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Abstract

Interactive notebooks allow people to communicate and col-

laborate through a single rich document that might include

live code, multimedia, computed results, and documentation,

which is persisted as a whole for reproducibility. Notebooks

are currently being used extensively in domains such as

data science, data journalism, and machine learning. Con-

structing a notebook interface for a new language, however,

requires a lot of eort. In this paper, we present Bacatá, a

language parametric notebook generator for domain-specic

languages (DSL) based on the Jupyter framework [15]. Bacatá

is designed so that language engineers may reuse existing

language components (such as parsers, code generators, in-

terpreters etc.) as much as possible. We present the design of

Bacatá and how DSL notebooks can be generated with mini-

mum eort in the context of the Rascal meta programming

system and language workbench. We demonstrate Bacatá’s

utility by generating notebook interfaces for three languages,

Halide* (a DSL for image processing), SweeterJS (an extended

version of Javascript), and QL (a DSL for questionnaires). Our

results show that notebooks generated by Bacatá often only

require a few lines of code to wire existing components to-

gether.

Keywords Computational narratives, interactive comput-

ing, language workbenches, domain-specic languages, lit-

erate programming

1 Introduction

Interactive notebooks have received much attention in the

recent years due to the benets they provide regarding im-

mediate feedback, reproducibility, and collaborative features.

Notebooks capture a computational narrative interleaving
code, computed results, interactive visualizations, and docu-

mentation, in a single persisted document. Notebooks have

become very popular in elds such as mathematics, data

science, data journalism, and machine learning.

The Jupyter notebook framework [15] is a popular plat-

form for writing and sharing computational narratives. This

platform comes with built-in support for Python, but it pro-

vides an API for extending the framework with other lan-

guages, called “kernels”. Language kernels capture language

SLE’18, November 04–09, 2018, Boston, MA, USA
2018.

specic aspects, such as how to highlight syntax elements,

how to call the interpreter or compiler, and how to visualize

computed results.

Developing a language kernel from scratch requires a

lot of eort, and requires communicating with Jupyter’s

low-level wire protocol. Nevertheless, interactive notebooks

would provide a valuable addition to the toolbox of generic

language services oered by language workbenches [6]. This

would open up the interactive notebook metaphor for DSLs

developed using these language workbenches.

In this paper we present Bacatá, a language parametric

notebook generator, based on the Jupyter platform. Bacatá

hides the low-level complexity of Jupyter’s wire protocol,

providing generic hooks for registering language services.

Bacatá has been integrated in the Rascal language work-

bench [13], which allows extensive reuse of language compo-

nents dened with Rascal. As a result, obtaining a notebook

interface for a DSL becomes a matter of writing a few lines of

code. In addition, Bacatá supports fully interactive computed

results through Rascal’s web UI framework (Salix). DSLs that

exploit this library in their execution can thus be run from

within a Bacatá notebook, with virtually no additional eort.

The contributions of this paper can be summarized as

follows:

• We motivate notebooks from the perspective of DSL

use and DSL engineering, and provide a feature-based

analysis of interactive notebooks (Section 2).

• We present Bacatá-Core, a generic language protocol

in Java to simplify the development of Jupyter lan-

guage kernels (Section 3).

• We present Bacatá-Rascal as a light-weight bridge be-

tween Bacatá-Core and Rascal, and show how this API

can be used to generate notebooks for DSLs developed

in Rascal (Section 4).

• Bacatá’s utility is demonstrated by generating note-

books for three languages: Halide [20] ( a DSL for

image processing), SweeterJS (an extended version of

JavaScript), and QL [6] (a DSL for dening question-

naires) (Section 5).

We conclude the paper with a discussion of related work and

future directions of research (Section 6 & 7).
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Figure 1. A basic notebook.

2 Background

2.1 Anatomy of a Notebook

Notebooks enable users to teach, learn, and share knowledge

by telling a story. Storytelling is a pedagogical strategy and a

robust communication and collaboration tool [5]. Notebooks

are useful for computational story telling because they in-

terleave documentation, input, and output in a single linear

document. In its most simple form, a notebook consists of

a sequence of cells that can be categorized in three types:

prose cells for documentation, input cells containing code,

and output cells displaying computed results.

An example is shown in Figure 1. The rst row consists of

prose text explaining what is going to happen. The second

row displays an input cell where the user has entered the

expression “1 + 2” in some programming language. Finally,

the last row shows the output of evaluating the expression.

Notebooks are interactive: readers can tweak input pa-

rameters, change code snippets, and observe dierent ways

of representing the output. For instance, changing the ex-

pression in the input cell will trigger the recomputation of

the current output cell. More advanced styles of notebooks

feature interactive visualizations of computed results as well,

which support interactive exploration of (large) data sets.

Notebooks are persisted as a single document, which facil-

itates sharing computational narratives. Furthermore, since

all documentation, input, and output is part of the notebook,

results can be reliably reproduced.

2.2 Notebooks for DSLs

Most existing interactive notebooks (e.g., for Python, R, Julia),

are based on full-edged programming languages. Domain-

Specic Languages (DSLs), however, are often small lan-

guages tailored to particular problem domains. They are

designed as a way of communication between domain ex-

perts and software engineers. This raises the question of

why it is important to consider developing notebooks for

DSLs. Below we analyze the reasons why DSL users and DSL

engineers may benet from interactive notebooks.

Non-programmer use. Unlike general-purpose program-

ming languages, DSLs are often used by domain experts

who are not necessarily procient in software development

or computer science. Interactive notebooks provide a more

friendly interface for interacting with computation than full-

edged IDEs or basic text editors. In addition, the fact that

notebooks run from ordinary web browsers avoids installa-

tion hassle. In summary, notebooks make for a less intimi-

dating software development engineering.

Experimentation and simulation. Interactive notebooks
deviate from the traditional software development setting

where the goal is to create production quality software, to-

wards a setting where exploration and experimentation take

center stage. In the context of DSLs, this allows domain

experts to experiment with the language, enjoying imme-

diate feedback and reproducibility, without the pressure of

software engineering concerns. As soon as the design and

requirements are stabilized, notebooks can provide input

to production-level code generators that create the actual

software. As such, notebooks reinforce the division of labor

between domain engineers and application engineers pro-

moted by Domain-Specic Software Engineering (DSE) [2].

Notebooks for DSL education. DSLs are typically small

languages, designed for a specic audience, developed by

smaller teams than general purpose programming languages

like Java or C#. As a result, the use of DSLs incurs costs

regarding documentation and training. Notebooks can func-

tion as live tutorials, providing interactive walk-throughs

for a DSL. Notebooks may thus complement standard forms

of documentation (e.g., user guides, reference manuals, API

documentation, etc.), to allow domain experts to familiarize

themselves with a new DSL.

Language engineering benets. The engineering trade-os
in the construction of DSLs are dierent from general-purpose

programming languages. DSLs are often developed in-house,

by smaller teams, and requiring a faster design iteration cy-

cle. Notebooks can provide a valuable tool in the language

engineer’s toolbox for testing and debugging a language im-

plementation. Especially since various language engineering

aspects can be exposed as part of the notebook. For instance,

as we will show in Section 5, notebooks can display outputs

of language implementation components such as generated

code, static analysis results, test results, etc.

2.3 Notebook Features

To analyze the generic and language specic aspects of a

notebook, we have performed a feature-oriented domain

analysis to capture the features to be supported by notebooks.

Figure 2 shows the resulting feature diagram [11]. The root

of Figure 2 represents the characteristics to be supported by

notebooks. Some of the features in the diagram may appear

either as mandatory or optional A description of each feature

in Figure 2 is presented below.

Highlighting Syntax highlighting dierentiates charac-

ters and words according to their role in the programming

2
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Figure 2. Feature-oriented domain analysis of notebooks.

language syntax. This is similar to standard syntax highlight-

ing in IDEs and language workbenches, and improves the

readability of the code by letting users visualize dierentiate

language elements such as keywords, data types, identiers,

among others.

Completion Completion provides the users with sugges-

tions to complete an incomplete fragment of source code.

This can be syntactic – template completion – or seman-

tic, based on the scoping rules and variables/functions in a

language. Syntactic completion is especially useful for discov-

erability of language features when learning a new language.

Semantic completion helps avoiding errors in referring to

dened entities.

Formaing is the visual form in which code and prose is

presented to the end-user. Thus, code and prose becomes

more readable and maintainable.

Reproducibility Notebooks are often used in a scientic

context. As a result, reproducibility is important for peer re-

view and verication. Notebooks can contain both the story

and development of a scientic result, and have is the abil-

ity to reliably reproduce previous interactive computations

using the same data, code, prose, to obtain identical results.

Collaboration Notebook can be easily shared to have mul-

tiple users working on the same notebook. Each one may be

focused on dierent aspects or sections of it. Again, this fea-

ture is supported by the single document metaphor oered

by notebooks.

Visualization Notebooks do not necessarily only support

textual output, but often feature rich visualization capabili-

ties to present information in various ways such as graphs,

charts, images, animations, or even full-blown interactive

Graphical User Interfaces (GUIs).

Prose Next to code fragments, notebooks allow users to

interleave live code and documentation using prose cells.

Therefore, users will be able to describe their experiments

in a linear storytelling way, using dierent languages for

marking up documents such as LATEX, Markdown, and HTML.

Persistence All information in a notebook is persisted in a

single le. This includes all the code, input data, documenta-

tion, and computed results. Additionally, notebook results

can also be stored on external les as a side eect of the cell

execution, for some language kernels.

Summary. Looking at the feature model we can observe

that some features are language-specic and some are inde-

pendent of the actual language. The following features are

in the rst category: highlighting, completion, formatting,

and visualization. The other features – reproducibility, col-

laboration, prose, and persistence – are orthogonal to the

language-specic features and are handled generically by

notebook frameworks such as Jupyter.

Apart from visualization, perhaps, the language specic

features are already part of the standard toolset of language

workbenches [6]. In the following section we describe Ba-

catá, a language parametric framework for generating inter-

active notebooks based on the Jupyter framework, designed

to reuse existing language workbench features for obtaining

the language specic notebook features.

3 Bacatá

Bacatá is a language parametric interface between the Jupyter

platform and the Rascal language workbench. This interface

generates Jupyter language kernels that reuse language com-

ponents such as grammars, parsers, and Read-Eval-Print

Loops (REPLs). In this section, we explain Bacatá’s language

service interface and how it reuses language components.

Then we describe Bacatá’s general architecture.

3.1 Architecture

Figure 3 depicts a general overview of Bacatá’s architecture,

which highlights its most essential components. Two pri-

mary actors interact with Bacatá, language engineers and

end-users. Language engineers use Bacatá to generate a

3
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Figure 3. General overview of Bacatá’s architecture.

Jupyter language kernel. Whereas end-users utilize a lan-

guage kernel, previously generated by a language engineer,

to interact with the language through a notebook front-end.

Bacatá consists of two main components, Bacatá-Coreand

Bacatá-Rascal. On the one hand, Bacatá-Core abstracts away
the communication layer between Jupyter and the language.

It provides a generic language protocol interface (similar to

Microsoft’s Language Server Protocol [18]), that could be

implemented for language workbenches other than Rascal.

This component is responsible for the interaction between

the executable code written in a notebook and its execution.

On the other hand, Bacatá-Rascalimplements the interface

oered Bacatá-Core, and provides the means for languages

developed using Rascal to be connected to Bacatá-Core. To

use those services, Bacatá-Rascaltakes as input an Algebraic

Data Type (ADT) called Kernel. A Kernel object is the entry-

point for generating and re-using language-specic artifacts

such as CodeMirror [8] modes, language interpreters, com-

pletion functions, and interactive visualizations. After a lan-

guage engineer generates a language kernel using Bacatá,

this language automatically becomes part of the supported

languages of the Jupyter environment.

From the end-user perspective, Bacatá-Rascaland Bacatá-

Coreare invisible, since they simply choose their desired

language kernel from the Jupyter notebook interface. After

selecting the language kernel, Jupyter automatically instan-

tiates the language REPL through Bacatá, which allows the

user to execute code.

3.2 Bacatá-Core

Jupyter oers a protocol called the wire protocol [10], which
is a communication protocol implemented using ZeroMQ

data Kernel

= kernel(str language, loc project,

str replFunction, loc logo = |tmp:///|);

Listing 1. Kernel ADT.

data REPL

= repl(Result(str) handler,

Completion(str) completor);

alias Completion

= tuple[int pos, list[str] suggestions];

data Result

= text(str result, list[Message] messages);

Listing 2. REPL ADT.

sockets [1]. This protocol describes a set of sockets and mes-

sages that enable the interaction between third-party lan-

guages and the Jupyter platform. Similarly, it describes the

structure of the messages and how to interchange those mes-

sages among the dierent sockets used by Jupyter. To extend

Jupyter’s default set of languages, language engineers need

to implement a language kernel. A language kernel is a pro-

gram that runs user code. To create a language kernel from

scratch, language engineers have to communicate with the

low-level wire protocol.

Bacatá-Core oers the ILanguageProtocol interface that en-

ables the communication between Jupyter and a language

in a generic way. The primary purpose of this layer is to

abstract the implementation complexity of the wire protocol

and its related socket management. Therefore, the language

developer can focus on the language engineering layer. For

DSLs developed within Rascal, we have implemented an this

interface in a language parametric way. In other words, it

pretends to be a particular language kernel, but delegating

all language specic service requests to a language imple-

mentation in Rascal.

4 Bacatá-Rascal

4.1 Introduction

As explained before, to support new languages by Jupyter,

developers have to implement a language kernel. Bacatá is a

Jupyter language kernel generator for DSLs written within

the Rascal LWB.

To use Bacatá’s kernel generator, a language engineer

needs to dene a function that produces a REPL ADT, which

will be used as the language’s interactive interpreter. The

REPL ADT is dened as shown in Listing 2.

1. The language engineer calls the Bacatá function bacata

which accepts one argument, a value of type Kernel.
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The Kernel type (shown in Listing 1), denes the cong-

uration parameters for Bacatá-Core to obtain language

specic information (e.g., name and location of the

logo of the language) and nd relevant resources, such

as the fully qualied name of the REPL implementation

to be used.

2. The generated kernel assumes that there is a replFunction

which returns a REPL value. The REPL data type is shown

in Listing 2. It encapsulates two functions, the handler

for interpreting code, and a completor for code comple-

tion. The respective result types of each function are

also shown in Listing 2.

3. Optionally, language engineers can generate CodeMir-

ror syntax-highlighting modes. This can be achieved

by providing a value of the data type Mode (Listing 6),

which can optionally be automatically derived from

the language’s grammar.

The function bacata takes a Kernel object to generate a

JSON le called kernel.json (cf. Listing 5). This le contains

dierent data such as Jupyter’s connection details (e.g., ZMQ

socket types), language REPL execution instructions, and

language-specic information (e.g., name and logo). When

an end-user request to generate a notebook for a specic

language, all this data is being forwarded to Bacatá. Then,

after generating the JSON le, Bacatá automatically registers

the language as part of the Jupyter supported languages.

4.2 A Full Example: Calc

Now that we have seen the basic components of Bacatá, let

us explore a complete example of generating a notebook for a

simple calculator language (Calc). The denition of Calc is

shown in Listing 3. It denes the syntax of the language using

Rascal’s built-in grammar formalism. The language consists

of commands (Cmd) and expressions (Exp). Commands consist

of assignments and expression evaluation. Expression forms

are variables, numbers, multiplication, and addition. Com-

mands are executed using the exec function, which returns a

number and a (possibly updated) environment. Expressions

simply evaluate to numbers.

Given the language denition of Listing 3, we can now

dene a function that creates a REPL, as shown in Listing 4.

The function myRepl contains two functions, myHandler and

myCompletor. The handler function receives the user input,

tries to parse it as a Cmd, and then executes it. If parsing

was successful, a text Result (Listing 4) is returned with the

computed result. Otherwise, the handler returns an empty

result with an error message corresponding to the parse

error. The function myCompletor iterates over the variables

dened in the environment env, and returns the variables

that partially match with the prefix, together with the index

pos where the match in the prex starts. Finally, both the

handler and the completor are wrapped as a REPL value and

returned.

module Calc

extend lang::std::Id;

extend lang::std::Layout;

syntax Cmd = Id "=" Exp | Exp;

syntax Exp

= Id | Num | left Exp "*" Exp > left Exp "+" Exp;

lexical Num = [\-]?[0-9]+;

alias Env = map[str, int];

tuple[int, Env] exec(Cmd cmd, Env env) { ... }

int eval(Exp exp, Env env) { ... }

Listing 3. Denition of Calc

module Repl

import Calc;

REPL myRepl() {

Env env = ();

Result myHandler(str line) {

try {

Cmd cmd = parse(#Cmd, line);

<n, env> = exec(cmd, env);

return text("<n>", []);

}

catch ParseError(loc l):

return text("", [message("Parse error", l)]);

}

Completion myCompletor(str prefix)

= <pos, [ x | x ← env, startsWith(p, x) ]>

when /<p:[a-zA-Z]*$/ := prefix,

pos := size(prefix) - size(p);

return repl(myHandler, myCompletor);

}

Listing 4. A REPL implementation for Calc

Note that the code of both Listing 3 and Listing 4 is in-

dependent of Bacatá and Jupyter. The syntax denition and

evaluator function can be reused in dierent contexts as well.

Similarly, REPL can also be used for an ordinary command

line interface, for instance, as an interactive console in the

IDE. The same code is used by Bacatá to generate a Jupyter

notebook.

The following interactive session at the Rascal console

shows how to generate a Jupyter kernel with Bacatá, using

the REPL function in Listing 4:
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{"argv": [

"java", "-jar",

"/Mauricio/bacata/bacata-dsl.jar",

"{connection_file}",

"home:///projects/Calc",

"Repl::myRepl",

"Calc"

],

"display_name": "Calc",

"language": "Calc"}

Listing 5. Generated Jupyter kernel for Calc

data Mode

= mode(str name, list[State] states);

data State = state(str name, list[Rule] rules);

data Rule

= rule(str regex, list[str] tokens,

str next = "", bool indent = false,

bool dedent = false);

Listing 6. Syntax Mode ADT

> k = kernel("Calc", |project://Calc|, "Repl::myRepl");

>> ...

> nb = bacata(k);

>> ...

> nb.serve();

The notebook is running at: |http://localhost:8888|

We rst create a Kernel value, consisting of the language

name, the project location, and the qualied name of the

REPL function. The bacata function generates the Jupyter ker-
nel.json le (shown in Listing 5) and returns a notebook value,
which can then be started within the same session. Alter-

natively, the notebook server can also be started from the

commandline outside of Rascal.

4.3 Syntax Highlighting

Jupyter’s input cells highlighting is based on the CodeMirror

editor
1
, which supports easily customizable syntax highlight-

ing through the use of modes. Modes are similar to so-called

“Textmate grammars”
2
, which are used by editors such as

Textmate, VS Code, SublimeText, and many others.

The Mode data type shown in Listing 6 models such modes.

A mode has a name and contains a number of state de-

nitions. Each state then denes a number of rules that are

applicable in that state. A rule denes a regular expression

to match a particular substring and assigns a list of token

types to it that will determine its visual appearance. After a

rule has matched, it may transit to another state via the next

1hps://codemirror.net
2hps://manual.macromates.com/en/language_grammars

property. The optional booleans indent and dedent control

auto indentation in block constructs.

To support syntax highlighting in Bacatá-generated note-

books, the bacata function supports an optional additional

argument for the mode:

Notebook bacata(Kernel k, Mode mode=mode("", [])) {...}

A simple mode for the Calc language could look as fol-

lows:

mode("Calc", [state("init", [

rule("[0-9]+", ["number"]),

rule("[a-zA-Z][a-zA-Z0-9_]*", ["variable"])])])

This mode denes a single state with two rules for numbers

and variables.

Language engineers can dene suchmodesmanually. How-

ever, Bacatá also features a function to generate simplemodes

for keyword highlighting from a Rascal grammar using re-

ection.

4.4 Interactive Visualizations

Jupyter notebooks run in the browser, so this allows output

cells to contain almost arbitrary interactive visualizations,

beyond the simple text output that we have seen in the

Calc example. Bacatá supports fully interactive, stateful

graphical user interfaces in output cells through integration

with Rascal’s web UI framework Salix
3
. Salix supports all the

standard HTML and SVG elements, and features integration

with graph rendering libraries
4
, and chart frameworks

5
.

A Salix application is encapsulated as a value of type

App[&T] where the type parameter &T indicates the type of the

application data model. Under the hood, an App encapsulates

a view to draw UIs using HTML and SVG elements, and an

update function to update the model when a user event is

triggered, respectively. Bacatá makes use of such Salix appli-

cations by allowing Salix Apps as output of the REPL. This is

achieved by extending the Result data type of Listing 2:

data Result

= ...

| app(App[&T] app, list[Message] messages);

This kind of result can be used to produce fully functional

stateful output cells, leveraging all UI features of Salix.

To illustrate the exibility of app, we can extend the Calc

language with a very simplied expression debugger to vi-

sualize the eect of variables on expression evaluation. The

rst step is to extend the language with another command

to trigger the visualization:

3hps://github.com/cwi-swat/salix
4hps://github.com/dagrejs
5hps://developers.google.com/chart/

6

https://codemirror.net
https://manual.macromates.com/en/language_grammars
https://github.com/cwi-swat/salix
https://github.com/dagrejs
https://developers.google.com/chart/
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data Msg = var(str x, str val);

App[Env] expApp(Exp e, Env env) {

Env init() = env;

void view(Env env) {

div(() {

for (str x ← env) {

text("<x>: <env[x]>");

input(\type("range"), \value(env[x]),

onInput(partial(var, x)));

}

text("<e>: <eval(e, env)>");

});

}

Env update(var(x, v), Env env) = env + (x:toInt(v));

return makeApp(init, view, update);

}

Listing 7. Expression debugger dened using Salix.

syntax Cmd

= ...

| "show" Exp;

So, for instance, if the user types show x + y, a debugger of

the expression x + y will appear in the output cell.

The debugger itself is dened as the Salix application

shown in Listing 7. The environment serves as the applica-

tion model. The Msg data type encapsulates events supported

by the application; in this case there’s only one, capturing

change of variable’s value in the environment.

The function expApp then denes the actual application.

It consists of three nested functions. The rst produces the

initial model, in this case the environment env passed into

expApp. The view function takes an environment and draws

the UI. The debug viewwill consist of rows of sliders for each

variable in the environment, producing var messages when

the user modies the slider position. Finally, the expression

itself is shown as text together with the value it evaluates to.

Finally, the update function updates the model, in this case

represented by the environment.

The last required modication consists of having the REPL

return an expApp when the user enters the show-command.

This is achieved by adding the following statements, just

after parsing the command:

Cmd cmd = ...

if ((Cmd)`show <Exp e>` := cmd) {

return app(expApp(e, env), []);

}

Figure 4. Interactive debugging of a Calc expression.

The if-condition uses Rascal’s concrete syntax patternmatch-

ing to check if cmd is a show-command, binding e to the ar-

gument expression. If the match succeeds, the app result

containing the App produced by expApp is returned.

The resulting debugging interface is illustrated in Figure 4.

The user has typed in two assignments to variables x and y,

and then invokes the show-command to inspect the eect of

the current variable bindings on the expression 2 * y. The

result is two slider widgets for variable x and y, together with

current evaluation of 2 * y. When changing the slider for y

the new result will be live updated on the last line.

5 Case Studies

We have implemented a notebook interface using Bacatá for

DSLs developed using the Rascal LWB. The DSL interface

was used to generate notebooks for three dierent languages

Halide*, SweeterJS, and QL.

5.1 Halide*

Halide [20] is a language for image processing and computa-

tional photography. To generate a Halide notebook, we have

implemented Halide*, a subset of Halide, implemented in Ras-

cal. Halide* was explicitly designed to be used within a note-

book environment, due to the order of steps required for the

construction and execution of image processing pipelines.

This DSL is used to generate, compile, and execute native

Halide source code; the Halide compiler does the compilation

and execution steps. In Halide* we have introduced some

syntactic sugar such as function wrappers to be able to dier-

entiate between main functions, image pipeline denitions,

compilation strategies (e.g., ahead of time or just in time (JIT)

compilation), and execution. The syntactic sugar was added

to make the execution of Halide code more amenable to the

notebook style of working. The execution of the Halide code

through the notebook client is done by calling the Halide

7
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(a) Loading an image and dening a function blur (snipped). (b) Calling blur and inspecting generated artifacts.

Figure 5. Halide notebook.

compiler to execute user’s code. Bacatá intercepts those re-

sults, parses them into HTML, and then displays themwithin

the output cells of the Halide* notebook.

A prototypical session using theHalide* notebook is shown

in Figure 5. The case study highlights multi-media outputs

and inspection of generated compiler artifacts. On the left

(Figure 5a) the user loads an image, which is directly shown

as the output result. Then a function blur is dened (snipped),

which does not produce output but is now available for use.

Then, on the right (Figure 5b), the blur function is invoked on

the input image in. The result shows a tabbed interface to in-

spect loop nests, execution metrics, lowered code, assembly

code, C code, and LLVM assembly code.

5.2 SweeterJS

To illustrate the benets of notebooks from the language

engineering perspective, we have generated a notebook in-

terface for SweeterJS, a variant of Javascript for teaching

language extension through source-to-source transforma-

tion (desugaring) using Rascal
6
. Using the notebook students

can enter snippets of extended Javascript, and see both the

computed result and the desugared source code.

An example is shown in Figure 6 where the user has en-

tered some Javascript code with an SQL-like query expres-

sion (line 5). Evaluating the cell produces the actual output

of running the desugared Javascript code, but also shows the

desugared code itself. In this case, the query expression is

transformed to a JSLINQ query constructor.

5.3 Questionnaire Language (QL)

The last used language is QL, which is a DSL for building

interactive questionnaires. QL has been used to benchmark

and evaluate language workbenches [6] and is interesting

from the perspective of notebooks since QL programs dene

interactive GUI applications.

A questionnaire consists of a form which may contain

one or more questions. There are three dierent types of

6hps://github.com/cwi-swat/hack-your-javascript

Figure 6. SweeterJS notebook showing desugared output.

questions, namely labeled, conditional, and computed ques-

tions. Questionnaires can be executed as interactive HTML

forms, which we implemented using the Salix library. Addi-

tionally, the QL notebook supports visualizing the control

dependencies between questions, which is a valuable tool

for questionnaire designers to understand the conditional

logic of a questionnaire.

Figure 7 shows a sample interaction with the QL note-

book using the example of a simple tax ling questionnaire.

The user rst denes a questionnaire myForm using the form-

command (Figure 7a). Then, in Figure 7b, the form is rendered

using the html command. Note that the output is a fully work-

ing questionnaire, as if it were deployed, so this allows easy

and interactive testing of questionnaires. Alternatively, to

understand the conditional logic of a form, the user can visu-

alize the control dependencies using the visualize command

(Figure 7c).

5.4 Eort

To assess the exibility in creating Jupyter notebooks using

Bacatá, we compare the number of Source Lines of Code

(SLOC) that are independent of Bacatá to the number of

8
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(a) QL form denition. (b) QL form execution. (c) Question control dependencies.

Figure 7. QL notebook.

Language Reused SLOC Notebook SLOC

Calc 37 50

Halide* 51 647

SweeterJS 579 162

QL 771 120

Table 1. Reused vs new code in SLOC.

SLOC required to dene the notebook itself. These results

are shown in Table 1.

The Calc language is included as a simple baseline, and

consists of the code discussed in Section 4.2. The reused

code consists of the syntax denition and the exec and eval

functions. The notebook code includes the denition of the

REPL and the expression debugger Salix application.

The Halide* implementation diers from the others in that

the code generators are designed specically to be used in

the notebook setting. As a result, the only reusable code is

the syntax denition. This explains why the notebook code

is larger.

In both SweeterJS and QL the ratio between reused and

new code is much higher. In the case of SweeterJS, the

reusable code includes the syntax denition of Javascript, lan-

guage extensions for state machines, queries, and a variant of

HAML
7
, and the transformations to desugar the extensions

to vanilla Javascript.

The interpreter for QL had already been dened using

Salix, so could be reused directly. The same holds for the syn-

tax denition, name resolver, and type checker. The new code

includes the code for the REPL, and the control-dependency

visualization.

As can be observed from Table 1, creating a notebook us-

ing Bacatá requires limited eort. The main component to

be written is the function dening the REPL and the code

7hp://haml.info/

completor, which basically consists of wiring existing com-

ponents together.

6 Related Work

Bacatá can be positioned in a long line of research in program

environment generation [3, 6, 9, 12, 21, 23, 25]. Currently,

this work is is centered around the concept of language work-

benches, a term popularized by Fowler [7]. In his essay, he

explains a brief history of the language-oriented program-

ming, their pros and cons, and how IDE tooling has become

essential for the viability of language oriented programming,

and learning and using DSLs.

Languageworkbenches provide language parametric tools,

meta languages, and techniques to lower the cost of DSL en-

gineering. Bacatá aims to do the same for notebooks. Speci-

cally, interactive notebooks provide a dierent user interface

for code and documentation. Orthogonal to, but not in con-

ict with more traditional IDE or editor styles.

Concerning interactive computing, Cook [4] andNagar [19]

have highlighted the importance of this paradigm of soft-

ware development. Cook [4], shows the consequences of

adopting this paradigm and how it aects the way we write

code based on immediate responses. While Nagar [19] shows

a Python way of working using interactive computing, and

how it has reduced the learning curve of a programming

language if the user can experiment with commands and

expressions.

Notebooks integrate the use of narrative in software de-

velopment, literate programming [16, 22], interactive com-

puting, and collaboration. Turner et al. [24] found notebooks

useful as a way of supporting cooperative work and sharing

information with non-technical sta. This is aligned with

the perspective of using notebooks for DSLs that have a non-

programmer audience. However, they found dicult to dif-

ferentiate between formal an informal information. Similarly,

9
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Malony et al. [17] performed computational experiments us-

ing a notebook environment, called the Virtual Notebook

Environment (ViNE) [? ].

7 Conclusions & Future Work

Interactive notebooks provide a user interface for interacting

with computational narratives, integrating code with docu-

mentation and live, interactive feedback. Unlike traditional

IDEs and editors, notebooks focus on interactive exploration

and computational story telling.

Constructing interactive notebooks for new languages

requires a lot of eort, especially in the context of DSLs,

where the engineering trade-os and design cycle is dier-

ent from general purpose language. In this paper, we have

presented Bacatá, a language paramteric notebook generator

based on the Jupyter framework. Given existing language

components, such as parsers, interpreters, type checkers etc.,

Bacatá reduces the eort of obtaining an interactive note-

book interface to writing a few lines of code wiring language

components together.

We described the core architecture of Bacatá, and pre-

sented how the interface is exposed within the Rascal lan-

guage workbench. Next to the usual notebook features (exe-

cuting code, code completion, highlighting), we have shown

how Bacatá supports fully interactive output cells using Ras-

cal’s web-based GUI framework Salix. The Rascal binding to

Bacatá has been used to dene notebook interfaces for three

languages, Halide*, SweeterJS, and QL, exercising multiple

aspects of the framework. Comparing the required number

of new lines of code versus the number of lines of code

that could be reused shows that Bacatá-generated notebook

interfaces require little eort.

A main direction for future work is consolidating the

ILanguageProtocol interface of Bacatá with Microsoft’s Lan-

guage Server Protocol [18]. This would allow DSL engineer-

ings to implement a single IDE interface once and for all,

which could serve both traditional IDEs, as well as interactive

Jupyter notebooks.
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