018. The Road
to Live Programming: Insights from the Practice. In Proceedings of
the 40th International Conference on Software Engineering (ICSE ’18).
ACM, New York, NY, USA, 1090-1101. https://doi.org/10.1145/3180155.
3180200

Henry Lieberman and Christopher Fry. 1995. Bridging the gulf be-
tween code and behavior in programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM Press/Addison-
Wesley Publishing Co., 480-486.

Nuno Macedo and Alcino Cunha. 2013. Implementing QVT-R Bidirec-
tional Model Transformations Using Alloy. In Fundamental Approaches
to Software Engineering - 16th International Conference, FASE 2013, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. 297-311.
https://doi.org/10.1007/978-3-642-37057-1_22

Nuno Macedo, Tiago Guimaraes, and Alcino Cunha. 2013. Model repair
and transformation with Echo. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2013, Silicon Valley,
CA, USA, November 11-15, 2013, Ewen Denney, Tevfik Bultan, and
Andreas Zeller (Eds.). IEEE, 694-697. https://doi.org/10.1109/ASE.
2013.6693135

Tanja Mayerhofer, Philip Langer, and Gerti Kappel. 2012. A runtime
model for fUML. In Proceedings of the 7th Workshop on Models@ run.
time. ACM, 53-58.

Sean McDirmid. 2013. Usable live programming. In ACM Symposium
on New Ideas in Programming and Reflections on Software, Onward!

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

SLE ’18, November 5-6, 2018, Boston, MA, USA

2013, part of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013.
53-62. https://doi.org/10.1145/2509578.2509585

Simon Van Mierlo, Yentl Van Tendeloo, and Hans Vangheluwe. 2017.
Debugging Parallel DEVS. Simulation 93, 4 (2017), 285-306. https:
//doi.org/10.1177/00375497 16658360

Istvan Rath, David Vago, and Daniel Varré. 2008. Design-time simula-
tion of domain-specific models by incremental pattern matching. In
IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2008, Herrsching am Ammersee, Germany, 15-19 September 2008,
Proceedings. 219-222. https://doi.org/10.1109/VLHCC.2008.4639089
Andy Schiirr. 1994. Specification of Graph Translators with Triple
Graph Grammars. In Graph-Theoretic Concepts in Computer Science,
20th International Workshop, WG 94, Herrsching, Germany, June 16-18,
1994, Proceedings. 151-163. https://doi.org/10.1007/3-540-59071-4_45
Oszkar Semerath, Csaba Debreceni, Akos Horvath, and Daniel Varré.
2016. Incremental backward change propagation of view models
by logic solvers. In Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, Saint-
Malo, France, October 2-7, 2016. 306-316. http://dl.acm.org/citation.
cfm?id=2976788

Steven L. Tanimoto. 2013. A perspective on the evolution of live
programming. In Proceedings of the 1st International Workshop on Live
Programming, LIVE 2013, San Francisco, California, USA, May 19, 2013,
Brian Burg, Adrian Kuhn, and Chris Parnin (Eds.). IEEE Computer
Society, 31-34. https://doi.org/10.1109/LIVE.2013.6617346

Tijs van der Storm. 2013. Semantic deltas for live DSL environments. In
1st International Workshop on Live Programming (LIVE). IEEE, 35-38.
Riemer van Rozen and Tijs van der Storm. 2017. Toward live domain-
specific languages. Software & Systems Modeling (14 Aug 2017). https:

//doi.org/10.1007/510270-017-0608-7
Daniel Varr6 and Andras Balogh. 2007. The model transformation

language of the VIATRA2 framework. Sci. Comput. Program. 68, 3
(2007), 214-234. https://doi.org/10.1016/j.scico.2007.05.004

https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/3180155.3180200
https://doi.org/10.1145/3180155.3180200
https://doi.org/10.1007/978-3-642-37057-1_22
https://doi.org/10.1109/ASE.2013.6693135
https://doi.org/10.1109/ASE.2013.6693135
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1177/0037549716658360
https://doi.org/10.1177/0037549716658360
https://doi.org/10.1109/VLHCC.2008.4639089
https://doi.org/10.1007/3-540-59071-4_45
http://dl.acm.org/citation.cfm?id=2976788
http://dl.acm.org/citation.cfm?id=2976788
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1007/s10270-017-0608-7
https://doi.org/10.1007/s10270-017-0608-7
https://doi.org/10.1016/j.scico.2007.05.004

	Abstract
	1 Introduction
	2 Motivating Example
	3 Structuring Constraints for Run-time State Migration
	4 Nextep: a Language for State Migration
	4.1 Syntax of Nextep
	4.2 Semantics of Nextep
	4.3 Output of Nextep

	5 Evaluation
	5.1 State Machine Benchmark
	5.2 Robotic Arm DSL
	5.3 Comparison to Manual Migration

	6 Related Work
	7 Conclusion
	References

