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Abstract. Object algebras are a new programming technique that en-
ables a simple solution to basic extensibility and modularity issues in
programming languages. While object algebras excel at defining modu-
lar features, the composition mechanisms for object algebras (and fea-
tures) are still cumbersome and limited in expressiveness. In this paper
we leverage two well-studied type system features, intersection types and
type-constructor polymorphism, to provide object algebras with expres-
sive and practical composition mechanisms. Intersection types are used
for defining expressive run-time composition operators (combinators)
that produce objects with multiple (feature) interfaces. Type-constructor
polymorphism enables generic interfaces for the various object algebra
combinators. Such generic interfaces can be used as a type-safe front end
for a generic implementation of the combinators based on reflection. Ad-
ditionally, we also provide a modular mechanism to allow different forms
of self -references in the presence of delegation-based combinators. The
result is an expressive, type-safe, dynamic, delegation-based composition
technique for object algebras, implemented in Scala, which effectively
enables a form of Feature-Oriented Programming using object algebras.

1 Introduction

Feature-oriented programming (FOP) is a vision of programming in which in-
dividual features can be defined separately and then composed to build a wide
variety of particular products [5,21,43]. In an object-oriented setting, FOP breaks
classes and interfaces down into smaller units that relate to specific features. For
example, the IExp interface below is a complete object interface, while IEval and
IPrint represent interfaces for the specific features of evaluation and printing.

trait IExp {
def eval() : Int
def print() : String

}

trait IEval { def eval() : Int }

trait IPrint { def print() : String }

Existing object-oriented programming (OOP) languages make it difficult to sup-
port FOP. Traditionally OOP encourages the definition of complete interfaces
such as IExp. Such interfaces are implemented by several classes. However adding
a new feature usually involves coordinated changes in multiple classes. In other



words, features often cut across traditional object-oriented modularity bound-
aries, which is centered on the behavior of individual objects. Such cross-cutting
is a symptom of the tyranny of the dominant decomposition [48]: programming
languages typically support development across one dominant dimension well,
but all other dimensions are badly supported [23,27,48].

The main difficulty in supporting FOP in existing OOP languages stems
from the intrinsic flexibility of FOP, which is challenging for programmers and
language designers, especially when combined with a requirement for modular
type-checking and separate compilation. Although research has produced many
solutions to extensibility and modularity issues, most of these require advanced
language features and/or careful advanced planning [11,17,19,30,32,50,52–54].

Object algebras [37] are a new approach to extensibility and modularity in
OOP languages, which is based on a generalization of factories that creates
families of related objects. The basic model of object algebras requires only
simple generics, as in Java, without advanced typing features. For example, the
following interface is an object algebra interface of simple expressions:

trait ExpAlg[E] {
def Lit(x : Int) : E
def Add(e1 : E, e2 : E) : E

}

Object algebras allow new features to be defined by implementing ExpAlg. For
instance, classes implementing ExpAlg[IPrint] and ExpAlg[IEval] are algebras
implementing printing and evaluation features respectively. Object algebras also
allow extending the interface ExpAlg with new constructors [37]. As such object
algebras provide a solution to the expression problem [14, 44,51].

While object algebras excel at defining modular features, the composition
mechanisms for object algebras (and features) are still cumbersome and lim-
ited in expressiveness. Combining algebras implementing ExpAlg[IPrint] and
ExpAlg[IEval] to form ExpAlg[IExp] is possible, but tedious and cumbersome in
Java. Moreover composition mechanisms must be defined separately for each ob-
ject algebra interface, even though the composition follows a standard pattern.
Finally, the basic model of object algebras does not support self-references, so
overriding is not supported. The lack of good compositions mechanisms hinders
the ability to express feature interactions, which is essential for FOP.

This paper provides object algebras with expressive and practical composi-
tion mechanisms using two well-studied type system features: intersection types [15]
and type-constructor polymorphism [31, 45]. Both features (as well as their in-
teraction) have been well-studied in programming language theory. For example
Compagnoni and Pierce’s Fω

∧ calculus [12], used to study language support for
multiple inheritance, supports both features. Moreover, both features are avail-
able in the Scala programming language [33], which we use for presentation.

An intersection type, A with B, combines the interfaces A and B to form a new
interface. Because the new interface is not required to have an explicit name,
programmers can define generic interface composition operators, with types of
the form A => B => A with B. These interface combinators allow object algebras to
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be composed flexibly. While the interfaces are composed and checked statically,
the composition of the algebras is done at runtime.

Type-constructor polymorphism refers to the ability for a generic definition
to take a type constructor, or type function, as an argument. Since definitions like
ExpAlg are type constructors, type constructor polymorphism is useful to abstract
over such definitions. With type constructor polymorphism it is possible to define
generic interfaces for object algebra combinators which are parametrized over
the particular type of object algebras. In combination with meta-programming
techniques this allows automating implementations of the combinators. As a
result a single line is sufficient to implement the combinators for an extension
or new object algebra interface. For example, the object ExpComb

object ExpComb extends Algebra[ExpAlg]

creates an object with combinators for the object algebra interface ExpAlg.
We also provide a modular mechanism to allow different forms of self -references

in the presence of delegation-based combinators. As Ostermann [42] observes
there are two important concerns related to self-references in delegation-based
families of objects: 1) virtual constructors; 2) individual object self-references.
The two issues are addressed using two types of self-references, which provide,
respectively a notion of family and object self-references.

Ultimately, the object algebra composition mechanisms presented in this pa-
per are expressive, type-safe1,dynamic (composition happens at run-time), dele-
gation-based and convenient to use. With these composition mechanisms a pow-
erful and expressive form of FOP with object algebras is possible.

In summary, our contributions are:

– FOP using object algebras: We show that, provided with suitable composition
mechanisms, object algebras enable a convenient and expressive form of FOP,
which supports separate compilation and modular type-checking.

– Generic object algebra combinators: Using intersection types and type-con-
structor polymorphism, we show how to model general, expressive and type-
safe composition mechanisms for object algebras.

– Modular self-references: We show a modular mechanism for dealing with self-
references in the presence of delegation-based object algebra combinators.

– Case studies: We present two case studies that show the use of our tech-
niques. The first is a typical test problem in FOP, the second involves com-
position and instrumentation of various operations on grammars. The code
for the case studies and smaller examples, which has been successfully eval-
uated by the ECOOP artifact evaluation committee, is published online at:

https://github.com/tvdstorm/oalgcomp

2 Object Algebras and Current Limitations

Object Algebras are classes that implement algebraic signatures encoded as pa-
rameterized interfaces, where the type parameter represents the carrier set of
1 Uses of reflection are not statically type-safe, but they are optional and can be
replaced by boilerplate type-safe code which avoids reflection.
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trait ExpEval extends ExpAlg[IEval] {
def Lit(x : Int) : IEval = new IEval {
def eval() : Int = x

}

def Add(e1 : IEval, e2 : IEval) : IEval = new IEval {
def eval() : Int = e1.eval() + e2.eval()

}
}

object ExpEval extends ExpEval

Fig. 1. An object algebra for evaluation of integer expressions.

trait ExpPrint extends ExpAlg[IPrint] {
def Lit(x : Int) : IPrint = new IPrint {
def print() : String = x.toString()

}

def Add(e1 : IPrint, e2 : IPrint) : IPrint = new IPrint {
def print() : String = e1.print() + " + " + e2.print()

}
}

object ExpPrint extends ExpPrint

Fig. 2. An object algebra for printing of integer expressions.

the algebra [37]. In ExpAlg the methods Lit and Add represent the constructors
of the abstract algebra, which create values of the algebra in the carrier type E.
A class that implements such an interface is an algebra [22], in that it defines a
concrete representation for the carrier set and concrete implementations of the
methods. While it is possible to define an object algebra where the carrier set
is instantiated to a primitive type, e.g. int for evaluation or String for print-
ing, in this paper the carrier is always instantiated to an object interface that
implements the desired behavior. For example, Fig. 1 and 2 define algebras for
evaluating and printing expressions.

Provided with these definitions, clients can create values using the appropri-
ate algebra to perform desired operations. For example:

def exp[E](f : ExpAlg[E]) : E =
f.Add(f.Lit(5), f.Add(f.Lit(6),f.Lit(6)))

val o1 : IPrint = exp(ExpPrint)
val o2 : IEval = exp(ExpEval)
println("Expression: " + o1.print() + "\nEvaluates to: " + o2.eval())

defines a method exp, which uses the object algebra (factory) f to create values
of an abstract type E. The example then creates objects o1 and o2 for printing
and evaluation. The ExpAlg interface can be extended to define new constructors
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for additional kinds of expressions. A new class that implements ExpAlg provides
a new operation on expressions.

One serious problem with the example given above is that two versions of the
object must be created: o1 is used for printing, while o2 is used for evaluation.
A true feature-oriented approach would allow a single object to be created that
supported both the printing and evaluation features. A more serious problem
arises when one feature (or algebra) depends upon another algebra. Such opera-
tions cannot be implemented with the basic strategy described above. In general,
feature interactions are not expressible.

The original object algebra proposal [37] addressed this problem by proposing
object algebra combinators. Object algebra combinators allow the composition of
algebras to form a new object algebra with the combined behavior and also new
behavior related to the interaction of features. Unfortunately, the object algebras
combinators written in Java lack expressiveness and are not very practical or
convenient to use, for three different reasons:

– Composed interfaces are awkward: The Java combinators are based on cre-
ating pairs to represent the values created by combining two algebras. From
the client’s viewpoint, the result had the following form (using Scala, which
has support for pairs):
val o : (IEval,IPrint) = exp(combineExp(ExpEval,ExpPrint))
println("Eval: " + o._1.eval() + "\nPrint: " + o._2.print())

The value o does combine printing and evaluation, but such pairs are cum-
bersome to work with, requiring extraction functions to access the methods
and revealing that the objects result from compositions. Combinations of
more than two features require nested pairs with nested projections, adding
to the usability problems.

– Combinators must be defined for each object algebra interface: There is a lot
of boilerplate code involved because combinators must be implemented or
adapted for each new object algebra interface or extension. Clearly, this is
quite inconvenient. It would be much more practical if the combinators were
automatically defined for each new object algebra interface or extension.

– The model of dynamic composition lacks support for self-references: Finally,
combinators are defined using dynamic invocation, rather than inheritance.
The Java form of object algebras does not support self-reference or delega-
tion. Since self-reference is important to achieve extensibility, the existing
object algebra approach lacks expressiveness.

As a result, while object algebras provide a simple solution to basic mod-
ularity and extensibility issues, existing composition mechanisms impose high
overhead and have limited expressiveness for FOP. The remainder of the paper
shows solutions to the three problems.

3 Combining Object Algebras with Intersection Types

Intersection types help with providing a solution to the problem of combining
object algebras conveniently. Combining object algebras allows two different be-
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haviors or operations, implemented by two specific algebras, to be available at
once. Intersection types avoid the heavy encoding using pairs and allow methods
to be called in the normal way.

3.1 Scala’s Intersection Types

In Scala, an intersection type2 A with B expresses a type that has both the
methods of type A and the methods of type B. This is similar to
interface AwithB extends A, B {}

in a language like Java or C#. The main difference is that an intersection type
does not require a new nominal type AwithB. Furthermore, Scala’s intersection
types can be used even when A and B are type parameters instead of concrete
types. For example,
trait Lifter[A,B] {

def lift(x : A, y : B ) : A with B
}

is a trait that contains a method lift which takes two objects as parameters
and returns an object whose type is the intersection of the two argument types.
Note that such an interface cannot be expressed in a language like Java because
it is not possible to create a new type that expresses the combination of type
parameters A and B3.

3.2 Merging Algebras using Intersection Types

Intersection types allow easy merging of the behaviors created by object algebras.
The lift operation defined in the previous section for combining objects is used
in the definition of a merge operator for algebras. Conceptually, a merge function
for an algebra interface F combines two F -algebras to create a combined algebra:
mergeF: (A => B => A with B) => F[A] => F[B] => F[A with B]

Unlike the solution with pairs described in Section 2, intersection types do
not require additional projections. The additional function argument represents
the lift function, of type A => B => A with B, that specifies how to compose two
objects of type A and B into an object of type A with B. This lift function resolves
conflicts between the behaviors in A and B by appropriately invoking (delegating)
behaviors in A with B to either A or B. The lift function can also resolve inter-
actions between features. In other words, the function argument plays a role
similar to lifters in Prehofer’s FOP approach [43].

From a conceptual point of view, the key difference between combine on pairs
and merge is that the former uses a zip-like operation with pairs, and the latter
uses a zipWith-like operation with intersection types.
2 In Scala these are often called compound types.
3 Note that Java supports a limited form of intersection types in generic bounds, but
this form of intersection types is too weak for our purposes. In Java it is possible to
have generic bounds such as <T extends A & B>, where A & B denotes an intersection
type. However A and B cannot be type parameters: they must be concrete types.
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trait ExpMerge[A,B] extends ExpAlg[A with B] {
val lifter : Lifter[A,B]
val alg1 : ExpAlg[A]
val alg2 : ExpAlg[B]

def Lit(x : Int) : A with B =
lifter.lift(alg1.Lit(x),alg2.Lit(x))

def Add(e1 : A with B, e2 : A with B) : A with B =
lifter.lift(alg1.Add(e1, e2),alg2.Add(e1, e2))

}

Fig. 3. Expression merging combinator with intersection types.

object LiftEP extends Lifter[IEval,IPrint] {
def lift(x : IEval, y : IPrint) = new IEval with IPrint {
def print() = y.print()
def eval() = x.eval()

}
}

object ExpPrintEval extends ExpMerge[IEval,IPrint] {
val alg1 = ExpEval
val alg2 = ExpPrint
val lifter = LiftEP

}

def test2() = {
val o = exp(ExpPrintEval)
println("Eval: " + o.eval() + "\nPrint: " + o.print())

}

Fig. 4. Merging the printing and evaluation algebras.

Figure 3 defines the merge combinator for expressions in Scala as the trait
ExpMerge. The value of type Lifter[A,B] plays the role of the combination func-
tion in merge, while the two values alg1 and alg2 are the two object algebra
arguments. The definition of Lit and Add uses the method lifter to combine the
two corresponding objects, which are delegated by invoking the corresponding
method on the arguments. Intersection types automatically allow the following
subtyping relationships:
A with B <: A and A with B <: B

These relationships ensure that no conversion/extraction is needed when dele-
gating arguments, for example, e1 and e2 in Add. This is an advantage over using
pairs, because extraction of the arguments from the pairs is not needed.

Figure 4 illustrates how to merge the printing and evaluation algebras to
create an ExpPrintEval algebra. Clients can use this factory to create objects of
type IEval with IPrint, which include print and eval in a single interface. The
result is a seamless combination of the printing and evaluation features.
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class LiftDecorate[A](wrap : A => A) extends Lifter[A,Any] {
def lift(x : A, y : Any) = wrap(x)

}

trait ExpDecorate[A] extends ExpMerge[A,Any] {
val alg2 = ExpEmpty
val lifter = new LiftDecorate(wrap)
def wrap(x : A) : A

}

Fig. 5. Decoration combinator derived from merge and empty.

Unfortunately, it is still necessary to define some boilerplate. Each merge
requires a lifter object (LiftEP), which in this case combines IEval with IPrint.
Often, as in this case, such lifting operations simply create the new object and
delegate the methods to the corresponding methods in either x or y. As we shall
see in Section 5.2, in such cases, it is possible to define a generic lifting behavior.

4 Applying Uniform Transformations to Object Algebras

This section shows how to define uniform transformations on object algebras
using the merge combinator. This serves as a representative example of the
expressive power of merge. The primary example of a uniform transformation
is adding a generic tracing behavior at each step of evaluation. In this case the
behavior being added is not specific to each constructor in the algebra, but is
instead a uniform behavior at each evaluation step.

Uniform transformations are formalized as a combinator, which encapsulates
a Decorator [20] wrapping each value constructed by the algebra with addi-
tional functionality. The decorate combinator takes a function A =>A and an ob-
ject algebra ExpAlg[A] and produces a wrapped object algebra of type ExpAlg[A]:

decorate : (A => A) => ExpAlg[A] => ExpAlg[A]

Although decorate can be implemented directly, we choose to implement it
in terms of the more generic merge combinator. In this use of merge it is the
lifting function that matters, while the possibility to combine two algebras
is not needed. As a result, we supply an empty algebra as the second algebra.
Conceptually, the decorate combinator defines a lifting that applies the trans-
formation wrap to its first argument, and ignores the second (empty) argument.

decorate wrap alg = merge(x => y => wrap(x), alg, empty)

Figure 5 gives the Scala definition of the decorate combinator for the ex-
pressions algebra. The ExpDecorate trait extends ExpMerge and sets the second
algebra to an empty object algebra. An abstract method wrap specifies a deco-
ration function, which is applied to objects of type A.

An empty algebra, defined in Fig. 6, is an algebra, of type ExpAlg[Any], that
does not define any operations. It instantiates the carrier type to Any, a Scala
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trait ExpEmpty extends ExpAlg[Any] {
def Lit(x : Int) : Any = new Object()
def Add(e1 : Any, e2 : Any) : Any = new Object ()

}
object ExpEmpty extends ExpEmpty

Fig. 6. The Empty expression algebra.

object TraceEval extends ExpDecorate[IEval] {
val alg1 = ExpEval
def wrap(o : IEval) = new IEval() {
def eval() = {
println("Entering eval()!")
o.eval()

}
}

}

Fig. 7. A decorator for tracing.

type that plays the role of the top of the subtyping hierarchy. Every method in
the object algebra has the same definition: new Object().

4.1 Tracing by Decoration

Figure 7 defines a tracing mechanism using the decorator combinator. The ob-
ject TraceEval wraps an existing evaluator with tracing. The eval method first
prints a message and then delegates to the base evaluator o. By extending
ExpDecorate[IEval], this wrapper is applied to every evaluator created by the
underlying evaluator ExpEval. When exp is invoked with TraceEval:
val o : IEval = exp(TraceEval)
println("Eval: " + o.eval())

the string Entering eval()! is printed 5 times in the console.

5 Generic Object Algebra Combinators

To avoid manually writing boilerplate code for combinators such as merge, empty
or decorate, we develop object algebra combinators interfaces and corresponding
implementations generically.

A generic merge combinator defined on an object algebra interface F contain-
ing methods m1(args1), ...,mn(argsn) might look as follows:
trait MergeF[A,B] extends F[A with B] {
val lifter : Lifter[A, B]
val a1 : F[A]
val a2 : F[B]
def mi(argsi) : A with B = lifter.lift(a1.mi(argsi), a2.mi(argsi))

}
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trait Algebra[F[_]] {
// Basic combinators
def merge[A,B](mix : Lifter[A,B], a1 : F[A], a2 : F[B]) : F[A with B]
def empty() : F[Any]

// Derived combinator(s)
def decorate[A](parent : F[A], wrap : A => A) : F[A] =
merge[A,Any](new LiftDecorate(wrap),parent,empty)

}

Fig. 8. The generic interface for object algebra combinators.

The generic merge combinator extends an interface which is polymorphic in the
types of the algebras it combines. Its methods are thin facades to invoke the
underlying lifter on the two object algebras. There are two challenges in defin-
ing a generic merge: the first is defining its generic interface and the second
is implementing the constructors. The former is solved using type-constructor
polymorphism [31, 45], and the latter with reflection. The same idea is applied
to other combinators, including empty.

5.1 A Generic Interface for Object Algebra Combinators

Scala supports type-constructor polymorphism by allowing a trait to be pa-
rameterized by a generic type, also known as a type constructor. With type-
constructor polymorphism it is possible to provide a generic interface for object
algebra combinators, as shown in Fig. 8. The Algebra trait is parameterized by a
type constructor F[_], which abstracts over object algebra interfaces like ExpAlg.
Note that the annotation [_] expresses that F takes one type argument. The
trait contains three methods. These methods provide a generalized interface for
the object algebra combinators introduced in Sections 3 and 4, using the type
constructor F instead of a concrete object algebra interface.

The Algebra interface is inspired by applicative functors [29]: an abstract
interface, widely used in the Haskell language, to model a general form of effects.
In Haskell4, the interface for applicative functors is defined as:
class Applicative f where

merge :: (a → b → c) → f a → f b → f c
empty :: f ()

Like object algebra combinators, applicative functors are also closely related
to zip-like operations. Our combinators can be viewed as an adaptation of the
applicative functors interface. However, an important difference is that applica-
tive functors require co-variant type-constructors (the parameter type occurs
in positive positions only), whereas object algebra interfaces do not have such
restriction. In fact most object algebras use invariant type-constructors (the pa-
rameter type can occur both in positive and negative positions). To compensate
4 The actual interface in the Haskell libraries is different, but equivalent in expres-
siveness to the one described here as discussed by McBride and Paterson [29].
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def merge[A,B](lifter : Lifter[A,B], a1 : F[A], a2 : F[B])(implicit m :
ClassTag[F[A with B]]) : F[A with B] =

createInstance(new InvocationHandler() {
def invoke(proxy : Object, method : Method, args : Array[Object]) = {
val a = method.invoke(a1,args : _*)
val b = method.invoke(a2,args : _*)
lifter.lift(a.asInstanceOf[A],b.asInstanceOf[B]).asInstanceOf[Object]

}})

def empty(implicit m : ClassTag[F[Any]]) : F[Any] =
createInstance(new InvocationHandler() {
def invoke(proxy : Object, method : Method, args : Array[Object]) =

new Object()
})

Fig. 9. Reflective, generic implementations of merge and empty.

for the extra generality of the object algebra interface type-constructors, the
merge operation restricts the type c to the intersection type A with B.

Finally note that Algebra can itself be viewed as an object algebra inter-
face whose argument type (constructor) abstracts over another object algebra
interface. Algebra can be thought of as a factory of factories, or a higher-order
factory: the factory methods merge and empty construct factory objects.

Combinators for specific object algebras Using Algebra we can create an object
that contains object algebra combinators specialized for ExpAlg as follows:
object ExpComb extends Algebra[ExpAlg] {

def merge[A,B](f : Lifter[A,B], a1 : ExpAlg[A], a2 : ExpAlg[B]) =
new ExpMerge[A,B]() {
val lifter : Lifter[A,B] = f
val alg1 : ExpAlg[A] = a1
val alg2 : ExpAlg[B] = a2}

def empty() = ExpEmpty
}

and use these combinators in client code. For example:
import ExpComb._

val o = exp(merge(LiftEP,decorate(ExpEval,TraceEval.wrap),ExpPrint))
println("Eval: " + o.eval() + "\n PP: " + o.print())

creates an object o, combining a traced version of evaluation and printing.

5.2 Default Combinator Implementations using Reflection

Reflection can be used to implement merge, empty, and a default Lifter for any
given object algebra interface. Reflection does not guarantee static type safety,
but if the default reflective implementation is trusted, then the strongly-typed
generic interface guarantees the static type-safety of the client code.

Figure 9 gives generic implementations for merge and empty using reflection.
These implementations can be used in the generic interface Algebra to provide

11



a default implementation of the combinators. The idea is to use dynamic prox-
ies [26] to dynamically define behavior. A dynamic proxy is an object that
implements a list of interfaces specified at runtime. As such, that object can re-
spond to all methods of the implemented interfaces by implementing the method
invoke and the InvocationHandler interface. The dynamic proxy objects are cre-
ated using the createInstance method:
def createInstance[A](ih : InvocationHandler)(implicit m : ClassTag[A]) = {

newProxyInstance(m.runtimeClass.getClassLoader,
Array(m.runtimeClass),ih).asInstanceOf[A]

}

This method relies on the JDK reflection API, which supports the creation of
dynamic proxies, and Scala’s mirror-based [8] reflection API to provide reflec-
tive information of type parameters. The use of Scala’s mirror-based reflection
requires an adjustment on the types of the combinators in Algebra. The combi-
nators now need to take an additional implicit parameter [40] m, which contains
a reflective description of type parameters. This additional parameter does not
affect client code since it is implicitly inferred and passed by the Scala compiler.

Unfortunately there is a wrinkle in our use of reflection: while supported by
Scala, intersection types are not natively supported by the JVM. As a result
the use of createInstance to dynamically generate an object with an intersection
type is problematic. Fortunately there is a workaround which consists of creating
a nominal subtype S of an intersection type A with B. This allows working around
the JVM limitations, but requires an extra type argument S <: A with B in our
combinators. In the paper, for clarity of presentation, we will ignore this issue
and assume that createInstance works well with intersection types.

Generic Lifters The delegate function creates a generic lifter function.
def delegate[A,B](x : A, y : B)(implicit m : ClassTag[A with B]) =

createInstance[A with B](new InvocationHandler() {
def invoke(proxy : Object, method : Method, args : Array[Object]) = {
try {
method.invoke(x, args : _*)

} catch {
case e : IllegalArgumentException => method.invoke(y, args : _*)

}}})

This function is quite useful to handle intersection types composed of interfaces
whose methods are disjoint. An example is the intersection of IEval and IPrint.
In the case that the sets of methods are not disjoint, methods in algebra x will
have priority over those in algebra y.

With delegate and merge it is possible to define a combinator combine, which
resembles the zip-like combinator with the same name proposed by Oliveira and
Cook [37]. The difference is the result is an intersection type instead of a pair.

def combine[A,B](alg1 : F[A], alg2 : F[B])(implicit m1 : ClassTag[F[A
with B]], m2 : ClassTag[A with B]) : F[A with B] =

merge[A,B](new Lifter[A,B]() {
def lift(x : A, y : B) = delegate[A,B](x,y)},

alg1, alg2)
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With combine we can combine features without having to explicitly define a lifter
function. For example:

val o = exp(combine(decorate(ExpEval,TraceEval.wrap),ExpPrint))
println("Eval: " + o.eval() + "\n PP: " + o.print())

combines evaluation with printing and also enables tracing on eval.
In summary, generic object algebra combinators avoid manual definitions

such as ExpMerge and LiftEP. Instead:

object ExpComb extends Algebra[ExpAlg]

creates a set of combinators, including merge, empty, delegate, combine, and
decorate for ExpAlg, providing the necessary composition infrastructure. Nev-
ertheless programmers can still provide their own definitions if desired, which
can be useful to avoid performance penalties due to the use of reflection.

6 Object Algebras, Self-References and Delegation

This section defines a generalization of object algebra interfaces which accounts
for self-references in our delegation-based setting. Self-references are orthogo-
nal and complementary to the generic and reflective combinators presented in
Section 5. As such, for simplicity of presentation, we will first present the treat-
ment of self-references on a specific object algebra interface and then discuss the
adaptations needed to the generic object algebra interfaces.

6.1 Generalizing Object Algebras to Account for Self-References

Since the programming style in this paper is based on delegation an impor-
tant question is how to account for self-references. The standard self-references
provided by Scala’s built-in class-based inheritance model do not provide an
adequate semantics in the presence of delegation (or run-time inheritance). As
Ostermann [42] points out, when dealing with delegation-based object families
there two important issues that need special care:

– Object self-references: When composing object algebras using combinators
like merge or, more generally, delegating on another algebra, the self-reference
to the constructed objects should refer to the whole composition rather than
the individual object.

– Virtual constructors: Similarly to the semantics of virtual classes [19], the
constructors of objects (that is the methods of the object algebras) should
be late bound, and refer to the composite object algebras rather than the
object algebra being defined.

Both of these problems can be solved using two types of self-references: object
self-references and family self references. In order to account for these two types
of self-references we first need a generalization of object algebra interfaces, as
shown in Fig. 10. This generalization form has been studied before in the context
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trait GExpAlg[In,Out] {
def Lit(x : Int) : Out
def Add(e1 : In, e2 : In) : Out

}

type ExpAlg[E] = GExpAlg[E,E]

Fig. 10. A generalized object algebra interface for expressions.

trait ExpPrint2[S <: IEval with IPrint] extends OExpAlg[S, IPrint] {
def Lit(x : Int) = self => new IPrint() {
def print() = x.toString()

}

def Add(e1 : S, e2 : S) = self => new IPrint() {
def print() = e1.print() + " + " + e2.print() + " = " + self.eval()

}
}

Fig. 11. An object algebra with a dependency.

of research on the relationship between the Visitor pattern and Church encod-
ings [41]. The idea is to distinguish between the uses of carrier types with respect
to whether they are inputs (In) or outputs (Out). In type-theoretic terms, this
means distinguishing between the positive and negative occurrences of the car-
rier type. It is easy to recover the conventional object algebra interface ExpAlg[A]

simply by making the two type parameters in GExpAlg be the same.

6.2 Object Self-References

The generalized interface allows us to account for the type of object algebra
interfaces, OExpAlg, with unbound (or open) object self-references:
type OExpAlg[S <: E, E] = GExpAlg[S, Open[S,E]]
type Open[S <: E, E] = (=> S) => E

The type OExpAlg is parameterized by two types E and S. The type E is the usual
carrier type for object algebras. The type S is the type of the entire composition
of objects, which must be a subtype of E. In OExpAlg the outputs are a function
(=>S)=> E. The argument of this function (=>S) is the unbound self-reference,
which is used by the function to produce an object of type E. To prevent early
evaluation of the self argument, it is marked as a call-by-name parameter by
placing => before the argument type. Scala wraps call-by-name arguments in
thunks to delay their evaluation until the function body needs their value.

Dependent features An example where using self references is important is when
defining a feature which depends on the availability of another feature. Figure 11
illustrates one such case: a variant of the printing feature, which uses evaluation
in its definition. The dependency on evaluation is expressed by bounding the
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trait CloseAlg[E] extends ExpAlg[E] {
val alg : OExpAlg[E,E]

def Lit(x : Int) : E = fix(alg.Lit(x))
def Add(e1 : E, e2 : E) : E = fix(alg.Add(e1,e2))

}

def closeAlg[E](a : OExpAlg[E,E]) : ExpAlg[E] = new CloseAlg[E] {
val alg = a

}

Fig. 12. Closing object self-references.

type of the self-reference S to IEval with IPrint. This imposes a requirement
that the self-reference and the input arguments of the different cases (such as
e1 and e2) implement both evaluation and printing. However, ExpPrint2 does
not have any hard dependency on a particular implementation of IEval and it
only defines the behaviour of the printing feature, though it may call evaluation
in its implementation. The definition of the print method for Add uses the self
reference (self). Note that Scala’s built-in self-reference this is useless in this
situation: this would have the type IPrint, but what is needed is a self-reference
with type S <: IEval with IPrint (the type of the composition).

Closing object self-references Before we can use object algebras with object self-
references we must close (or bind) those references. This can be done using a
closing object algebra, which is shown in Fig. 12. The closing algebra CloseAlg[E]

extends the standard object algebra interface ExpAlg and delegates on an open
object algebra alg, which is the algebra to be closed. In each case self-references
are closed using lazy fixpoints. Lazy fixpoints are a standard way to express the
semantics of dynamic mixin inheritance and bind self-references in denotational
semantics [13] and lazy languages [35].

def fix[A](f : Open[A,A]) : A = {lazy val s : A = f(s); s}

To implement the lazy fixpoint we exploit Scala’s support for lazy values. It
is possible to achieve the same effect using mutable references, but Scala’s lazy
values provide a more elegant solution.

6.3 Family Self-References

Another interesting type of self-references are family self references. The type
OpenExpAlg is the type of (open) object algebra interfaces with both object and
family self-references5:

type OpenExpAlg[S <: E, E] = (=> ExpAlg[S]) => GExpAlg[S, Open[S,E]]

5 Note that it is also possible to define a simpler type (=>ExpAlg[S])=>ExpAlg[S]
which accounts only for object algebra interfaces with family self references.
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trait ExpPrint3[S <: IEval with IPrint] extends SelfExpAlg[S,IPrint]{
def Lit(x : Int) = self => new IPrint() {def print() = x.toString()}

def Add(e1 : S, e2 : S) = self => new IPrint() {
def print() = {
val plus54 = fself.Add(fself.Lit(5), fself.Lit(4));
e1.print() + " + " + e2.print() + " = " + self.eval() +
" and " + "5 + 4 = " + plus54.eval();

}
}

}

def ExpPrint3[S <: IEval with IPrint] : OpenExpAlg[S,IPrint] =
s => new ExpPrint3[S] {lazy val fself = s}

Fig. 13. A printing operation using family and object self-references.

Similarly to OExpAlg, OpenExpAlg is parameterized by two type parameters E and
S <: E. OpenExpAlg is a function type in which the argument of that function
(=>ExpAlg[S]) is the unbound family self reference. The output of the function
is GExpAlg[S, Open[S,E]]. This type denotes that the input arguments in the
algebra are values of the composition type S, whereas the output types have
unbound object self references (just as in Section 6.2).

It is possible to define a generic interface for object algebras interfaces with
family self references:
trait SelfAlg[Self <: Exp, Exp] {

val fself : ExpAlg[Self]
}

This interface can be combined with particular object algebra interfaces to add
family self references. For example:
trait SelfExpAlg[Self <: Exp, Exp] extends
GExpAlg[Self,Open[Self,Exp]] with SelfAlg[Self,Exp]

denotes integer expression object algebra interfaces with family and object self
references. As shown in Fig. 13, this interface can be used to define object alge-
bras with both types of self references. The ExpPrint3 object algebra implements
a modified version of ExpPrint2 which adds some additional behavior to the print-
ing operation in the Add case. The idea is to extend ExpPrint3 so that the algebra
constructs a value denoting 5 + 4 in one of the operations. The family self ref-
erence fself (which is available as a value from the extended interface SelfAlg)
ensures that the constructors refer to the overall composed object algebra instead
of the local ExpPrint3 object algebra. It is the use of the family self-reference that
enables a virtual constructor semantics. If this.Add(this.Lit(5),this.Lit(4))

was used instead then the constructors would not have the expected semantics
in the presence of compositions around ExpPrint3.

Closing references Both object self references and family self references can be
closed with the following definition:
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trait Algebra[F[_,_]] {
type FOpen[F[_,_],S <: T, T] = (=> F[S,S]) => F[S,Open[S,T]]

// Basic combinators
def merge[A,B,S <: A with B](mix : Lifter[A,B,S], a1 : FOpen[F,S,A], a2

: FOpen[F,S,B]) : FOpen[F,S,A with B]
def empty[S] : FOpen[F,S,Any]

// Derived combinator(s)
def decorate[A, S <: A](parent : FOpen[F,S,A], wrap : A => A) :

FOpen[F,S,A] =
merge[A,Any,S](new LiftDecorate(wrap),parent,empty[S])

// closing combinators
def fcloseAlg[S](a : F[S,Open[S,S]]) : F[S,S]
def fclose[S](f : FOpen[F,S,S]) : F[S,S]

}

Fig. 14. Interface for generic combinators with self-references.

def close[S](f : OpenExpAlg[S,S]) : ExpAlg[S] = fix(compose(closeAlg,f))

Essentially, close first binds the object self references using closeAlg and then
it binds the family self-references using a lazy fixpoint. Note that compose is the
standard function composition operation.

6.4 Generic Combinators with Self-References

The generic combinators presented in Fig. 8 can be adapted to account for self-
references, as shown in Fig. 14. The trait Algebra now has to abstract over a
type constructor with 2 arguments, to account for the generalized form of object
algebra interfaces. The type FOpen is a generalization of OpenExpAlg, for some
algebra F instead of the specific ExpAlg. The combinators merge and empty must
work on open object algebras instead of closed ones. Moreover, in the merge

combinator the Lifter trait needs to be updated slightly to allow the use of
object self-references by the lifting functions:

trait Lifter[A,B, S <: A with B] {
def lift(x : A, y : B) : Open[S, A with B]

}

Finally, generic forms of closing operators are included in the Algebra interface.
As with the combinators in Fig. 8, reflection can also be used to provide

generic implementations of the combinators. These implementations are straight-
forward adaptations of the ones presented in Section 5.2. Generic implementa-
tions for fcloseAlg can be defined using similar techniques.

Client code With all self-reference infrastructure and the suitably adapted generic
combinators, client code can be developed almost as before. For example:
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val o =
exp(fclose(merge(LiftEP,decorate(ExpEval,TraceEval.wrap),ExpPrint3)))

println("Eval: " + o.eval() + "\nPrint: " + o.print())

composes the variant of printing using object and family self-references and
decorates evaluation with tracing. Note that this code assumes adapted versions
of LiftEP and ExpEval, which are straightforward to define. The main difference
to previous code is that the fclose operation must be applied to the composition
to bind the self references and be used by the builder method exp. Because of
the use of family and object self references tracing is applied at each call of
evaluation, which ensures the expected behavior for the example.

7 Case Studies

To exercise the expressivity of feature-oriented programming using object-algebra
combinators we have performed two case studies. The first adapts an example
by Prehofer [43], consisting of a stack feature, which optionally can be com-
posed with counting, locking and bounds-checking features. The second involves
various interpretations and analyses of context-free grammars.

Stacks In the first case study, we consider four features: Stack, Counter, Lock
and Bound. The Stack feature captures basic stack functionality, such as push,
pop, etc. If the size of stack should be maintained, the Counter feature can be
used. The Lock feature prevents modifications to an entity. Finally, the Bound
feature checks that some numeric input value is within bounds.

Each feature is implemented as an object algebra for stacks containing a single
constructor stack(). If we consider the Stack feature to be the base feature, there
are 23 = 8 possible configurations. Each configuration requires a lifter to resolve
feature interaction. For instance, lifting the counter feature to stack context
involves modifying push and pop to increment and decrement the counter.

Many of these lifters require boilerplate for the methods without feature
interaction. To avoid duplicating this code we have introduced default “delegat-
ing” traits. These traits declare a field for the delegatee object and forward each
feature method to that object.

An example of such a delegator trait for the Counter feature is the following:

trait DCounter extends Counter {
val ct: Counter
def reset() { ct.reset }
def inc() { ct.inc }
def dec() { ct.dec }
def size() = ct.size()

}

This trait is included, for instance, in the class that lifts the Counter feature to
the Stack context, as shown in Fig. 15. The default behavior is to delegate the
feature methods (e.g., inc, push2, etc.) to Stack s and Counter c respectively. To
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class StackWithCounter(self: => Stack with Counter, s: Stack, c: Counter)
extends DStack with DCounter {
val st = s; val ct = c
override def empty() {self.reset; st.empty}
override def push(s : Char) {self.inc; st.push(s)}
override def pop() {self.dec; st.pop}

}

object LiftSCF extends Lifter[Stack,Counter, Stack with Counter] {
def lift(st : Stack, ct : Counter) =
self => new StackWithCounter(self, st, ct)

}

Fig. 15. Lifting the Counter feature to the Stack context

trait GrammarAlg[In, Out] {
def Alt(lhs: In, rhs: In): Out
def Seq(lhs: In, rhs: In): Out
def Opt(arg: In): Out
def Terminal(word: String): Out
def NonTerminal(name: String): Out
def Empty(): Out

}

Fig. 16. The interface for grammar algebras.

resolve feature interactions, however, the class StackWithCounter overrides the
relevant methods, to customize the default behavior.

For feature methods that would normally call another method using this,
the explicit self reference should be used instead. An example where this is the
case is the method push2 in the Stack feature, which calls push twice:

def push2(a : Char) {self.push(a); self.push(a)}

If push2 called push on this, extensions of push would be missed, resulting, for
example, in erroneous counting behavior when Stack is composed with Counter.

Grammars The second case study implements various interpretations of gram-
mars. The interface of grammar algebras (shown in Fig. 16) contains constructors
for alternative, sequential and optional composition, terminals, non-terminals
and empty. We have implemented parsing, printing, and computing nullability
and first-set of a grammar symbol as individual object algebras. Parsing requires
special memoization which is applied using the decorate combinator. In a sim-
ilar way, both nullability and first-set computation require decoration with an
iterative fixpoint aspect. Furthermore, the first-set feature is always composed
with the nullability feature, since the former is dependent on the latter.

Tracing and profiling parsers are obtained by dynamically composing with
those aspects if so desired. The tracing feature is homogeneous in that it applies
uniformly to all constructors of an algebra. Profiling depends on the parsing
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feature and therefore requires an explicit lifter to modify the parsing feature to
update a counter. There is no feature interaction among the other features, so
the default lifters produced by combine are sufficient.

The grammar case study illustrates the use of both object and family self-
references. First, the optional constructor (Opt) in the interface of grammars can
be desugared to an alternative composition with empty: Opt(x) = fself.Alt(x,

fself.Empty). Any grammar algebra that includes this desugaring does not have
to explicitly deal with optional grammar symbols. The desugaring uses the fam-
ily self-reference fself because the resulting term should be in the outermost,
composed algebra, not the local one.

Object self-references play an important role in the profiling feature. The
profiling feature accumulates a map recording the number of parse invocations
on a certain grammar symbol. Using this to key into this map would create map
entries on objects created by the inner, local object algebra. As a result, the
objects stored in the map are without the features that may have been wrapped
around these objects. For instance, in the composition combine(combine(parse,

profile), print), the keys in the profile map would not be printable.

Client code The following code creates a composite object algebra for grammars
that includes parsing, nullability and first-set computation:

val f = fclose(
combine[Parse, Nullable with First, Parse with Nullable with First](
decorate(grammarParse, new Memo),
combine[Nullable, First, Parse with Nullable with First](
decorate(grammarNullable, new CircNullable),
decorate(grammarFirst, new CircFirst))

))

The example shows how the three base algebras (grammarNullable, grammarFirst,
and grammarParse) are first decorated with fixpointing and memoization behav-
iors. The resulting algebras are then composed using two invocations of combine.

The algebra f creates grammars with all three features built in:
// A ::= | "a" A
val g = Map("A" ->

f.Alt(f.Empty, f.Seq(f.Terminal("a"), f.NonTerminal("A"))))
val s = g("A") // start symbol
s.parse(g, Seq("a", "a"), x => println("Yes"))
s.first(g) // -> Set("a")
s.nullable(g) // -> true

To look up non-terminals, all methods on grammars (parse, first, and nullable)
receive the complete grammar as their first argument. The parse method fur-
thermore gets an input sequence and a continuation that is called upon success.

8 Related Work

Generally speaking what distinguishes our work from previous work is the sup-
port for an expressive form of dynamic FOP that: 1) fully supports modular
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type-checking and separate compilation; 2) uses only well-studied, lightweight
language features which are readily available in existing languages (Scala); 3)
has very small composition overhead. In contrast most existing work either uses
static forms of composition, which requires heavier language features and often
has significant composition overhead; requires completely new languages/calculi;
or does not support modular type-checking and separate compilation.

Feature-Oriented Programming To overcome the limitations of existing program-
ming languages many of the existing FOP techniques [2–4,6,28,43,47] use their
own language mechanisms and tools. Mixin layers [47] and extensions like aspec-
tual mixin layers [4] are examples of language mechanisms typically used by such
tools. Conceptually, mixin layers and aspectual mixin layers are quite close to
our composition mechanisms, since our delegation-based model of composition
has much of the same layering flavor. A difference is that mixin layers use static
composition whereas we use run-time composition. As discussed throughout the
paper, the Lifter interface used by the merge combinator plays a similar role to
lifters in Prehofer’s FOP approach [43]. Most of these language mechanisms and
tools are implemented through code-generation techniques, which generally leads
to an efficient and easy implementation strategy. However, this easy implemen-
tation strategy often comes at the cost of desirable properties such as separate
compilation and modular type-checking. In contrast our object algebra based
approach is fully integrated in an existing general purpose language (Scala);
uses only already available and well-studied language features; and has full sup-
port for separate compilation and modular type-checking. The main drawback of
our run-time composition mechanisms is probably performance, since delegation
adds overhead which is difficult to eliminate.

More recently, researchers have also developed calculi for languages that sup-
port FOP and variants of it [1,16,46,49]. These languages and calculi deal with
import concerns such as type-checking or program analysis of all possible fea-
ture configurations. New languages developed for FOP typically provide novel
language constructs that make features and their composition a part of the
language. In contrast, our approach is to reuse existing programming language
technology and to model features and feature composition with existing OO
concepts. An advantage of our approach is that by using standard programming
language technology all the infrastructure (type-checking, program analysis, test-
ing, tool support) that has been developed and studied throughout the years for
that language is immediately available.

Family polymorphism Our work can be seen as an approach to family polymor-
phism [17], but it has significantly different characteristics from most existing
approaches. Traditional notions of family polymorphism are based on the idea of
families grouping complete class hierarchies and using static, inheritance-based
composition mechanisms. Most mechanisms used for family polymorphism, such
as virtual classes [19], or virtual types [9] follow that traditional approach. In
contrast our work interprets family polymorphism at the level of objects instead
of classes and uses run-time, delegation-based composition mechanisms. The
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language gbeta supports a type-safe dynamic multiple inheritance mechanism
that can be used to compose families of classes [18]. Ostermann’s delegation
layers [42] model families of objects which are composed with run-time delega-
tion. Both mechanisms are conceptually closer to our approach, but they require
substantial programming language and run-time support.

Not many mechanisms that support family polymorphism are available in
existing production languages. The Cake pattern [34, 54], in the Scala pro-
gramming language, is an exception. This pattern uses virtual types, self types,
path-dependent types and (static) mixin composition to model family polymor-
phism. Even with so many sophisticated features, composition of families is quite
heavyweight and manual. A particularly pressing problem, which has been ac-
knowledged by the authors of Scala [54], is the lack of a desirable feature for
family polymorphism: deep mixin composition. The lack of this feature means
that all classes within a family have to be manually composed and then, the
family itself has to be composed. In contrast, combinators like merge or combine

take care of the composition of objects and the family.

Object algebras, visitors, embedded DSLs and Church encodings Section 2 al-
ready discusses how this work addresses the problem of limited expressiveness
and large composition overhead required on previous work on object algebras.
Object algebras are an evolution of a line of work which exploits Church encod-
ings of datatypes [7] to overcome modularity and extensibility issues [24,38,39].
These techniques were later shown to be related to the Visitor pattern and used
to provide modular and generic visitors [36, 41]. They have also been success-
fully used to represent embedded DSLs in more modular ways [10,25]. However,
most existing work considers only the creation of objects with single features:
not much attention is paid to creating objects composed of multiple features.
Hofer et al. [25] use delegation in an optimization example. Their use of dele-
gation is analogous to our use of dependent features in the printing operation
presented in Section 6.2. However we express dependencies using a bound on
the self-reference type, and use merge in client code to compose features. Their
approach is more manual as they have to delegate behavior for each case. The
generalization of object algebra interfaces in Fig. 10 was first used by Oliveira
et al. [41] to provide a unified interface for visitor interfaces. Oliveira [36] also
explored a kind of FOP using modular visitors. However there is a lot of over-
head involved to create feature modules and compose features; and the approach
requires advanced language features and does not deal with self-references.

9 Conclusion

Feature-oriented programming is an attractive programming paradigm. However
it has been traditionally difficult to provide language mechanisms with the ben-
efits of FOP, while at the same time having desirable properties like separate
compilation and modular type-checking.
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This work shows that it is possible to support FOP with such desirable
properties using existing language mechanisms and OO abstractions. To accom-
plish this we build on previous work on object algebras and two well-studied
studied programming language features: intersection types and type-constructor
polymorphism. Object algebras provide the basic support for modularity and
extensibility to coexist with separate compilation and modular type-checking.
Intersection types and type-constructor polymorphism provide support for the
development of safe and expressive composition mechanisms for object algebras.
With those composition mechanisms, expressing feature interactions becomes
possible, thus enabling support for FOP.

Although we have promoted the use of standard programming language tech-
nology for FOP, there is still a lot to be gained from investigating new program-
ming language technology to improve our results. Clearly the investigation of
better compilation techniques for object algebras and composition mechanisms
is desirable for improving performance. Better language support for delegation
would allow for more convenient mechanisms for object-level reuse, which are
often needed with our techniques. Expressiveness could also be improved with
new programming languages or extensions. For example when multi-sorted ob-
ject algebras [37] are required the Algebra interfaces still have to be adapted.
Although more powerful generic programming techniques can address this prob-
lem, this requires more sophisticated general purpose language features. With
built-in support for object algebras as well as their composition mechanisms,
there is no need for such advanced generic programming features and users may
benefit from improved support for error messages.
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