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ABSTRACT
We consider an M/M/1 queue in a semi-Markovian envi-
ronment. The environment is modeled by a two-state semi-
Markov process with arbitrary sojourn time distributions
F0(x) and F1(x). When in state i = 0; 1, customers are
generated according to a Poisson process with intensity �i
and customers are served according to an exponential distri-
bution with rate �i. Using the theory of Riemann-Hilbert
boundary value problems we compute the z-transform of
the queue-length distribution when either F0(x) or F1(x)
has a rational Laplace-Stieltjes transform and the other may
be a general | possibly heavy-tailed | distribution. The
arrival process can be used to model bursty traÆc and/or
traÆc exhibiting long-range dependence, a situation which
is commonly encountered in networking. The closed-form
results lend themselves for numerical evaluation of perfor-
mance measures, in particular the mean queue-length.
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Queueing; Stochastic modeling; Communication networks;
Heavy-tailed distribution; Riemann-Hilbert boundary value
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Categories and Subject Descriptors
C4 [Performance of Systems]: Modeling techniques; G.3
[Mathematics of Computing]: Probability and Statis-
tics|Queueing Theory ; I6 [Simulation and modeling]:
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1. INTRODUCTION
We consider the M/M/1 queue in which the arrival and
service rates depend on the state of an underlying alter-
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nating renewal process. High-traÆc periods which are dis-
tributed according to a distribution function F1(x), alter-
nate with low-traÆc periods having a distribution function
F0(x) (we assume F0(0+) = F1(0+) = 0). During high-
traÆc (resp., low-traÆc) periods, we say that the underly-
ing process is in state 1 (resp., 0), customers arrive accord-
ing to a Poisson process with rate �1 (resp., �0) and are
served at rate �1 (resp., �0). Let �i := �i=�i and assume
that 0 � �0 � �1 < 1 (hence, the terminology high-traÆc
and low-traÆc periods). The case �1 = 0, i.e., �1 = 1,
can be analyzed similarly, but for conciseness of presenta-
tion we assume �1 > 0. Also, the condition �0 � �1 is not
essential to the analysis and it will be convenient to allow
�0 > �1, in which case the low-traÆc periods are indexed
by 1 and the high-traÆc ones by 0. When F1(x) and F0(x)
are phase-type distribution functions, the arrival process is a
MMPP (Markov Modulated Poisson Process), see [14]. Re-
lated models under di�erent assumptions were studied in
[23] and [31]. An asymptotic analysis of the present model
was given in [5]. The aim of this paper is to compute the z-
transform of the stationary queue-length and, in particular,
moments of the queue-length distribution.

This work is motivated by the need to evaluate the perfor-
mance of queueing models fed by bursty processes. As it is
well-established by now, the burstiness of traÆc in today's
networks in many cases rules out the use of Poisson traf-
�c models [10, 19, 29] and triggers the need for new models.
Several models have already been proposed in the literature,
including the fractional Brownian motion [24, 25], on/o�
sources with heavy-tailed distributions for the on and/or o�
periods [1, 2, 3, 4, 11, 18, 34] and theM=G=1 input process
[17, 20, 27, 28, 32] (these lists of references are not exhaus-
tive as the activity in this domain is very dense). More
generally, studies of queues in presence of heavy-tailed dis-
tributions, initiated with the works of Cohen [7], Pakes [26]
and Veraverbeke [33], can be found in a recent special issue
of QUESTA devoted to this topic [30].

The traÆc process in our model exhibits burstiness when �0
and �1 are signi�cantly di�erent and the changes in the semi-
Markovian environment occur on a comparable or larger
time-scale than the arrival and departure processes. In par-
ticular, if �1 > 1 then the traÆc intensity will exceed the
server capacity (i.e., the queue is temporarily unstable) dur-
ing high traÆc periods, a situation which is likely to create
congestion, particularly if the duration of high traÆc pe-



riods has a heavy-tailed distribution. In the extreme case
when �1 > 1 and the variance of the high traÆc periods is
in�nite, the traÆc process is long-range dependent.

In the above cited references the emphasis was on asymp-
totic analysis assuming heavy-tailed input processes. One
merit of this paper is that an explicit expression for the gen-
erating function of the stationary queue-length distribution
is derived in the case that the duration of the high-traÆc pe-
riods has a general (possibly heavy-tailed) distribution and
the distribution of the low periods has a rational Laplace-
Stieltjes transform (this includes phase-type distributions).
We do so by �rst establishing two functional equations (11)
in Section 2 to be satis�ed by two joint Laplace-Stieltjes and
z-transforms related to the queue-length distribution. Solv-
ing for these functional equations is then the objective of
Sections 3, 4 and 5. In a �rst step, we show (Lemma 4.1)
that the unknown function Li(0; s) appearing in (11) is ra-
tional if �i(s) | the Laplace-Stieltjes transform of Fi(x) |
is itself rational. This result allows us to formulate and solve
a Riemann-Hilbert boundary value problem on the unit cir-
cle in Section 5. The use of boundary value problems to
solve queueing problems is not new and can be traced back
to the seminal work by Fayolle and Iasnogorodski [12] (see
also the monograph [8] and the more recent [13], as well as
the references therein). Solving the boundary value problem
allows us to compute the z-transform of the queue-length,
as shown in Section 6.

A word on the notation used in this paper: C will denote the
set of all complex numbers, Re (z) (resp. Im(z), jzj) the real
part (resp. imaginary part and modulus) of any complex
number z. The closure of any set A will be denoted by
A. 1(E) will denote the indicator function with 1(E) = 1
if condition E is satis�ed and 1(E) = 0 otherwise. For
a > 0, let Ca = fz 2 C : jzj = ag be the circle centered
at z = 0 with radius a and let C+

a = fz 2 C : jzj < ag
and C�a = fz 2 C : jzj > ag be the domain inside and the
domain outside the circle Ca, respectively.

2. THE FUNCTIONAL EQUATIONS
We now return to the queueing system at hand. We assume
that the queue is stable, i.e.,

�0
a0

a0 + a1
+ �1

a1
a0 + a1

< �0
a0

a0 + a1
+ �1

a1
a0 + a1

; (1)

where a0 2 (0;1) and a1 2 (0;1) are the means of the
low-traÆc and high-traÆc periods, respectively.

Assume that the system is in equilibrium and denote by
Pi(n; x) the probability that the underlying process is in
state i 2 f0; 1g, there being n 2 f0; 1; 2; : : : g customers in
the system and less than x 2 [0;1) time units remaining
until the next switch of the underlying process to state i0 :=
1 � i, i 2 f0; 1g (we shall use this notation throughout the
paper). Obviously,

1X
n=0

Pi(n; x) =
ai

a0 + a1

Z x

y=0

1 � Fi(y)

ai
dy: (2)

It can be shown that Pi(n; x), i 2 f0; 1g, is concave in x � 0

and, hence, DPi(n) := limx#0
Pi(n;x)

x
exists, is strictly posi-

tive and, because of (2), it is �nite. From the dynamics of

the system it follows that Pi(n; x), satis�es

� d

dx
Pi(n; x) = �(�i + �i1(n � 1))Pi(n; x)

+�iPi(n� 1; x) + �iPi(n + 1; x)

�DPi(n) +DPi0(n)Fi(x); (3)

where Pi(�1; x) := 0. From (3) it follows that without loss
of generality we can restrict ourselves to the case where the
service rate always equals 1 (independent of the state of the
underlying renewal process) and the arrival rates are �0 and
�1, respectively. Informally, we can `speed up' time by a
factor 1=�i if the underlying alternating process is in state
i. Note that, after the change of time, the sojourn time of
the underlying process in state i is distributed according to
the distribution function F̂i(x) := Fi(x=�i) with mean âi :=
�iai. Formally, we note that Pi(n; x) is a solution to (3) if

and only if, for any constant c, P̂i(n; x) := c�iPi(n; x=�i) is
a solution to

� d

dx
P̂i(n; x) = �(�i + 1(n � 1))P̂i(n; x)

+�iP̂i(n� 1; x) + P̂i(n+ 1; x)

�DP̂i(n) +DP̂i0(n)F̂i(x): (4)

If Pi(n; x) satis�es (2) and P̂i(n; x) is a distribution function
in the sense that

1X
n=0

�
P̂0(n;1) + P̂1(n;1)

�
= 1;

then the constant c is given by

c =
a0 + a1
â0 + â1

;

and, consequently,

1X
n=0

P̂i(n; x) =

Z x

y=0

1� F̂i(y)

â0 + â1
dy: (5)

In the remainder of the paper we shall work with (4) and
(5) instead of (2) and (3). The ergodicity condition (1) can
be written as

â0 (�0 � 1) + â1 (�1 � 1) < 0: (6)

For i 2 f0; 1g, jzj � 1 and x � 0 letGi(z; x) andDi(z) be the

generating functions of P̂i(n; x) and DP̂i(n), respectively,

Gi(z; x) :=
1X
n=0

znP̂i(n; x); (7)

Di(z) :=
1X
n=0

znDP̂i(n): (8)

Clearly, Gi(1; x) is given by (5) and

Di(1) =
1� F̂i(0+)

â0 + â1
=

1

â0 + â1
: (9)

The generating function Di(z), i = 0; 1, is analytic in jzj < 1
and continuous in jzj � 1. This is because Di(1) < 1 and

DP̂i(n) � 0 for all n (see below (2)), and therefore

jDi(z)j �
X
n

jznjDP̂i(n) �
X
n

DP̂i(n) <1; jzj � 1:



Next, we de�ne the LST (Laplace-Stieltjes Transform) of
Gi(z; x)

Li(z; s) :=

Z 1

x=0

e�sxdGi(z; x); (10)

for i 2 f0; 1g, jzj � 1, Re (s) � 0,

Let us return to (4): Multiplying both sides of that equation
by zne�sx, summing over all n � 0 and then integrating over
all x � 0 yields after routine manipulations�

�iz
2 � (1 + �i � s)z + 1

�
Li(z; s) = (1� z)Li(0; s)

+z (Di(z)� �i(s)Di0(z)) ; i = 0; 1; (11)

where �i(s) :=
R1
x=0

e�sxdF̂i(x) is the LST of F̂i(x).

Also note from de�nitions (7) and (10) that the normalizing
condition

L0(1; 0) + L1(1; 0) = 1 (12)

holds.

Remark 2.1. Above we derived (5) and (9) from physical
considerations of the model. These properties also follow
from (11) and (12). If we set z = 1 in (11) and let s ! 0
we get D0(1) = D1(1). Substituting this into (11) and using
(12) gives (9). Moreover, substitution into (11), for z = 1,
gives

Li(1; s) =
1� �i(s)

(â0 + â1)s
;

which is in agreement with (5). In particular,

Li(1; 0) =
âi

â0 + â1
; i = 0; 1: (13)

�

The �rst factor on the left-hand side of (11), called the kernel
of Li(z; s), will play a central role in our analysis. From its
very de�nition it is seen that Li(z; s) is analytic for jzj < 1,
Re (s) > 0 and continuous for jzj � 1, Re (s) � 0. Hence, if
the kernel of Li(z; s) vanishes for some jzj � 1 and Re (s) �
0, then the right-hand side of (11) must also vanish. This
key observation will allow us in the forthcoming sections to
identify Li(0; s) and Di(z) and, subsequently, to determine
Li(z; s) for i = 0; 1.

Once the functions L0(z; s) and L1(z; s) have been deter-
mined for jzj � 1 and Re (s) � 0, we can �nd the z-transform
of the stationary queue-length for the original model gov-
erned by the Kolmogorov equations (3). If we denote that
z-transform by N(z), we have, cf. (7),(10),

N(z) =

1X
n=0

zn lim
x!1

(P0(n; x) + P1(n; x))

=
1

c�0
L0(z; 0) +

1

c�1
L1(z; 0); jzj � 1: (14)

In particular, the average queue-length is given by N :=
N (1)(1), where N (1)(z) denotes the �rst order derivative of
N(z). The ultimate objective in this paper is to �nd closed-
form expressions for N(z) (see Section 6). We shall do so

by �rst expressing Li(z; 0) in terms of Li(0; s) and Di(z)
(Corollary 3.1) which can then be plugged into (14). De-
riving Li(0; s) and Di(z) is the subject of Sections 4 and
5.

In the subsequent analysis it turns out that, even when the
LST �i(s), i = 0; 1, are rational functions, an algebraic proof
of the uniqueness of L0(z; s) and L1(z; s) satisfying (11) and
(12) is quite involved. Following [9], we circumvent this
technicality using the following theorem:

Theorem 2.1. If (6) is satis�ed then there are unique
functions L0(z; s) and L1(z; s) which are analytic for jzj < 1
and Re (s) > 0, continuous for jzj � 1 and Re (s) � 0, and
satisfy (11) and (12). �

Proof. The triple queue-length, state of the alternating
environment and remaining time until the next switch in
the environment is a Markov process with irreducible state
space f0; 1; 2; : : : g � f0; 1g � [0;1). Under (6) this process
is positive recurrent and, hence, up to multiplication by a
constant, there is exactly one bounded solution to the Kol-
mogorov equations (4), see also [9].

3. ANALYSIS OF THE KERNEL
For i 2 f0; 1g we denote the kernel of Li(z; s) by

Ki(z; s) := �iz
2 � (1 + �i � s)z + 1; z; s 2 C: (15)

Solving Ki(z; s) = 0 for z, we �nd

zi(s) =
1 + �i � s�

p
(1 + �i � s)2 � 4�i

2�i
:

The algebraic function zi(s) has 2 branch points s1i and s
2
i

(the zeros of (1 + �i � s)2 � 4�i), given by

s1i = (1�p�i)2 and s2i = (1 +
p
�i)

2: (16)

Lemma 3.1. We assume that �i > 0. The following state-
ments hold

(1) The equation Ki(z; s) = 0 has two roots (in z): one,
denoted as z+i (s), is an analytic function of s in C �
[s1i ; s

2
i ]; the second one, z�i (s), is given by

z�i (s) = 1=(�iz
+
i (s)) (17)

(2) for s 2 [s1i ; s
2
i ], z

+
i (s) and z

�
i (s) are each others com-

plex conjugates with common modulus 1=
p
�i;

(3) z+i (s) 2 C+
1=
p
�i

and z�i (s) 2 C�
1=
p
�i

for all s 2 C �
[s1i ; s

2
i ];

(4) when s moves along the \contour" [s1i ; s
2
i ], denoted as

[s1i ; s
2
i ] s!
 

(i.e., s goes from s1i to s
2
i and returns to s1i )

then both z+i (s) and z
�
i (s) describe the circle C1=p�i .

�

Proof. The �rst part of statement (1) results from the
general theory of polynomials of two complex variables [15];



(17) follows from Ki(z; s) = �iz
2Ki(1=(�iz); s) for all s 2 C,

z 2 C.

De�ne s� := 1 + �i � 2
p
�i cos(�) for 0 � � � 2�. Observe

that s� describes the contour [s
1
i ; s

2
i ] s!
 

as � increases from

0 to 2�. Substituting s� for s in the equation Ki(z; s) = 0
yields

zi(s�) =

8>>>><
>>>>:
� ei�p

�i
; if 0 � � � �;

�e�i�p
�i
; if � � � � 2�,

which proves both statements (2) and (4)

The mapping s ! z+i (s) being analytic in C � [s1i ; s
2
i ], we

know from the maximum modulus principle [15, pp. 201-
203] that the maximummodulus of z+i (s) cannot be reached
inside the domain C � [s1i ; s

2
i ]. Since z+i (1) = 0 we con-

clude from the above that the maximummodulus is reached
on the segment [s1i ; s

2
i ]. Since we have already shown that

jz+i (s)j = 1=
p
�i for s 2 [s1i ; s

2
i ], we see that necessarily

jz+i (s)j 2 C+
1=
p
�i
, thereby implying that jz�i (s)j 2 C�

1=
p
�i

because of (17).

Remark 3.1. In Lemma 3.1 we assumed that �i > 0.
When �i = 0 the kernel Ki(z; s) has a unique root with
respect to z given by z(s) := 1=(1 � s) for all s 2 C� f1g.
In the sequel, whenever �i = 0 we may read zi(s) instead of
z+i (s) (and, in that case, z�i (s) is not de�ned). �

Remark 3.2. If �i < 1 then, for Re (!) > �s1i , �(!) :=
z+i (�!) is the LST of the busy period of the M/M/1 queue
with arrival rate �i and service rate 1. �

It will also be convenient to study the solution of Ki(z; s) =
0 in the variable s. This is done in the following lemma
whose proof follows directly from the de�nition of Ki(z; s).

Lemma 3.2. For z 2 C� f0g,
si(z) := �i(1� z)� (1=z � 1);

is the unique root of Ki(z; s) in the variable s. We have
si(z

+
i (s)) = s for all s 2 C, and si(z

�
i (s)) = s for all s

wherever z�i (s) is de�ned (i.e., everywhere except when s =
1).

For r > 0, r 6= 1=
p
�i, si(z) maps Cr onto an ellipse cen-

tered at 1+�i, symmetric with respect to the real axis and the
line Re (s) = 1+�i, with extremal points 1+�i�r

�
�i +

1
r2

�
and 1+�i�i r

�
�i � 1

r2

�
. The point z = r (the right extremal

point on the circle) corresponds to the left extremal point of
the ellipse, 1 + �i � r

�
�i +

1
r2

�
. As z traverses Cr in the

positive direction (i.e., counter clock wise), si(z) traverses
the ellipse in the positive direction if r > 1=

p
�i and in the

negative direction if r < 1=
p
�i.

Moreover, si(z) maps both C+
1=
p
�i
� f0g and C�1=p�i onto

C� [s1i ; s
2
i ] and it maps onto the cut [s1i ; s

2
i ]. �

ρ

iρmin{1 , 1/    }

iρmin{1 , 1/    }

i

B2
iB1

i

1+1/

max{1 , 1/    }iρ

Figure 1: The non-shaded areas form the set Ai

We shall denote the set in the z-plane for which Re (si(z)) >
0 by (we write z = x+ iy)

Ai :=
�
x+ iy : y2 (1 + �i(1 � x)) > x(1� x)(1� �ix)

	
:

Typically Ai looks like the non-shaded parts in Figure 1. It
will be convenient to de�ne the following subsets of C�Ai

B1i :=

�
0 < x < min

�
1;

1

�i

�
y2 <

x(1� x)(1� �ix)
1 + �i(1� x)

�
;

B2i :=

�
max

�
1;

1

�i

�
< x < 1 +

1

�i

�
[�

y2 <
x(1� x)(1� �ix)

1 + �i(1� x)
; x � 1 +

1

�i

�
:

In particular we have B1i � C+
minf1;1=�ig. In Figure 1 the

sets B1i and B2i correspond to the two shaded areas. Note
that the sets Ai, B1i and B2i form a disjoint partition of the
complex plane. When �i = 0 the set B2i is empty.

We conclude this section with a lemma that will play a key
role in the subsequent analysis.

Lemma 3.3. For z 2 Ai � f0g, we have

Li(0; si(z)) =
z [Di(z)� �i(si(z))Di0(z)]

z � 1
; i = 0; 1; (18)

and, hence, for z 2 A0 \ A1 � f0g
Li(0; si(z)) + �i(si(z))Li0(0; si0(z)) (19)

= z
1� �0(s0(z))�1(s1(z))

z � 1
Di(z); i = 0; 1:

Both in (18) and (19) the right-hand sides are de�ned by
their respective analytic continuations in the given domains
when jzj > 1. �

Proof. Since Li(z; s) is analytic for jzj < 1, Re (s) > 0
and continuous for jzj � 1, Re (s) � 0, the right-hand side

of (11) must vanish when s = si(z) for all z 2 Ai \ C+
1 �

f0g. This gives (18) for z 2 Ai \ C+
1 � f0g. Note that the



right-hand side of (18) is well de�ned when z = 1 since the
numerator also vanishes at this point thanks to the identities
Di(1) = Di(1) (see (9)) and �i(si(1)) = �i(0) = 1. By the
principle of analytic continuation, the left-hand side of (18)
de�nes the analytic continuation of the right-hand side in
z 2 Ai \ C�1 � f0g, so that (18) holds for all z 2 Ai � f0g.

Interchanging i and i0 in (18), then multiplying both sides
of the equation by �i(si(z)) yields

�i(si(z))Li0(0; si0(z)) (20)

=
z [�i(si(z))Di0(z)� �0(s0(z))�1(s0(z))Di(z)]

z � 1
;

for z 2 Ai0 \ C+
1 �f0g. Summing up both sides of equations

(18) and (20) gives (19) for z 2 A0 \ A1 \ C+
1 �f0g. By def-

inition of the sets A0 and A1 we observe that the left-hand
side of (19) is analytic for z 2 A0 \A1 (since Re (si(z)) > 0
for i = 0; 1) and continuous for z 2 A0 \ A1 � f0g (since
Re ((si(z)) � 0 for i = 0; 1).

The next corollary gives Li(z; 0), i = 0; 1, in terms of Di(z)
and Li0 (0; si0(z)). Therefore, once these functions are found,
we can computeN(z) (and therefore N) from (14), as shown
in Section 6.

Corollary 3.1. For jzj � 1,

Li(z; 0) =
Li(0; 0) + Li0(0; si0(z))

1� �iz
+z

1� �i0(si0(z))

(1� z) (1� �iz)
Di(z); (21)

Li0(z; 0) =
Li0(0; 0)� Li0(0; si0(z))

1� �i0z
�z 1� �i0(si0(z))

(1� z) (1� �i0z)
Di(z): (22)

In both equations, the right-hand sides are given by their
analytic continuations for z 2 C+

1 �A0 \ A1 � f0g.

Moreover, the constant Li(0; 0) in (21) is given by

Li(0; 0) =
(1� �i) âi + (1� �i0) âi0

â0 + â1
� Li0(0; 0): (23)

�

Proof. From (18), with i and i0 interchanged, we obtain

z Di0(z) = z �i0(si0(z))Di(z)� (1� z)Li0(0; si0(z)); (24)

for z 2 A0 \ A1 \ C+
1 � f0g.

Now (21) is found by setting s = 0 in (11) and replacing
zDi0 (z) by the right-hand side of (24). Equation (21) holds,

a priori, for z 2 A0 \ A1 \ C+
1 � f0g, with z 62 f1; 1=�ig

(note that the right-hand side of (21) is well de�ned if z = 1
when �i 6= 1).

In the same way, we now determine Li0(z; 0). Interchanging
i and i0 in (11) and letting s = 0, gives

Li0 (z; 0) =
Li0(0; 0)

1� �i0z
+ z

Di0(z)�Di(z)

(1� z) (1� �i0z)

for jzj � 1, z 62 f1; 1=�i0g. Substituting (24) into the above

equation, gives (22) for z 2 A0 \ A1 \ C+
1 � f0g, with z 62

f1; 1=�i0g.

From their de�nitions, L0(z; 0) and L1(z; 0) are analytic for
jzj < 1 and continuous for jzj � 1. We may therefore invoke
the principle of analytic continuation to de�ne (21) and (22)
in the entire domain fjzj � 1g.

Finally, expression (23) is obtained by letting z = 1 in
(21) and by using (9) and (13) together with the identity
limz!1(1� �i0(si0(z))=(1� z) = �âi0 (1� �i0).

4. ONE RATIONAL LAPLACE-STIELTJES
TRANSFORM

In this section we assume that �1(s) is a rational func-
tion. This occurs when F1(x) has a phase-type distribution.
Lemma 4.1 shows that in this case the function L1(0; s) is
a rational function too. This result will be used in the next
section to compute Li(z; s) for i = 0; 1.

Lemma 4.1. Assume �1(s) is a rational function and write

�1(s) =
�1(s)

Æ1(s)
; (25)

where �1(s) and Æ1(s) are polynomials of degree n1 and d1,
respectively, that have no common zeros. (Since �1(s) is the
LST of the distribution of a random variable with support
on the positive real line, it must be that n1 < d1.) Then
L1(0; s) is a rational function too, and can be written as

L1(0; s) =
�1(s)

Æ1(s)
; (26)

where �1(s) is a polynomial of degree d1 � 1. �

Proof. For Re (s) � 0 de�ne,

�1(s) := Æ1(s)L1(0; s):

Clearly, the function �1(s1(z)) is analytic for all z 2 A1.
Using (18) we have

�1(s1(z)) =
z [Æ1(s1(z))D1(z)� �1(s1(z))D0(z)]

z � 1
; (27)

for z 2 A1 (where for jzj � 1 the right-hand side must be un-
derstood to be its analytic continuation). Note that from the
right-hand side it follows that we can analytically continue
the function �1(s1(z)) to all 0 < jzj � 1. Hence, �1(s1(z))

is analytic for z 2 A1 [ B11 � f0g. Since min f1; 1=�1g �p
1=�1 � max f1; 1=�1g it follows that C+p

1=�1
� f0g �

A1 [ B11 � f0g (see also Figure 1). From Lemma 3.1 and
Lemma 3.2 it then follows that �1(s) = �1(s1(z

+
1 (s))) is an-

alytic in s 2 C� �s11; s21�. From its de�nition, �1(s) is also
analytic for Re (s) � 0. Hence �1(s) is analytic in the entire
plane.

From Liouville's theorem (cf. [16, p. 90]) we now have that
�1(s) is a polynomial of degree at most d1 � 1, since the
multiplicity of the (possible) singularity at in�nity is not



more than d1 � 1:

lim
jsj!1

�1(s)

sd1�1
= lim

z!0

�1(s1(z))

(s1(z))
d1�1

= lim
z!0

�Æ1(s1(z))D1(z) + �1(s1(z))D0(z)

(s1(z))
d1
�
1
z
� 1
�
=s1(z)

= D1(0) lim
z!0

Æ1(s1(z))

(s1(z))
d1
:

Since D1(0) = DP̂1(0) > 0 | see above (3) | the degree is
exactly d1 � 1.

Remark 4.1. By symmetry, Lemma 4.1 also applies to
�0(s) and L0(0; s) when �0(s) is a rational function. When
both LST's �0(s) and �1(s) are rational, then Lemma 4.1
leads to the solution of (11). The d0 + d1 unknown coef-
�cients in the polynomials �0(s) and �1(s) in (26) are then
determined by (12) and the equations resulting from the zeros
of 1 � �0(s0(z))�1(s1(z)) inside the unit disk. This deriva-
tion, which is not the main objective of the present study,
will be found in an extended version of this work. �

5. REDUCTION TO A BOUNDARY VALUE
PROBLEM

We show that D0(z) can be obtained as the solution of a
Riemann-Hilbert boundary value problem. Due to space
constraints, we only investigate the case when 0 < �0 < 1.
The general case will be addressed in an extended version
of this paper.

In addition, the following assumptions will be enforced from
now on:

Assumptions:

A1 �1(s) = �1(s)=Æ1s) is rational with �1(s) and Æ1(s)
polynomials of degree n1 and d1, respectively, with
n1 < d1, and �0(s) is the LST of a general distribution
function;

A2 Æ1(s1(z)) does not vanish for z 2 C1=p�0 (see Remark
5.1);

A3 The stability condition (6) holds.

Recall that Assumption A1 implies (Lemma 4.1)

L1(0; s) =
�1(s)

Æ1(s)
: (28)

By z1; : : : ; zM we shall denote the distinct zeros (with mul-
tiplicity m1; : : : ;mM , respectively), if any, of the function
1� �0(s0(z))�1(s1(z)) in

D := f1 < jzj � 1=
p
�0g : (29)

The function 1 � �0(s0(z))�1(s1(z)) being meromorphic in
the (bounded) domainD, it has a �nite number of zeros/poles
in this domain. Hence, M <1.

With i the imaginary unit, de�ne the function

G(z) :=
i (1� z)R(z)

z (1� �0(s0(z))�1(s1(z)))
; (30)

where

R(z) :=

MY
k=1

(z � zk)
mk ; (31)

if M � 1, and R(z) � 1 if M = 0. Also de�ne

 (z) :=
G(z)

jG(z)j ; (32)

and

c(z) = �0(s0(z)) jG(z)jRe
�
i
�1(s1(z))

Æ1(s1(z))

�
: (33)

Observe that c(z) is real-valued when z 2 C1=p�0 (since s0(z)
is real for z lying on this contour by Lemma 3.2).

For later use, some properties of the functions  (z) and
c(z) are collected in Lemma 5.1. We recall that a function
f(z) satis�es a H�older condition on some smooth contour
L if there exist constants A > 0 and 0 < � � 1 such that
jf(z2) � f(z1)j � Ajz2 � z1j� for all z1; z2 2 L [22, pp. 11-
12]. The following properties are direct consequences of this
de�nition [22, pp. 13-21]:

P1 If f(z) satis�es a H�older condition on a contour L then
so do the functions jf(z)j, Re (f(z)), Im (f(z)) and |
if f(z) does not vanish on L | 1=f(z).

P2 If f(z) and g(z) both satisfy a H�older condition on the
same contour then so do the functions f(z)g(z) and
f(z) + g(z).

P3 If f(z) is di�erentiable on some contour L with a uni-
formly bounded derivative on L, then f(z) satis�es a
H�older condition on L.

Lemma 5.1. Under assumptions A1-A3 both functions
 (z) and c(z) satisfy a H�older condition on the circle C1=p�0 ;
moreover  (z) is non-vanishing on C1=p�0 and j (z)j = 1
for all z 2 C1=p�0 . �

The proof of Lemma 5.1 is given in the Appendix.

Since, by Lemma 5.1,  (z) is well-de�ned and non-vanishing
on C1=p�0 , we can de�ne the index of this function on the
contour C1=p�0 ,

� :=
1

2�
[arg  (z)]C1=

p
�0
; (34)

that is the variation of the argument of  (z) as z moves
counter clock wise along the contour C1=p�0 , divided by 2�
[16, 22] .

The index �, which will play an important role in the sequel,
is determined in the following lemma.

We introduce some additional notation: Let NZ be the num-
ber of poles (counting multiplicities) of 1��0(s0(z))�1(s1(z))
in M, where

M := f1 < jzj < 1=
p
�0g: (35)



Under the enforced assumption A1, NZ is the number of
zeros (hence, the subscript Z in NZ) of Æ1(s1(z))=�0(s0(z))
in M (counting multiplicities).

Lemma 5.2. Under assumptions A1-A3, the index � is
given by

� = NZ :

In particular, � = 0 when 0 � �1 � p�0 < 1. �

Proof. Recall the de�nition of z1; : : : ; zM , the distinct
zeros of 1 � �0(s0(z))�1(s1(z)) in D. Without loss of gen-
erality, let us assume that z1; : : : ; zM0

and zM0+1; : : : ; zM
(0 � M0 � M) lie in the domain M and on the contour

C1p�0 , respectively. De�ne R1(z) =
QM0

k=1 (z � zk)
mk and

R2(z) =
QM
k=M0+1

(z � zk)
mk , so that R(z) in (31) is given

by R(z) = R1(z)R2(z). With these de�nitions, G(z) in (30)
rewrites G(z) = iR1(z)=zW (z), with

W (z) :=
1� �0(s0(z))�1(s1(z))

(1� z)R2(z)
: (36)

The function W (z) is meromorphic in M, continuous and
non-vanishing on C1=p�0 . It has M0 zeros z1; : : : ; zM0

and
NZ poles. De�ne its index � on C1=p�0 , namely,

� :=
1

2�
[arg W (z)]C1=

p
�0
: (37)

By the argument principle [21, pp. 482-522], we have

� =
1

2�
[arg R1(z)]C1=

p
�0
� 1

2�
[arg z]C1=

p
�0

� 1

2�
[arg W (z)]C1=

p
�0

=

M0X
m=1

mk � 1� �: (38)

It remains to compute �. To this end, consider the closed
contour �A;B;C;D depicted in Figure 2: It is composed of
the circle �A;C with center 0 and radius 1=

p
�0 (resp. the

circle �B;D with center 0 and radius 1) from which we have
removed the arc (AC) (resp. (BD)), and of the segments
[A;B] and [D;C]. The points A, B, C and D are chosen in
such a way that all zeros and poles of W (z) in the domain
M also lie inside the contour �A;B;C;D (this is possible since
there are a �nite number of such zeros and poles and also
because none of them lie on the segment [�1=p�0;�1]).

As already observed, W (z) is a meromorphic function inside
the contour �A;B;C;D, and it is well-de�ned on �A;B;C;D .
Hence,

1

2�i

Z
�A;B;C;D

W 0(z)
W (z)

dz =

M0X
m=1

mk �NZ : (39)

This result is a well-known consequence of the theorem of
residues applied to the logarithmic derivative

w(z) :=W 0(z)=W (z)

of the function W (z) [21, pp. 482-522]. Since �A;B;C;D =

�A;C [ [A;B] [ �B;D [ [D;C], (39) rewrites as

1

2i�

Z
�A;C

w(z) dz +
1

2i�

Z B

A

w(z)dz

+
1

2i�

Z C

D

w(z)dz +
1

2i�

Z
�B;D

w(z)dz

=
MX

m=M0+1

mk �NZ :

Letting now A and C tend to �1=p�0 (resp. B and D tend
to �1) in the latter equation, we see that the 1st integral
is nothing but the index �, that the 2nd and the 3rd inte-
gral cancel each other, and that the 4th integral is equal to
� 1
2�

[arg W (z)]C1
(since z moves in the negative direction

on C1). Consequently,

� =

M0X
m=1

mk �NZ +
1

2�
[arg W (z)]C1

: (40)

We are left with computing �0 := 1
2�

[arg W (z)]C1
. Since

R2(z) is a polynomial with no zeros in fjzj � 1g, we may
invoke again the argument principle, to obtain that �0 =
1
2�

[arg f(z)]C1
, where we have set

f(z) := (1� �0(s0(z))�1(s1(z)))=(1� z):

For z 2 C1�f1g, we know by Lemma 3.2, that Re (s0(z)) >
0 and Re (s1(z)) > 0, thereby implying that

j�0(s0(z))�1(s1(z)j < 1;

which in turn implies that Re (1 � �0(s0(z))�1(s1(z))) > 0.
Since Re (1� z) > 0 for z 2 C1�f1g, this implies that f(z)
does not cross the negative real axis when z 2 C1�f1g [Hint:
if Arg(zi) 2 (��=2; �=2) for i = 1; 2, then Arg(z1=z2) =
Arg(z1)�Arg(z2) 2 (��; �)]. On the other hand, an appli-
cation of L'Hopital's rule shows that

lim
z!1

f(z) = â0(�0 � 1) + â1(�1 � 1) < 0; (41)

where the latter inequality follows from assumption A3.
Since f(z) is a continuous function of z 2 C1, the above
shows that, as z describes the unit circle, f(z) describes
once a closed contour, say C, around z = 0, crossing the
negative real axis only at z = 1 (with f(1) < 0).

It remains to determine the direction in which f(z) moves
along C as z moves along C1 in the positive direction. Take
z = ei � 2 C1, with � < 0, close enough to the point
1; then 0 < Arg(1 � z) < �=2. On the other hand,
Re (1� �0(s0(z))�1(s1(z))) > 0 for z 2 C1 � f1g as already
observed, so that ��=2 < Arg(1 � �0(s0(z))�1(s1(z))) <
�=2. Therefore, �� < Arg(f(z)) < 0. When � ! 0 with
� < 0 (i.e. in the positive direction) then f(z) ! â0(�0 �
1)+ â1(�1� 1) < 0 from below (since �� < Arg(f(z)) < 0),
i.e, in the negative direction. Hence, �0 = �1. The latter
result, combined together with (38) and (40), proves that
� = NZ .

When 0 � �1 � p
�0 < 1 we know by Lemma 3.2 that

Re (s1(z)) � 0 (in particular) for z 2 D, which implies that
�1(s1(z)) has no pole in D. Therefore, NZ = 0 and � =
0.
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Figure 2: The contour �A;B;C;D

The following proposition gives D0(z) for all jzj < 1=
p
�0:

Proposition 5.1. Under assumptions A1-A3 the follow-
ing holds:

D0(z) =

�
z
p
�0
��

ei (z)

R(z)
(�(z) + 1(� � 0)Q(z)) ; (42)

for all jzj < 1=
p
�0, where

(z) :=
1

2�

Z 2�

0

 
arctg

 
b(ei�=

p
�0)

a(ei�=
p
�0)

!
� ��

!

�h(�; z)d�; (43)

�(z) :=
1

2�

Z 2�

0

e!1(e
i�=

p
�0) c(ei�=

p
�0)h(�; z) d�;

(44)

!1(z) := Im((z)) ; (45)

Q(z) := i �0 +

�X
k=1

 
ck (z

p
�0)

k � ck
1�

z
p
�0
�k
!
; (46)

with

h(�; z) :=
ei� + z

p
�0

ei� � z
p
�0
;

where the sum in (46) equals 0 when � = 0, and �0 and the
ck's are constants to be determined. In (43) a(z) and b(z)
are the two real functions de�ned by a(z) := Re ( (z)) and
b(z) := Im( (z)). �

Proof. With (28), equation (19) becomes

Æ1(s1(z))L0(0; s0(z)) + �0(s0(z))�1(s1(z)) (47)

= z Æ1(s1(z))
1� �0(s0(z))�1(s1(z))

(z � 1)R(z)
R(z)D0(z);

for z 2 A0 \ A1 � f0g, where G(z) and R(z) are de�ned in
(30) and (31), respectively.

The left-hand side of (47) being analytic in A0 and con-
tinuous in A0 � f0g, it de�nes the analytic continuation of
the right-hand side in A0 � f0g. In particular, the right-

hand side of (47) is analytic in f1 < jzj < 1=
p
1=�0g and

continuous in f1 � jzj � 1=
p
1=�0g, since f1 � jzj �

1=
p
1=�0g � A0 (Lemma 3.2). Now, since the function

zÆ1(s1(z)) (1��0(s0(z))�1(s1(z)))=((z� 1)R(z)) is analytic

in f1 < jzj < 1=
p
1=�0g, continuous and non-vanishing in

f1 � jzj � 1=
p
1=�0g, we may conclude that R(z)D0(z) is

also analytic in f1 < jzj < 1=
p
1=�0g and continuous in

f1 � jzj � 1=
p
1=�0g. In summary, we have shown that

R(z)D0(z) is analytic in fjzj < 1=
p
�0g and continuous in

fjzj � 1=
p
�0g when �0 < 1.

Letting z 2 C1=p�0 in (47), multiplying both sides of the
equation by i=Æ1(s1(z)), then taking the real part on both
sides, and �nally noting that s0(z) is real (Lemma 3.2),
yields

Re

�
i z
1� �0(s0(z))�1(s1(z))

z � 1
D0(z)

�
= �0(s0(z))Re (iL1(0; s1(z))) ; z 2 C1=p�0 :(48)

With (32)-(33) we may rewrite (48) as

Re

�
R(z)D0(z)

 (z)

�
= c(z); z 2 C1=p�0 ; (49)

where  (z) is non-vanishing on C1=p�0 ; more precisely, we
know that j (z)j = 1 everywhere on C1=p�0 by Lemma 5.1.

Equation (49) de�nes a Riemann-Hilbert boundary value
problem on the contour C1=p�0 , namely, it is required to �nd

a function R(z)D0(z) that is analytic in C
+
1=
p
�0
, continuous

in C+
1=
p
�0

and which satis�es a condition of the type (49)

on the contour C1=p�0 .

Under assumptions A1-A3 we know, by Lemma 5.1, that
 (z) and c(z) satisfy a H�older condition on C1=p�0 . There-
fore, the solution to the boundary value problem (49) is
given in [16, Sect. 29.3] (see also [22, pp. 100-107]) which
proves (42).

Let us pause for a while and summarize the results we have
obtained so far. Lemma 4.1 determines L1(0; s) up to the
d1 unknown coeÆcients of the polynomial �1(s) (of degree
d1 � 1). Proposition 5.1 then gives D0(z) in the entire unit
disk, up to the d1 coeÆcients of �1(s) | which appear in c(z)
| and the unknown �+1 additional constants �0; c1; : : : ; c�
involved in Q(z). Note that both L1(0; s) and D0(z) are lin-
ear in these unknown coeÆcients. Moreover, for any choice
of these coeÆcients, L1(0; s) is meromorphic in the entire
complex plane (its poles being the zeros of Æ1(s)) and D0(z)

is meromorphic in fjzj � 1=
p
1=�0g (its poles being the

zeros of R(z). From this we can determine the transform
D1(z) (up to the d1+�+1 unknown constants) for jzj � 1,
and Æ1(s1(z)) 6= 0, using (18) with i = 1:

D1(z) =
z � 1

z
L1(0; s1(z)) + �1(s1(z))D0(z): (50)



Similarly we �nd, using (19) with i = 0, for z 2 C1=
p
�0

TA0

and Æ1(s1(z)) 6= 0,

L0(0; s0(z)) = ��0(s0(z))L1(0; s1(z)) (51)

+z
1� �0(s0(z))�1(s1(z))

z � 1
D0(z):

The following two lemmas give d1 + � linear relations to be
satis�ed by the unknown coeÆcients. By sk, k = 1; : : : ; d1,
we shall denote the zeros of the polynomial Æ1(s).

Lemma 5.3. For k = 1; 2; : : : ; d1,

�1(sk) =
z+1 (sk)�1(sk)D0(z

+
1 (sk))

1� z+1 (sk)
: (52)

If sk (k = 1; 2; : : : ; d1) is a zero of multiplicity tk > 1, then
we have the additional set of linear equations

@n

@snk
�1(sk) =

@n

@snk

�
z+1 (sk)�1(sk)D0(z

+
1 (sk))

1� z+1 (sk)

�
; (53)

for n = 1; : : : ; tk � 1. �

Proof. To see (52) note that if Æ1(sk) = 0 then Re (sk) <
0. Therefore jz+1 (sk)j < 1 (in fact jz+1 (sk)j < minf1; 1=�1g).
Since D1(z) is analytic in C

+
1 , we can substitute z = z+1 (s)

into (50) and let s ! sk. A similar reasoning leads to the
additional equations in case the zero sk of Æ1(s) has multi-
plicity larger than 1.

The linear equations (52) and (53) give us d1 equations to
which we can add the normalizing condition (12). However,
when � > 0 then � extra conditions are needed in order to
compute the d1 + � + 1 unknown constants. These � ad-
ditional (linear) equations are provided in the next lemma.
Recall (cf. Lemma 5.2) that � = NZ , i.e., � equals the num-
ber of zeros of Æ1(s1(z))=�0(s0(z)) inM. This number is not
greater than the number of zeros of Æ1(s1(z)) in M. Note
that the zeros of Æ1(s1(z)) in M � C�1 must be in B21 (see
Figure 1). There are exactly d1 zeros in B, since these are
the images of the sk, k = 1; : : : ; d1, M under the mapping
z�1 (s). As a result we have � = NZ � d1.

We partition the zeros of Æ1(s) into two subsets: For k =
1; : : : ; �, sk will belong to a zero of Æ1(s)=�0(s0(z

�
1 (s)))

(counting multiplicities) with z�1 (sk) 2 M; for k = � +
1; : : : ; d1, either z

�
1 (sk) =2 M or the zero is cancelled by a

zero of �0(s0(z
�
1 (s))). In the above, we have implicitly used

the relation s1(z
�
1 (s)) = s (cf. Lemma 3.2).

Lemma 5.4. For k = 1; : : : ; �,

�1(sk) =
z�1 (sk)�1(sk)D0(z

�
1 (sk))

1� z�1 (sk)
: (54)

If the zero sk of Æ1(s)=�0(s0(z
�
1 (s))) has multiplicity tk > 1

(k = 1; : : : ; �), then

@n

@snk
�1(sk) =

@n

@snk

�
z�1 (sk)�1(sk)D0(z

�
1 (sk))

1� z�1 (sk)

�
; (55)

for n = 1; : : : ; tk � 1. �

Proof. The proof is analogous to that of Lemma 5.3. If
Æ1(sk)=�0(s0(z

�
1 (sk) = 0 and z�1 (sk) 2M then we can sub-

stitute z = z�1 (s) into (51) and let s! sk (because L0(s0(z))
is analytic in A0). The additional equations in case the zero
sk of Æ1(s)=�0(s0(z

�
1 (sk))) has multiplicity larger than 1 fol-

low similarly.

The following proposition summarizes how the functions on
the right-hand sides of the functional equations (11) and,
hence, the functions L0(z; s) and L1(z; s) can be determined.

Proposition 5.2. Suppose 0 < �0 < 1 and that Assump-
tions A1-A3 hold. Then L1(0; s), D0(z), D1(z) and L0(0; s)
are given by (28), (42), (50) and (51) respectively. The
d1 + �+ 1 unknown coeÆcients introduced in the functions
�1(s) and Q(z) are determined by (12), (52), (53), (54) and
(55). These d1+�+1 equations are linear in the unknowns.

�

Proof. For any choice of the d1+�+1 unknowns, L1(0; s)
and D0(z) are analytic in the right-half plane and inside
the unit disc, respectively. Because of (52), (53), (54) and
(55), D1(z) and L0(0; s) are also analytic inside the unit disc
and in the right-half plane, respectively. Using Lemma 3.3,
L0(z; s) and L1(z; s) given by (11) are analytic for jzj < 1,
Re (s) > 0 and continuous for jzj � 1 and Re (s) � 0. Equa-
tions (52), (53), (54) and (55) form a homogeneous linear
system in the unknowns, which is invariant with respect to
multiplication by a constant. Equation (12) determines this
constant. Theorem 2.1 ensures this solution is unique. The
equations are linear in the unknowns because �1(s) and Q(z)
are linear in the unknowns.

Remark 5.1. If Æ1(s1(z)) vanishes on the circle 1=
p
�0

for some values of the model parameters, then this can only
occur at a �nite number of points on this contour since
Æ1(s1(z)) is a meromorphic function. When this occurs, we
can usually slightly perturb one of the parameters so that
A2 and A3 are satis�ed, and use the analysis developed
in this section. As far as numerical results are concerned,
this approach will give accurate results since the performance
metrics under consideration (e.g. average queue-length) are
continuous in the model parameters.

6. THE Z-TRANSFORM
We now return to the computation of the z-transform N(z).
We have already shown in (14) that

N(z) =
1

c�0
L0(z; 0) +

1

c�1
L1(z; 0); jzj � 1:

Introducing in this formula the values for Li(z; 0), i = 0; 1,
found in Corollary 3.1 yields [with i = 0, i0 = 1]

N(z) =
1

c

�
1

�0 (1� �0z)
� 1

�1 (1� �1z)

�

�
�
L1(0; s1(z)) + z

1� �1(s1(z))

1� z
D0(z)

�

+
L0(0; 0)

c�0 (1 � �0z) +
L1(0; 0)

c�1 (1� �1z)
: (56)



On the other hand, we have established in (23) that

L0(0; 0) =
â0 (1� �0) + â1 (1� �1)

â0 + â1
� L1(0; 0);

thereby showing that N(z) in (56) is entirely determined for
jzj � 1 when one knows L1(0; s) for Re (s) � 0 and D0(z)
for jzj � 1. Proposition 5.2 determines these functions when
F1(x) has a rational LST, for 0 < �0 < 1 (and under the
technical assumption A2). The situation where �0 � 1 will
be addressed in an extended version of this paper.

7. CONCLUDING REMARKS
The generating function for the queue-length distribution
in an M/M/1 queue evolving in a semi-Markov environ-
ment has been obtained via techniques pertaining to com-
plex analysis. An interesting feature of this queueing model
is that the traÆc process can exhibit burstiness and long-
range dependence depending on the choice of the model pa-
rameters. We emphasize that the obtained results allow for
numerical computation of performance measures, particu-
larly the mean queue-length. This allows us to evaluate the
impact of such correlated processes on the performance mea-
sures of interest. This evaluation which has not been carried
out in the present paper is the subject of ongoing, mostly
numerical, studies.
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APPENDIX: Proof of Lemma 5.1

Proof. Under assumptions A1-A3 and the de�nition of
the function R(z) it is easily seen that G(z) is (i) non-
vanishing on C1=p�0 and (ii) has a bounded derivative on
this contour (when �0 = 1 then 1 � �0(s0(z))�1(s1(z)) has
a zero of multiplicity 1 at z = 1 and does not vanish for
all jzj = 1 with z 6= 1). We conclude from (i) and (32)
that j (z)j = 1 on C1=p�0 and from (ii) that G(z) satis�es
a H�older condition on C1=p�0 (apply P3) which in turn im-
plies that  (z) satis�es a H�older condition on C1=p�0 (apply
P1-P2).

Consider now the function

c1(z) := i�0(s0(z)) �1(s1(z))=Æ1(s1(z)):

Under assumptionsA1-A2 the function c1(z) has a bounded
derivative on the contour C1=p�0 . Therefore, c1(z) satis�es a
H�older condition on C1=p�0 (applyP3) and so does the func-
tion jG(z)j c1(z) as the product of two functions that satisfy
a H�older condition on C1=p�0 (apply P2). From the identity
c(z) = Re (c1(z)) for all z 2 C1=p�0 , we conclude that c(z)
satis�es a H�older condition on C1=p�0 (apply P1).
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