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Abstract. This paper considers the M/G/1 queue with regularly varying service requirement
distribution. It studies the effect of the service discipline on the tail behavior of the waiting- or
sojourn time distribution, demonstrating that different disciplines may lead to quite different tail
behavior. The orientation of the paper is methodological: We outline three different methods of
determining tail behavior, illustrating them for service disciplines like FCFS, Processor Sharing
and LCFS.

This paper is dedicated to the memory of Vincent Dumas, a dear friend and gifted young
mathematician.

1 Introduction

Measurements indicate that traffic in high-speed networks exhibits burstiness on a wide range
of time scales, manifesting itself in long-range dependence and self-similarity, see for instance
Leland et al. [29], Paxson & Floyd [38]. The occurrence of these phenomena is commonly
attributed to extreme variability and long-tailed characteristics in the underlying activity
patterns (connection times, file sizes, scene lengths), see for instance Beran et al. [5], Crovella
& Bestavros [20], Willinger et al. [43]. This has triggered a lively interest in queueing models
with long-tailed traffic characteristics.

Although the presence of long-tailed traffic characteristics is widely acknowledged, the
practical implications for network performance and traffic engineering remain to be fully
resolved. An interesting aspect is the role of scheduling and priority mechanisms in controlling
the effect of long-tailed traffic characteristics on network performance. In a fundamental paper,
Anantharam [3] considered a single-server queue fed by a Poisson arrival process of sessions,
with each session lasting for an independent integer time T for which holds: P{T = k} ∼
αk−(α+1)L(k), where 1 < α < 2 and L(·) is a slowly varying function (see Definition 1). Each
session brings in work at unit rate while it is active. Hence, the work brought in by each
arrival is regularly varying and, because 1 < α < 2, the arrival process of work is long-range
dependent, but ET < ∞. Anantharam shows that, in the steady-state case, for any stationary
Non-Preemptive service policy at the queue, the stationary sojourn time of a typical session
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must stochastically dominate a regularly varying random variable having infinite mean. Non-
preemption means that once service on a session has begun, it is continued until all the work
associated with it has been completed. Anantharam does not make any assumptions as to
whether the service policy is work-conserving, or whether the length of a session is known
at the time of arrival. In marked contrast to the above, Anantharam also shows that there
exist causal stationary preemptive policies, which do not need information about the session
durations at the time of their arrival, for which the stationary sojourn time of a session is
stochastically dominated by a regularly varying random variable with finite mean.

The results of Anantharam raise several questions, like (i) are there (preemptive) service
disciplines for which the tail of the sojourn time distribution is not heavier than the tail of the
service requirement distribution, and (ii) what is the effect of various well-known scheduling
disciplines on the tail behavior of the waiting- or sojourn time distribution?

A related issue arises when there are several classes of customers, which may be treated in
different ways by the server (e.g., using fixed priorities, or according to a polling discipline).
Then it is important to understand under what conditions, or to what extent, the tail behavior
of the service requirements of one class affects the performance of other classes. The above
issues have recently been investigated by the present authors and some of their colleagues.
This paper summarizes the results. We focus on the classical M/G/1 queue and its multi-class
generalizations (although some of the recently obtained results allow a general renewal arrival
process, or a fluid input).

The orientation of the paper is methodological. After introducing the model and reviewing
the main results for various basic disciplines in Section 2, we discuss three different methods of
obtaining the tail behavior of waiting- or sojourn time distributions for M/G/1-type queues
with regularly varying service requirement distribution(s): (i) an analytical one, which relies
on Tauberian theorems relating the tail behavior of a probability distribution to the behavior
of its Laplace-Stieltjes transform near the origin; (ii) a probabilistic one, which exploits a
Markov-type inequality, relating an extremely large sojourn (or waiting) time with a single
extremely large service requirement; and (iii) a probabilistic one, which is based on sample-
path arguments which lead to lower and upper bounds for probability tails. These three
approaches are the topics of Sections 3, 4 and 5, respectively. Sections 3 and 5 also discuss
the multi-class case.

2 Model Description and Main Results

In this section, we formally describe the model, introduce some concepts and notation, and
give an overview of the main results.

As stated before, we focus on the M/G/1 queue. In this system, customers arrive according
to a Poisson process, with rate λ, at a single server who works at unit rate. Their service
requirements B1, B2, . . . are independent and identically distributed, with distribution B(·)
with mean β and Laplace-Stieltjes Transform (LST) β{·}. A generic service requirement is
denoted by B. There is no restriction on the number of customers in the system. We assume
that the offered traffic load ρ := λβ < 1, so that the system reaches steady state. We study
the stationary sojourn time S of a customer, and in some cases also the stationary waiting
time W until service begins.

Before surveying the tail asymptotics of the waiting-time and sojourn time distributions
for various service disciplines, we first introduce some useful notation and terminology. For
any two real functions g(·) and h(·), we use the notational convention g(x) ∼ h(x) to denote
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lim
x→∞

g(x)/h(x) = 1, or equivalently, g(x) = h(x)(1 + o(1)) as x → ∞. For any stochastic

variable X with distribution function F (·), with EX < ∞, denote by F r(·) the distribution
function of the residual lifetime of X, i.e., F r(x) = 1

EX

∫ x
0 (1−F (y))dy, and by Xr a stochastic

variable with distribution F r(·).
Throughout this paper, we focus on the class R of regularly-varying distributions (which

contains the Pareto distribution). This class is a subset of the class of subexponential distri-
butions [27], that contains, a.o., the lognormal and Weibull distributions.

Definition 1. A distribution function F (·) on [0,∞) is called regularly varying of index −ν
(F (·) ∈ R−ν) if

1− F (x) = x−νL(x), ν ≥ 0,

where L : R+ → R+ is a function of slow variation, i.e., limx→∞ L(ηx)/L(x) = 1, η > 1.

The class of regularly varying functions was introduced by Karamata [25], and its poten-
tial for probability theory was extensively discussed in Feller [23]. A key reference is Bingham
et al. [7].

In the remainder of this section, we present an overview of the tail asymptotics of the
waiting-time and sojourn time distributions in the M/G/1 queue for six key service dis-
ciplines: (i) First-Come-First-Served (FCFS); (ii) Processor Sharing (PS); (iii) Last-Come-
First-Served Preemptive-Resume (LCFS-PR); (iv) Last-Come-First-Served Non-Preemptive
Priority (LCFS-NP); (v) Foreground-Background Processor Sharing (FBPS); (vi) Shortest
Remaining Processing Time First (SRPTF).

(i) The M/G/1 FCFS queue
The next theorem characterizes the tail asymptotics of the distribution of the steady-state
waiting time W for the FCFS service discipline.

Theorem 1. In the case of regular variation, i.e., P{B > ·} ∈ R−ν ,

P{W > x} ∼ ρ

1− ρ
P{Br > x}, x →∞. (1)

Remark 1. The waiting-time tail in the M/G/1 FCFS queue appears to be one degree heavier
than the service requirement tail, in the regularly varying case. This is explained by the fact
that an arriving customer has a positive probability of arriving during a service time. His
waiting time then is at least equal to the residual duration of the ongoing service – which is
regularly varying of index 1− ν (cf. [7]).

Theorem 1 was first proved by Cohen [17] (who in fact considered the GI/G/1 case),
and subsequently extended by several authors. In particular, Pakes [36] has proven that
P{W > x} ∼ ρ

1−ρP{B
r > x} even holds for the GI/G/1 queue, for the larger class of

service requirement distributions for which the residual service requirement distribution is
subexponential.

The fact that the sojourn time of a customer in the M/G/1 FCFS queue equals the
sum of his waiting time and his lighter-tailed service requirement, the two quantities being
independent, implies that the tail behavior of the sojourn time distribution is also given by
the righthand side of (1).
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(ii) The M/G/1 PS queue
The PS (processor sharing) service discipline operates as follows. If there are n ≥ 1 customers
present, then they are all served simultaneously, at a rate of 1/n. At the ITC conference in
1997, J.W. Roberts raised the question whether the tail of the distribution of the steady-state
sojourn time SPS in the M/G/1 PS system might be just as heavy as the tail of the service
requirement distribution. This question was motivated by the following observations: (i) in
a PS system short jobs can overtake long jobs, so the influence of long jobs on the sojourn
time of short jobs is limited, and (ii) the mean sojourn time in the M/G/1 PS queue only
involves the first moment of the service requirement, whereas in the M/G/1 FCFS queue it
involves the first moment of the residual service requirement (see also (8) below), and hence
the second moment of the service requirement. In fact, if P{B > ·} ∈ R−ν with 1 < ν < 2,
then the second moment of the service requirement does not exist, and neither does the first
moment of the waiting time in the M/G/1 FCFS case. Roberts’ question can be answered
affirmatively, as shown by the next theorem proven in [51].

Theorem 2. If P{B > ·} ∈ R−ν ,

P{SPS > x} ∼ P{B > (1− ρ)x}, x →∞. (2)

Apparently, in the M/G/1 PS queue the sojourn time tail is just as heavy as the service
requirement tail.

Remark 2. Formula (2) allows the following interpretation. When a tagged customer has
been in the system for a time period of length x, with x large, then the distribution of the
number of other customers present has approximately become the steady-state distribution
of the number of customers in the M/G/1 PS queue. Hence, on average, the server devotes ρ
amount of time per time unit to those other customers. Therefore he will, on average, devote
a fraction 1 − ρ of the time to the tagged customer. Consequently, the amount of service
received by that customer during x is approximately (1− ρ)x.

(iii) The M/G/1 LCFS-PR queue
In the LCFS Preemptive-Resume discipline, an arriving customer K is immediately taken
into service. However, this service is interrupted when another customer arrives, and it is
only resumed when all customers who have arrived after K have left the system.

The fact that no customer has to wait for the completion of a residual service requirement,
suggests that the tail of the sojourn time distribution is just as heavy as the tail of the service
requirement distribution. This was indeed proven in [13], using the following observation:
The sojourn time of K has exactly the same distribution as the busy period of this M/G/1
queue. The busy period obviously has the same distribution for LCFS-PR as for FCFS. The
tail behavior of the busy-period distribution in the M/G/1 queue has been studied by De
Meyer and Teugels [30] for the case of a regularly varying service requirement distribution.
This yields the next theorem (SLPR denoting the steady-state sojourn time).

Theorem 3. If P{B > ·} ∈ R−ν ,

P{SLPR > x} ∼ 1
1− ρ

P{B > (1− ρ)x}, x →∞. (3)
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(iv) The M/G/1 LCFS-NP queue
Let WLNP denote the steady-state waiting time in the M/G/1 LCFS-NP queue. The possibil-
ity of preemption suggests that the tail of WLNP will be determined by the tail of a residual
service time. Indeed, in this paper we prove the following result, which in fact also holds for
the sojourn time SLNP = WLNP + B, as is shown in Section 4.

Theorem 4. If P{B > ·} ∈ R−ν ,

P{WLNP > x} ∼ ρP{Br > (1− ρ)x}, x →∞. (4)

(v) The M/G/1 FBPS queue
The Foreground-Background Processor Sharing discipline allocates an equal share of the ser-
vice capacity to the customers which so far have received the least amount of service, see
Kleinrock [26] or Yashkov [46]. We will show (only for the case 1 < ν < 2) that the tail of the
distribution of the sojourn time SFB is the same as that for the ordinary PS discipline:

Theorem 5. If P{B > ·} ∈ R−ν with 1 < ν < 2,

P{SFB > x} ∼ P{B > (1− ρ)x}, x →∞. (5)

Although not proven here, it can be shown that the result remains true for ν ≥ 2.

(vi) The M/G/1 SRPTF queue
With this service discipline the total service capacity is always allocated to the customer(s)
with the shortest remaining processing time (Shortest Remaining Processing Time First). As-
suming that B(x) is a continuous function, with probability 1, no two customers in the system
have the same remaining service requirement [41]. The service of a customer is preempted
when a new customer arrives with a service requirement smaller than the remaining service
requirement of the customer being served. The service of the customer that is preempted is
resumed as soon as there are no other customers with a smaller amount of work in the system.
For the sojourn time SSR we will prove the following theorem:

Theorem 6. If P{B > ·} ∈ R−ν with 1 < ν < 2,

P{SSR > x} ∼ P{B > (1− ρ)x}, x →∞. (6)

Note that the tail of the service requirement distribution behaves as those of the PS and
FBPS disciplines. Again, we remark (without proof) that the result is also valid for ν ≥ 2.

In the sequel we prove these theorems using different methods. This serves as a demon-
stration of the methods and allows us to compare them. Theorems 2 and 4 shall be proven
in each of the Sections 3, 4 and 5, Theorems 1 and 3 are proven in Sections 3 and 5, and
Theorems 5 and 6 are proven in Section 4.

3 Transform Approach

In this section we demonstrate an LST approach to the study of tails of waiting-time and
sojourn time distributions in the M/G/1 queue and some of its generalizations. In Subsec-
tion 3.1 we consider the single-class M/G/1 queue, with as service discipline either FCFS,
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PS, LCFS-PR, or LCFS-NP. In Subsection 3.2 we consider the multi-class M/G/1 queue, in
which the classes are served according to some scheduling mechanism.

For several of the above-mentioned cases, an expression for the LST of the waiting- and/or
sojourn time distribution can be found in the literature. In exceptional cases, this expression
is sufficiently simple to allow explicit inversion of the LST, thus possibly enabling one to
determine the tail behavior of the corresponding distribution. An example is the M/G/1
queue with the FCFS discipline, which will first be considered in Subsection 3.1. But usually
such an explicit inversion is not viable. Fortunately, there exists a very useful relation between
the tail behavior of a regularly varying probability distribution and the behavior of its LST
near the origin. That relation often enables one to conclude from the form of the LST of the
waiting- and/or sojourn time distribution, that the distribution itself is regularly varying at
infinity. We present this relation in Lemma 1 below.

Let F (·) be the distribution of a non-negative random variable, with LST φ{s} and finite
first n moments µ1, . . . , µn (and µ0 = 1). Define

φn{s} := (−1)n+1[φ{s} −
n∑

j=0

µj
(−s)j

j!
].

Lemma 1. Let n < ν < n + 1, C ≥ 0. The following statements are equivalent:

φn{s} = (C + o(1))sνL(1/s), s ↓ 0, s real,

1− F (x) = (C + o(1))
(−1)n

Γ (1− ν)
x−νL(x), x →∞.

The case C > 0 is due to Bingham and Doney [6]. The case C = 0 was first obtained by Vincent
Dumas, and is treated in [16], Lemma 2.2. The case of an integer ν is more complicated; see
Theorem 8.1.6 and Chapter 3 of [7].

3.1 The Single-Class Case

(i) The M/G/1 FCFS queue
In the M/G/1 FCFS queue, the LST of the steady-state waiting-time distribution is given by
the Pollaczek-Khintchine formula [18]:

E[e−sW ] =
1− ρ

1− ρβr{s}
, Re s ≥ 0, (7)

where βr{s} = (1 − β{s})/βs is the LST of the residual service requirement distribution
Br(x). The geometric structure of this LST enables one to invert it, yielding (with Br

i a
random variable with distribution a residual service requirement distribution):

P{W < x} =
∞∑

n=0

(1− ρ)ρnP{Br
1 + . . . + Br

n < x}, x ≥ 0. (8)

A Karamata theorem (cf. Section 1.5 of [7]) implies that if P{B > ·} ∈ R−ν , then the
integrated tail P(Br > ·) ∈ R1−ν . More precisely, if

P{B > x} ∼ x−νL(x), ν > 1, x →∞, (9)
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then
P{Br > x} =

1
β

∫ ∞

x
P{B > y}dy ∼ 1

(ν − 1)β
x1−νL(x), x →∞. (10)

A key property of regularly varying probability distributions (and of the larger class of subex-
ponential distributions), specified to the sum of residual service requirements in (8), is that

P{Br
1 + . . . + Br

n > x} ∼ nP{Br
1 > x}, x →∞. (11)

Put differently: the sum of n independent, identically distributed random variables with reg-
ularly varying tail exhibits the same tail behavior as the maximum of that sum. This implies
that when such a sum is large, that is most likely due to one of the terms being large. This
observation provides the key intuition to many of the results to be discussed below.

Combining (11) with (8) we obtain Theorem 1. We shall now demonstrate how the fol-
lowing statement, which implies Theorem 1, is easily obtained from the LST expression (7)
and Lemma 1. For ν > 1, x →∞,

P{B > x} ∼ x−νL(x) ⇐⇒ P{W > x} ∼ ρ

1− ρ

1
(ν − 1)β

x1−νL(x). (12)

It follows from (9) and Lemma 1 that

1− βr{s} = 1− 1− β{s}
βs

= −
(

Γ (1− ν)
β

+ o(1)
)

sν−1L(1/s), s ↓ 0. (13)

Combining this result with (7) yields:

1−E[e−sW ] =
ρ(1− βr{s})
1− ρβr{s}

∼ − ρ

1− ρ

Γ (1− ν)
β

sν−1L(1/s), s ↓ 0.

Another application of Lemma 1 gives the =⇒ part of (12). The reverse part is obtained in a
similar way.

(ii) The M/G/1 PS queue
Theorem 2 indicates that, contrary to the FCFS case, the sojourn time tail in the M/G/1
PS queue is just as heavy as the service time tail. We now sketch the proof in [51], which is
based on the application of Lemma 1 to an explicit expression of the sojourn time LST.

There are several expressions known for the LST of the sojourn time, cf. [35, 42, 45], but
they contain contour integrals which are inversion formulas of Laplace transforms. Starting-
point in [51] is an expression in [35] for the conditional LST of a customer’s sojourn time
SPS(τ), given that his service requirement is τ : For Re s ≥ 0, τ ≥ 0,

E[e−sSPS(τ)] =
1− ρ

(1− ρ)H1(s, τ) + sH2(s, τ)
,

where the functions H1(s, τ) and H2(s, τ) are given by their LST w.r.t. τ :∫ ∞

0
e−xτdH1(s, τ) =

x− λ(1− β{x})
x− s− λ(1− β{x})

, Re x > 0,

∫ ∞

0
e−xτdH2(s, τ) =

ρx− λ(1− β{x})
x(x− s− λ(1− β{x}))

, Re x > 0.
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It follows from these relations that, for Re s ≥ 0 and Re x > 0:∫ ∞

0
e−xτd[E[e−sSPS(τ)]]−1 = 1 +

1
1− ρ

s

x

1
1− sE[e−xW ]/(x(1− ρ))

, (14)

where W denotes the steady-state waiting time in the M/G/1 FCFS queue (we shall denote
its distribution by W (·)). Formula (14) implies (see [51]) that

E[e−sSPS(τ)] =

[ ∞∑
k=0

sk

k!
αk(τ)

]−1

, (15)

with α0(τ) := 1, α1(τ) := τ/(1− ρ), and for k ≥ 2,

αk(τ) :=
k

(1− ρ)k

∫ τ

x=0
(τ − x)k−1W (k−1)∗(x)dx.

In Corollary 3.2 of [51], Formula (15) is shown to imply that the kth moment of the sojourn
time in the M/G/1 PS queue is finite iff the kth moment of the service requirement is finite.
But Formula (15) is also suitable for applying Lemma 1. With SPS the steady-state sojourn
time in the M/G/1 PS queue, and using the fact that E[e−sSPS ] =

∫∞
0 E[e−sS(τ)]dB(τ), it

can be shown [51] that, for 1 < ν < 2,

E[e−sSPS ]− β{ s

1− ρ
} = o(sνL(1/s)), s ↓ 0, s real.

One can now apply Lemma 1. Using the well-known fact that ESPS = β/(1 − ρ), it is seen
that Theorem 2 holds for 1 < ν < 2 (and via a similar approach it is shown in [51] that this
holds for all non-integer ν > 1; we ignore the subtleties required in applying Lemma 1 for
integer ν). In fact, a two-way application of Lemma 1 yields (cf. [51]): For ν > 1, x →∞,

P{B > x} ∼ x−νL(x) ⇐⇒ P{SPS > x} ∼ 1
(1− ρ)ν

x−νL(x). (16)

(iii) The M/G/1 LCFS-PR queue
As observed in Section 2, the sojourn time in the M/G/1 LCFS-PR queue has the same
distribution as the busy period in the M/G/1 queue. De Meyer and Teugels [30] have studied
the tail of the latter distribution in the case of a regularly varying service requirement dis-
tribution. Their starting-point is the fact that the LST µ(s) of the steady-state busy period
length P is the unique solution of the equation

µ{s} = β{s + λ(1− µ{s})}, (17)

with |µ{s}| ≤ 1 for Re s ≥ 0. They apply Lemma 1 to show the following equivalence: for
ν > 1, x →∞,

P{B > x} ∼ x−νL(x) ⇐⇒ P{P > x} ∼ 1
(1− ρ)ν+1

x−νL(x). (18)

Hence the tail of the busy period distribution is just as heavy as that of the service require-
ment distribution. Theorem 3 immediately follows from (18).
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(iv) The M/G/1 LCFS-NP queue
Let WLNP denote the steady-state waiting time in the M/G/1 LCFS-NP queue. The following
is observed in [18], p. 431. If an arriving customer in the M/G/1 LCFS-NP queue meets a
customer in service with a residual service requirement w, then his waiting-time distribution
is that of a busy period with a special first service requirement w. That residual service
requirement has distribution Br(·) with LST βr{s} as introduced in the beginning of this
section ([18], p. 432). It is now readily seen (cf., e.g., p. 299 of [19]) that

E[e−sWLNP ] = 1− ρ + ρβr{δ{s}}, Re s ≥ 0, (19)

with δ{s} the unique zero in Re s ≥ 0 of λ(1 − β{w}) − w + s, Re w ≥ 0. In fact, cf. (17),
δ{s} = s + λ(1 − µ{s}). In combination with (19), this gives another derivation of Formula
(III.3.10) of [18]:

E[e−sWLNP ] = 1− ρ +
ρ

β

1− µ{s}
s + λ(1− µ{s})

, Re s ≥ 0. (20)

Using Lemma 1, we can now easily verify that the tail of WLNP is regularly varying of degree
one heavier than the tail of the service requirement (as may be expected in view of the
possibility of having to wait at least a residual service requirement). If (9) and hence also (13)
hold, then it follows from (18) and Lemma 1 that

1− µ{s} − β

1− ρ
s ∼ − Γ (1− ν)

(1− ρ)ν+1
sνL(1/s), s ↓ 0, (21)

and therefore
1−E[e−sWLNP ] ∼ −λΓ (1− ν)

(1− ρ)ν−1
sν−1L(1/s), s ↓ 0. (22)

On the other hand, starting from (22) and using (20), one gets (21). Application of Lemma 1
and (18) now yields: For ν > 1, x →∞,

P{B > x} ∼ x−νL(x) ⇐⇒ P{WLNP > x} ∼ λ

(ν − 1)(1− ρ)ν−1
x1−νL(x). (23)

Both relations imply Theorem 4.

3.2 The Multi-Class Case

In this subsection we consider the M/G/1 queue with K classes of customers. We study several
of the most important service scheduling disciplines, rules that specify at any time which class
of customers is being served. We are interested in the question under what conditions, or to
what extent, the tail behavior of the service requirements of one class affects the performance
of other classes.

The notation is as introduced in Section 2, but quantities relating to class-i customers
receive an index i. Hence, class-i customers arrive according to a Poisson process with
rate λi, and their service requirements have distribution Bi(·) with mean βi; ρi := λiβi

and ρ :=
∑K

i=1 ρi.

(i) Fixed priorities: Non-Preemptive priority
Assume that there are only two priority classes, class 1 having Non-Preemptive priority over
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class 2. Cohen [18], Section III.3.8, gives the following expressions for the LST of the distri-
bution of the steady-state waiting time W1 of class-1 customers:

E[e−sW1 ] =
1− ρ + ρ2β

r
2{s}

1− ρ1βr
1{s}

, Re s ≥ 0, ρ < 1, (24)

E[e−sW1 ] =
(1− ρ1)βr

2{s}
1− ρ1βr

1{s}
, Re s ≥ 0, ρ1 < 1, ρ ≥ 1. (25)

In both cases, Lemma 1 can readily be applied to determine the tail behavior of the waiting-
time distribution. Actually, this is one of the rare cases in which the LST can be easily
inverted. For ρ < 1 this gives (Br

1,i has the residual service requirement distribution Br
1(·),

and Br
2 has the residual service requirement distribution Br

2(·)), with d= denoting equality in
distribution,

W1
d= Br

1,1 + . . . + Br
1,N + Z,

where N is geometrically distributed with parameter ρ1 while Z is zero with probability
(1− ρ)/(1− ρ1) and Z = Br

2 with probability ρ2/(1− ρ1). For ρ1 < 1 but ρ ≥ 1, inversion of
the LST in (25) yields:

W1
d= Br

1,1 + . . . + Br
1,N + Br

2.

These results imply the following. If the service requirement distribution with the heaviest
tail is regularly varying at infinity of index −ν, then the waiting-time distribution of the
high-priority customers is regularly varying at infinity of index 1 − ν. More specifically: If
the heaviest tail belongs to class 1, then the waiting-time tail of class-1 customers is as if
no class 2 exists. If the heaviest tail belongs to class 2, then the waiting-time tail of class-1
customers behaves like the tail of a residual service requirement of class 2 if ρ1 < 1 and ρ ≥ 1,
and like that tail multiplied by the factor ρ2/(1− ρ1) if ρ < 1.

For class 2 the following result has been proven in [14]. If the service requirement distribu-
tion with the heaviest tail is regularly varying at infinity of index −ν, then the waiting-time
distribution of the low-priority customers is regularly varying at infinity of index 1−ν. This is
proven by exploiting a representation for the LST of that waiting-time distribution, as given
by Abate and Whitt [1], and then using Lemma 1. The result is not surprising, when one
realizes that a low-priority customer may have to wait for a residual service requirement of
either class. For the precise asymptotics we refer to [14].

(ii) Fixed priorities: Preemptive-Resume priority
First assume that there are only two priority classes, class 1 having Preemptive-Resume
priority over class 2. As is well-known, class-1 customers are not affected by class-2 customers,
so the results of Subsection 3.1 (for FCFS) apply to class 1. The waiting-time distribution of
the low-priority customers until the start of the – possibly interrupted – service is the same as
in the Non-Preemptive case. Those possible interruptions consist of full service requirements
of high-priority customers, and in the regularly varying case these are less heavy than residual
service requirements of those customers. Hence, in the scenario of regular variation, the tail
behavior of low-priority customers is the same as in the Non-Preemptive case.

If there are K > 2 classes, then in studying class j one may aggregate classes 1, . . . , j − 1
into one high-priority class w.r.t. class j, while the existence of classes j+1, . . . ,K is irrelevant
for class j.
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(iii) Polling
Deng [21] has considered the extension of the two-class Non-Preemptive priority model to the
case in which the server requires a switchover time to move from one class of customers to the
other. She proves: If the service requirement distribution or the switchover-time distribution
with the heaviest tail is regularly varying at infinity of index −ν, then the waiting-time
distributions of both classes are regularly varying at infinity of index 1 − ν. Again the key
of the derivation is an explicit expression for the LST of the waiting-time distributions, in
combination with Lemma 1.

The above 2-class model may also be viewed as a polling model with 2 queues Q1, Q2 and
a server who alternatingly visits both queues, serving Q1 exhaustively (i.e., until it is empty)
and applying the 1-limited service discipline at Q2 (i.e., serving one customer, if there is one,
and then moving on to the other queue). In [15] a polling model with K queues has been
studied, with the exhaustive or gated service discipline being employed at the various queues.
In a similar way, the same conclusions as above have been obtained.

(iv) Processor sharing with several customer classes
In the multi-class disciplines that were discussed above, the worst tail behavior of any class
determined the waiting-time tail behavior of all classes (except for high-priority customers
in the case of Preemptive-Resume priority). Processor sharing turns out to be better able
to protect customer classes from the bad behavior of other classes. Zwart [47] showed that
the sojourn time distribution of a class-i customer is regularly varying of index −νi iff the
service requirement distribution of that class is regularly varying of index −νi, regardless of
the service requirement distributions of the other classes. His method again relied on Lemma 1.

(v) Generalized processor sharing
The Generalized Processor Sharing (GPS) discipline operates as follows [37]. Customer class i
is assigned a weight φi, i = 1, . . . ,K, with

∑K
i=1 φi = 1. If customers of all classes are present,

then one customer from each class is served simultaneously (processor sharing), a class-i
customer receiving a fraction φi of the server capacity. If only some of the classes are present,
then the service capacity is shared in proportion to the weights φi among the head-of-the-line
customers of those classes.

GPS-based scheduling algorithms, such as Weighted Fair Queueing, play a major role in
achieving differentiated quality-of-service in integrated-services networks. Hence, it is impor-
tant to study the extent to which GPS manages to protect one class of customers from the
adverse effects of bad traffic characteristics of other classes. Unfortunately, the queueing anal-
ysis of GPS is very difficult. A slightly more general model for K = 2 is the model with two
parallel M/G/1 queues with service speeds depending on whether the other queue is empty
or not. For general service requirement distributions, the joint distribution of the amounts of
work of both classes has been obtained in [19] by solving a Wiener-Hopf problem (see [22]
and [28] for the case of exponential service requirement distributions). The results of [19] have
been exploited in [8, 10, 11]. In those papers, service requirements at Q1 are either exponential
or regularly varying; at Q2 they are regularly varying. Whether the service requirement tail
behavior at Q2 affects the workload tail at Q1 is shown to depend crucially on whether or not
Q1 is able to handle all its offered work by working at the low speed that occurs while Q2 is
non-empty (i.e., whether or not ρ1 < φ1). The method employed in [8, 10, 11] starts from a –
complicated – expression for the workload LST. In some cases Lemma 1 is applicable, but in
other cases an extension of this lemma must be used. For K ≥ 3 coupled queues, respectively
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for GPS with K ≥ 3 classes, no explicit results are known. However, the sample-path tech-
niques discussed in Section 5 have proven useful in obtaining tail asymptotics for an arbitrary
number of classes [9].

4 Tail Equivalence via Conditional Moments

With heavy-tailed distributions, it is often the case that large occurrences of the variable of
interest (e.g., a customer’s waiting time or sojourn time) are essentially caused by a single
large occurrence of one input variable (e.g., a service requirement). In this section we describe
a generic approach that may be used to prove that the tails of the distributions of the causal
variable and the resultant variable are equally heavy. Specifically, we say that two non-negative
random variables X and Y have equally-heavy tailed distributions if P{Y > g x} ∼ P{X > x}
for some constant g > 0. In the examples below, a customer’s own service requirement (de-
noted with B) or the residual service requirement of some other customer (denoted with Br)
will play the role of the causal variable X and the customer’s sojourn time (denoted with
S) that of the resultant Y . In order to explicitly express the dependence of the sojourn time
on the (residual) service requirement, we shall use S(τ) to denote a customer’s sojourn time
given that the (residual) service requirement equals τ . Consequently, we may alternatively
write S(B) or S(Br) (depending on the causal variable) for the unconditional sojourn time
S.

Theorem 7 below relates the tails of the distributions of S and the causal variable X
(later replaced with either B or Br). We shall make two assumptions: one regarding the
distribution of the causal variable and one regarding S(τ). (The first assumption can be
relaxed to distributions of intermediate regular variation, without invalidating Theorem 7,
see [34].)

Assumption 1. P{X > ·} ∈ R−α for some α > 0.

Assumption 2. The following three conditions are satisfied:

(a) ES(τ) ∼ g τ , for some g > 0;
(b) With α as in Assumption 1, there exists κ > α such that

P{S(τ)−ES(τ) > t} ≤ h(τ)
tκ

,

with h(τ) = o(τκ−δ), τ →∞, for some δ > 0;
(c) S(τ) is stochastically increasing in τ ≥ 0, i.e., for all t ≥ 0, the probability P{S(τ) > t}

is non-decreasing in τ ≥ 0.

Theorem 7. Suppose Assumptions 1 and 2 are satisfied. Then the tails of the distributions
of the random variables X and S(X) are equally heavy in the sense that:

P{S(X) > g x} ∼ P{X > x}.

In particular, the distribution of S(X) is also regularly varying with the same index −α as
that of X.
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Proof. We only give a sketch of the proof and refer to [34] for details. The proof consists of
two parts. For the first part we write, with ε > 0,

P{S(X) > g x} ≤ P{S(X) > g x;X ≤ x(1− ε)} + P{X > x(1− ε)}. (26)

By conditioning on X and integrating over the distribution of X it can be shown (using
Assumptions 1 and 2) that

P{S(X) > g x;X ≤ x(1− ε)} = o(P{X > x(1− ε)}), x →∞.

Hence, we may neglect the first term on the right-hand side of (26) and write

lim sup
x→∞

P{S(X) > g x}
P{X > x}

≤ lim sup
x→∞

P{X > x(1− ε)}
P{X > x}

= (1− ε)−α.

Letting ε ↓ 0, the right-hand side tends to 1.
For the second part of the proof we write, for ε > 0,

P{S(X) > g x} ≥ P{S(X) > g x;X > x(1 + ε)}.

By conditioning again on X it can be shown that

lim
x→∞

P{S(X) > g x;X > x(1 + ε)}
P{X > x(1 + ε)}

= 1.

Hence,

lim inf
x→∞

P{S(X) > g x}
P{X > x}

≥ lim inf
x→∞

P{X > x(1 + ε)}
P{X > x}

= (1 + ε)−α.

Again, the right-hand side tends to 1 as ε ↓ 0. ut

We shall employ Theorem 7 to show for several queueing models that the tail of the so-
journ time distribution is as heavy as that of the (residual) service requirement distribution.
Assuming that the service requirement distribution is regularly varying, it suffices to verify
that S(τ), the sojourn time conditioned on the (residual) service requirement, satisfies As-
sumption 2. Parts (a) and (c) of Assumption 2 are often not hard to verify. We shall use the
following variant of Markov’s inequality to verify part (b):

P{S(τ) > t} ≤ ES(τ)κ − (ES(τ))κ

(t−ES(τ))κ , τ ≥ 0, t > ES(τ), (27)

where κ ≥ 2. In [34] Markov’s inequality itself was used, but for the analysis of the M/G/1
LCFS-NP below, the form of (27) is more convenient. To see that this inequality holds, let
c(y), y ≥ 0 be a convex function with a convex derivative c′(y) and c(0) = c′(0) = 0. If Y is
a non-negative random variable and t ≥ EY ,

c(Y )− c(EY )− c′(EY ) (Y −EY ) ≥ 1{Y >t}c(t−EY ),

where 1{·} denotes the indicator function. Taking expectations with respect to the distribution
of Y , we obtain

Ec(Y )− c(EY ) ≥ P{Y > t}c(t−EY ).
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Choosing c(y) = yκ, with κ ≥ 2, leads to the desired result.

The strength of the method described here is that it does not rely on the availability of
the LST for the sojourn time distribution. In particular, the method’s flexibility was demon-
strated in [32] where it was employed in the analysis of an M/G/1 PS queue with random
service interruptions (for that model even basic performance measures such as mean queue
length are not available). A limitation of the method is that it relies on the fact that an ex-
tremal occurrence of the performance measure of interest (e.g., the sojourn time) is essentially
caused by the occurrence of a single extremal input variable.

(i) The M/G/1 PS queue
Consider again the M/G/1 PS queue described in Section 2. In this section SPS(τ) will
stand for the sojourn time of a customer with service requirement τ ≥ 0, arriving when the
system has reached stationarity. As before, the unconditional sojourn time will be denoted
with SPS , i.e., SPS = SPS(B), where the random variable B stands for the customer’s service
requirement. We first list some known results for the moments of SPS(τ). Then we shall use
these to verify Assumption 2 and subsequently apply Theorem 7.

It is well known [26, 40] that the mean of the conditional sojourn time is proportional to
the service requirement:

ESPS(τ) =
τ

1− ρ
. (28)

The variance of SPS(τ) is given by

VarSPS(τ) =
2

(1− ρ)2

∫ τ

u=0
(τ − u)P{W > u}du, (29)

cf. Yashkov [45]. As before, W is distributed as the stationary waiting time in the M/G/1
queue. When the second moment of the service requirement distribution is finite we have for
k = 2, 3, . . ., cf. [51],

ESPS(τ)k =
(

τ

1− ρ

)k

+
λk(k − 1)EB2

2(1− ρ)k+1
τk−1 + o(τk−1), τ →∞. (30)

In the literature these results have mostly been obtained from expressions for the LST of
SPS(τ). However, (28)–(30) can be obtained directly from a set of differential equations in-
stead of deriving the LST of SPS(τ), see Yashkov [45, Rem. 3] for an outline of how this can
be done for the variance of SPS(τ), and [32, 33] for higher moments. Later in this section we
use similar ideas to derive differential equations for the moments of the conditional sojourn
time in the M/G/1 LCFS-NP.

We shall now provide a new proof of Theorem 2. As before, we assume that B(·) ∈ R−ν .
We further require that ν 6= 2; in [34] it is indicated how this technical assumption can be
overcome. Focusing on the sojourn time of a particular customer, its own service requirement
B will act as the causal variable X, i.e., in the light of Assumption 1 we choose α = ν. We
now verify that Assumption 2 is automatically satisfied. First we note that the monotonicity
of P{SPS(τ) > t} in τ , the last condition in Assumption 2, is easily seen using a sample-
path argument: Comparing the sojourn times of two customers, for the same sequences of
inter-arrival times and service requirements of other customers, it follows immediately that
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the one requiring the smaller amount of service leaves before the one with the larger service
requirement. As a consequence of (28), we also have that Condition (a) of Assumption 2 holds
with g = 1/(1− ρ).

We now focus on Condition (b) and first consider the case that ν > 2, ensuring that
EB2 < ∞. Choose any integer κ > ν and use (30) to conclude that Condition (b) is satisfied
for any δ ∈ (0, 1). Hence, Theorem 7 can be applied.

In the case that 1 < ν < 2, it follows from (29) that VarSPS(τ) = o(τ3−ν+ε) for all ε > 0.
Thus, Assumption 2 is satisfied (with κ = 2 and 0 < δ < ν − 1) and, hence, Theorem 7 can
again be applied. In both cases we conclude that, cf. Theorem 2,

P{SPS >
x

1− ρ
} ∼ P{B > x},

(ii) The M/G/1 LCFS-NP queue
In the LCFS-NP case we focus on the sojourn time, SLNP (τ), of a tagged customer that
enters the system when the remaining service requirement of the customer in service equals
τ . Because of the service discipline, if there are any customers in the queue, these are overtaken
by the new customer and they will have no influence on SLNP (τ), which we may write as

SLNP (τ) = τ +
N(τ)∑
n=1

Pn + B,

where, by convention, we set the empty sum equal to 0. N(τ) denotes the number of customers
that enter the system during the remaining service requirement τ of the customer in service.
Pn, n = 1, 2, . . ., is an i.i.d. sequence having the distribution of the busy period in the M/G/1.
Indeed, all customers that enter during the time τ overtake the tagged customer, and the same
holds for the customers that arrive during their service time, and so on. Finally, B denotes
the tagged customer’s own service requirement. If there is no customer in service upon arrival,
the sojourn time is just equal to the customer’s own service requirement B. Note that the
probability of arriving to a non-empty system is ρ. We thus have for SLNP , the unconditional
sojourn time of the tagged customer,

P{SLNP ≤ t} = (1− ρ)P{B ≤ t}+ ρP{SLNP (Br) ≤ t}, t ≥ 0. (31)

Here Br denotes the (unconditional) residual service requirement of the customer in service,
i.e., Br has distribution Br(x), x ≥ 0, and, hence,

P{SLNP (Br) ≤ t} =
∫ ∞

τ=0
P{SLNP (τ) ≤ t}dBr(τ), t ≥ 0.

We now prove Theorem 4 for non-integer ν > 2 (see Remark 3 below), by showing that if
B(·) ∈ R−ν and, hence, Br(·) ∈ R−α with α := ν − 1, then SLNP (τ) satisfies Assumption 2
and, by Theorem 7,

P{SLNP (Br) >
x

1− ρ
} ∼ P{Br > x}.

Since 1−B(x) = o(1−Br(x)), x →∞, we have, from (31),

P{SLNP >
x

1− ρ
} ∼ ρP{Br > x}, (32)

in accordance with Theorem 4.
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Remark 3. The case 1 < ν < 2 needs special treatment. As we will see below, the approach
aims at verification of Condition (b) of Assumption 2, taking κ equal to the nearest integer
larger than ν − 1, which in this case would be κ = 1. However, for κ < 2 we can not use (27).
It is possible to verify Condition (b) using different probabilistic arguments which, however,
we shall not pursue here.

A different problem occurs when ν is integer-valued. The approach would aim at choosing
κ = ν. This requires that EBν < ∞, which may not be the case. (Recall that in the analysis
of the M/G/1 PS system we could choose κ equal to any integer larger than ν.)

In order to verify the conditions in Assumption 2 we first derive differential equations
for the moments of SLNP (τ). The random variable P shall have the distribution of the busy
period in the M/G/1 queue. We assume that m < ν < m + 1, for some integer m ≥ 2, and
therefore EBm < ∞ and EPm < ∞.

Remark 4. The fact that EPm < ∞ if and only if EBm < ∞ is a consequence of Theorem 3
(since SLPR

d= P ). Note that this result was proven in [30] using Laplace-Transform techniques
(cf. (18)). The same can be achieved using (probabilistic) sample-path arguments [49].

Conditioning on whether or not an arrival occurs during a time interval of length ∆ > 0
we obtain, for k = 1, 2, . . . ,m,

E
[
SLNP (τ + ∆)k

]
= (1− λ∆)E

[
(∆ + SLNP (τ))k

]
+λ∆E

[
(∆ + SLNP (τ) + P )k

]
+ o(∆), ∆ → 0.

Re-arranging terms, dividing by ∆, passing ∆ → 0 and using EP = β/(1− ρ), we obtain

d
dτ

ESLNP (τ)k =
k

1− ρ
ESLNP (τ)k−1 + λ

k−2∑
j=0

(
k
j

)
ESLNP (τ)jEP k−j , (33)

with initial condition ES(0)k = EBk. By solving (33) for k = 1 (setting the empty sum equal
to 0), it can straightforwardly be verified that

ESLNP (τ) = β +
τ

1− ρ
,

which verifies Condition (a) of Assumption 2. Recursively solving (33) for k = 2, 3, . . . ,m,
leads to the general form

ESLNP (τ)k =
(

τ

1− ρ

)k

+ pk−1(τ), (34)

where pk−1(τ) denotes a polynomial in τ of degree k − 1. The coefficients of this polynomial
can be obtained recursively by substitution into (33); in particular, pk−1(0) = EBk. Taking
κ = m we may use (27) and (34) to show that Condition (b) of Assumption 2 is satisfied
(for any 0 < δ < 1). Finally, Condition (c) can again be verified by a sample-path argument
similar to that in the analysis of the M/G/1 PS system.

(iii) The M/G/1 FBPS queue
With the FBPS discipline, the customers which so far have received the least amount of
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service share equally in the total capacity. Using Theorem 7, we shall prove that the sojourn
time tail is just as heavy as the service requirement tail if B(·) ∈ R−ν with 1 < ν < 2. (For
ν ≥ 2 we need to study higher moments of the conditional sojourn time.) SFB(τ) denotes the
sojourn time of a customer with service requirement τ . With a straightforward sample-path
argument it can be shown that SFB(τ) is stochastically non-decreasing.

Assuming B(x) is absolutely continuous, the mean and variance of the sojourn time are
given by:

ESFB(τ) =
τ

1− λh1(τ)
+

λh2(τ)
2(1− λh1(τ))2

, (35)

VarSFB(τ) =
λh3(τ)

3(1− λh1(τ))3
+

λτh2(τ)
(1− λh1(τ))3

+
3(λh2(τ))2

4(1− λh1(τ))4
, (36)

cf. Yashkov [46, Form. (6.2) and (6.3)]. The functions hj(τ), j = 1, 2, 3, are given by

hj(τ) = j

∫ τ

x=0
xj−1 (1−B(x)) dx. (37)

These expressions can again be used [34] to prove that, for all ε > 0,

ESFB(τ) ∼ τ

1− ρ
, VarSFB(τ) = o(τ3−ν+ε), τ →∞.

Consequently, Assumption 2 is implied by Assumption 1 (choosing κ = 2 and 0 < δ < ν − 1)
and we may again apply Theorem 7 to show that P{SFB > x

1−ρ} ∼ P{B > x}, cf. Theorem 5.

(iv) The M/G/1 SRPTF queue
Now we consider an M/G/1 queue in which the total service capacity is always allocated to
the customer with the shortest remaining processing time (Shortest Remaining Processing
Time First). The service of a customer is pre-empted when a new customer arrives with a
service requirement smaller than the remaining service requirement of the customer being
served. The service of the customer that is pre-empted is resumed as soon as there are no
other customers with a smaller amount of work in the system.

As in the M/G/1 FBPS queue, we restrict ourselves to the case B(·) ∈ R−ν with 1 < ν <
2. We further assume that B(x) is a continuous function, hence, with probability 1, no two
customers in the system have the same remaining service requirement, see [41].

The sojourn time can be decomposed into two different periods: The waiting time (the
time until the customer is first taken into service) and the residence time (the remainder of
the sojourn time). The residence time may contain service pre-emption periods caused by
customers with a smaller service requirement. For a customer with service requirement τ , we
denote the waiting time by W (τ) and the residence time by R(τ). Thus, the sojourn time
is given by SSR(τ) = W (τ) + R(τ). We define ρ(τ) as the traffic load of customers with an
amount of work less than or equal to τ ,

ρ(τ) := λ

∫ τ

t=0
tdB(t). (38)

The first two moments of W (τ) are given by:

EW (τ) = λ

∫ τ
t=0 t2dB(t) + τ2 (1−B(τ))

2 (1− ρ(τ))2
, (39)
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EW (τ)2 = λ

∫ τ
t=0 t3dB(t) + τ3 (1−B(τ))

3 (1− ρ(τ))3

+λ2

∫ τ

t=0
t2dB(t)

∫ τ
t=0 t2dB(t) + τ2 (1−B(τ))

(1− ρ(τ))4
, (40)

and the mean and variance of R(τ) by

ER(τ) =
∫ τ

t=0

1
1− ρ(t)

dt, (41)

VarR(τ) = λ

∫ τ

t=0

∫ t
u=0 u2dB(u)

(1− ρ(t))3
dt, (42)

cf. [41]. These expressions may again be used [34] to verify that, when 1 < ν < 2, Assumption 1
implies Assumption 2 and, hence, P{SSR > x

1−ρ} ∼ P{B > x}, cf. Theorem 6.

5 Sample-Path Techniques

In the present section we describe how sample-path techniques may be used to determine the
tail asymptotics of the delay distribution in the M/G/1 queue for various disciplines. By defi-
nition, the tail distribution of a random variable reflects the occurrence of rare events. Large-
deviations theory suggests that, given that a rare event occurs, it happens with overwhelming
probability in the most likely way. In case light-tailed processes are involved, the most likely
path typically consists of an extremely long sequence of slightly unusual events, which con-
spire to make the rare event under consideration occur, see for instance Anantharam [2]. In
contrast, for heavy-tailed characteristics, the most likely scenario usually involves just a single
catastrophic event (or in general, a ‘minimal combination’ of disastrous events that is required
to cause the event under consideration to happen). Typically, the scenario entails the arrival
of a customer with an exceedingly large service requirement.

The fact that the most likely scenario usually involves just a single exceptional event,
provides a heuristic method for obtaining the tail asymptotics by simply computing the prob-
ability of that scenario occurring. By way of illustration, we now sketch a heuristic derivation
of the tail asymptotics of the workload V in the M/G/1 queue as described in Section 2.

Let us focus on the workload in the system at time t = 0. The assumption is that a
large workload level is most likely due to the prior arrival of a customer with a large service
requirement B, let us say at time t = −y. (Of course, this assumption is nothing but an
educated guess at this stage. However, it turns out that this supposition leads to the correct
result, and can actually be strengthened into a rigorous proof, as will be illustrated below.)
Note that from time t = −y onward, the workload decreases in a roughly linear fashion at
rate 1 − ρ. So in order for the workload at time t = 0 to exceed the level x, the service
requirement B must be larger than x+y(1−ρ). Observing that customers arrive as a Poisson
process of rate λ, integrating w.r.t. y, and making the substitution z = x+y(1−ρ), we obtain,
for large x,

P{V > x} ≈
∞∫

y=0

P{B > x+y(1−ρ)}λdy =
λ

1− ρ

∞∫
z=x

P{B > z}dz =
ρ

1− ρ
P{Br > x}. (43)
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With some additional effort, the heuristic derivation can often be strengthened into a rigorous
proof. The typical approach consists of deriving lower and upper bounds which asymptotically
coincide. It is often relatively straightforward to convert the heuristic arguments into a strict
lower bound by calculating the probability of the most likely scenario occurring. The con-
struction of a suitable upper bound tends to be more challenging. The upper bound usually
consists of a dominant term which corresponds to the probability of the most likely scenario.
The main difficulty lies in showing that this scenario is indeed the only plausible one, in the
sense that all other possible sample paths do not significantly contribute. This is done by
partitioning the ‘irrelevant’ sample paths into a few sets which must then all be shown to
have an asymptotically negligible probability.

Although the above approach is fairly typical, it is hard to describe a universal method
that can be mechanically executed. The identification of the most likely scenario is problem-
specific and requires some sort of an educated guess. Categorizing the ‘irrelevant’ sample
paths is not an automatic task either. The next lemma however characterizes the structure
that typically emerges.

Lemma 2. Suppose that for any δ > 0, ε > 0,

P{X > x} ≥ F (−δ)P{Y > G(ε)x}
K∏

i=1

P{D−δ,ε
i (x)}, (44)

P{X > x} ≤ F (δ)P{Y > G(−ε)x}+
L∑

j=1

P{Eδ,−ε
j (x)}, (45)

P{Y > x} is regularly varying of index −ν, lim
δ→0

F (δ) = F , lim
ε→0

G(ε) = G, P{D−δ,ε
i (x)} → 1

as x →∞, and P{Eδ,−ε
j (x)} = o(x−ν) as x →∞. Then

P{X > x} ∼ FP{Y > Gx}.

Proof. The proof is straightforward. Relying on the lower bound (44) and the fact that
P{D−δ,ε

i (x)} → 1 as x →∞, we obtain

lim inf
x→∞

P{X > x}
FP{Y > Gx}

≥ F (−δ)
F

lim inf
x→∞

P{Y > G(ε)x}
P{Y > Gx}

.

Letting δ, ε ↓ 0, and recalling that P{Y > x} is regularly varying, we find

lim inf
x→∞

P{X > x}
FP{Y > Gx}

≥ 1.

Similarly, using the upper bound (45), the fact that P{Eδ,−ε
j (x)} = o(x−ν) as x → ∞, and

observing that P{Y > x} is regularly varying of index −ν, we deduce

lim sup
x→∞

P{X > x}
FP{Y > Gx}

≤ F (δ)
F

lim inf
x→∞

P{Y > G(−ε)x}
P{Y > Gx}

.

Letting δ, ε ↓ 0, we conclude

lim sup
x→∞

P{X > x}
FP{Y > Gx}

≤ 1.

ut
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It is worth observing that the above proof technique in fact extends to the class of inter-
mediately regularly varying distributions.

As a ‘toy example’, we now sketch how the above lemma may be used to strengthen
the heuristic derivation of (43) into a rigorous proof. The approach is similar as outlined in
Chapter 2 of Zwart [48]. We use the time-reversed sample-path representation

V
d= sup

t≥0
{A(0, t)− t} (46)

with A(0, t) denoting the amount of work arriving in the time interval (0, t).
We first construct a lower bound of the form (44). Define U c := sup

t≥0
{ct − A(0, t)}, with

c < ρ. For any δ > 0, ε > 0,

P{V > x} ≥
∞∫

y=0

P{A(0, y) + B − y > x}λdy

≥ λ

∞∫
y=0

P{A(0, y)− y(ρ− δ) ≥ −εx}P{B > x(1 + ε) + y(1− ρ + δ)}dy

≥ P{ inf
u≥0
{A(0, u)− u(ρ− δ)} ≥ −εx}λ

∞∫
y=0

P{B > x(1 + ε) + y(1− ρ + δ)}dy

=
ρ

1− ρ + δ
P{Br > x(1 + ε)}P{Uρ−δ ≤ εx}.

Note that P{Uρ−δ ≤ εx} → 1 as x →∞ because of the law of large numbers.
We now proceed to derive an upper bound of the form (45). For any interval I ⊆ R+,

define V (I) := sup
t∈I
{A(0, t)− t}. For any y ≥ 0, let Ny(I) be the number of customers arriving

during the time interval I whose service requirement exceeds the value y. Then, for all M ≥ 0,

P{V > x} ≤ P{V ([0,Mx]) > x}+ P{V ((Mx,∞)) > x}
= P{V ([0,Mx]) > x;Nεx([0,Mx]) = 0}+ P{V ([0,Mx]) > x;Nεx([0,Mx]) = 1}
+ P{V ([0,Mx]) > x;Nεx([0,Mx]) ≥ 2}+ P{V ((Mx,∞)) > x}.

The second term corresponds to the only plausible scenario and is dominant. As in [50], it
may be shown that for any δ > 0, ε > 0, as x →∞,

P{V ([0,Mx]) > x;Nεx([0,Mx]) = 1}

≤
∫ ∞

y=0
P{B > x(1− ε) + y(1− ρ− δ)}λdy + o(x1−ν)

=
ρ

1− ρ− δ
P{Br > x(1− ε)}+ o(x1−ν).

Applying Lemma 2 completes the proof, once we have shown that each of the other three
terms can asymptotically be neglected.

For the first term, one may exploit a powerful lemma of Resnick & Samorodnitsky [39] to
show that for any µ > 0 there exists an ε > 0 such that

P{V ([0,Mx]) > x;Nεx([0,Mx]) = 0} = o(x−µ), x →∞.
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The idea is that when there are no large service requirements, the process {A(0, t)− t} cannot
significantly deviate from its normal drift over long intervals of the order x, so that the
workload cannot reach a large level.

In order to control the third term, it may be checked using elementary arguments that
P{Nεx([0,Mx]) ≥ 2} = o(x1−ν) as x → ∞. Note that the probability of two large service
requirements occurring in a time interval of order x asymptotically vanishes compared to that
of just one large service requirement.

Finally, in order to restrain the last term, it may be shown using results from Mikosch [31]
that lim

M→∞
lim sup

x→∞
P{V ((Mx,∞)) > x}/P{V > x} = 0. The idea is that a large workload

level of order x must build up ‘in linear time’, since otherwise the process {A(0, t)− t} must
deviate from its normal drift for a prohibitively long period of time.

The above proof exploits and confirms the large-deviations notion that a large workload
level is typically due to a single large service requirement by implicitly characterizing the
most likely sample path. We refer to Baccelli and Foss [4] for yet stronger characterizations.

It is worth emphasizing that we used the above proof technique for illustration purposes
only. The machinery is unnecessarily heavy for determining the workload asymptotics in the
ordinary M/G/1 queue, given that a convenient expression for the LST is available, which
can be explicitly inverted as shown in Section 3. The true merits of the methodology become
manifest in more complicated systems, such as fluid queues or GPS models, where typically
no useful expression for the LST is available [9, 12, 50].

5.1 The Single-Class Case

We now turn the attention to the tail asymptotics of the delay distribution in the M/G/1
queue. In contrast to the workload distribution, the delay distribution does strongly depend
on the service discipline that is used.

(i) The M/G/1 FCFS queue
For FCFS, the waiting time is simply equal to the workload at the time of arrival. Because
of the PASTA property, it then follows from (43) that

P{WFCFS > x} ∼ ρ

1− ρ
P{Br > x},

which agrees with Theorem 1.

(ii) The M/G/1 LCFS-NP queue
For LCFS Non-Preemptive priority, the waiting time is equal to 0 with probability 1− ρ, and
with probability ρ it is equal to a busy period starting with a residual service requirement,
which gives

P{WLNP > x} ∼ ρP{Br > x(1− ρ)}, (47)

as asserted in Theorem 4.
A heuristic derivation of the above formula proceeds as follows. Consider a tagged customer

arriving at time t = 0. The premise is that a long waiting time is most likely due to a large
service requirement B of the customer in service, if any. The waiting time W of the tagged
customer then consists of the remaining service requirement, B− y, plus the amount of work
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arriving during its own waiting time, which is approximately ρW , so that W ≈ B − y + ρW ,
or equivalently, W ≈ (B − y)/(1− ρ). So in order for the waiting time to exceed the value x,
the service requirement B must be larger than y + x(1 − ρ). Thus, observing that arrivals
occur as a Poisson process of rate λ, and integrating w.r.t. y, we find, for large x,

P{WLNP > x} ≈
∞∫

y=0

P{B > x(1− ρ) + y}λdy = ρP{Br > x(1− ρ)},

which is in agreement with (47). The above heuristic derivation may be translated into a
rigorous proof in a similar fashion as indicated for the workload asymptotics.

(iii) The M/G/1 LCFS-PR queue
For LCFS Preemptive Resume, the sojourn time is simply equal to the busy period, yielding

P{SLPR > x} ∼ 1
1− ρ

P{B > x(1− ρ)},

as stated in Theorem 3. A sample-path proof of the tail asymptotics of the busy-period dis-
tribution may be found in Zwart [49].

(iv) The M/G/1 PS queue
We now turn to the tail asymptotics of the sojourn time for the Processor-Sharing disci-
pline. Consider a tagged customer arriving at time t = 0. The sojourn time S of the tagged
customer consists of its own service requirement B plus the amount of service provided to
other customers during its sojourn time. In case of a long sojourn time, the amount of service
received by other customers will be approximately ρS, so that S ≈ B + ρS, or equivalently,
S ≈ B/(1− ρ). The assumption is thus that a long sojourn time is most likely due to a large
service requirement of the tagged customer itself, suggesting that, for large x,

P{SPS > x} ∼ P{B > x(1− ρ)}, (48)

which corroborates with Theorem 2.
We now show how the above rough derivation may be used as the basis for a rigorous

proof of (48) using lower and upper bounds along the lines of Lemma 2. The proof is similar
to that in Jelenković & Momcilović [24]. Let B0 and S0 be the service requirement and the
sojourn time, respectively, of a tagged customer arriving at time t = 0. Let Bi and Ti denote
the service requirement and the arrival time of the i-th customer arriving after time t = 0. Let
L(0) be the number of customers in the system just before time t = 0, and let Br

l denote the
remaining service requirement of the l-th customer. We use the sample-path representation

S0 = B0 +
L(0)∑
l=1

min{Br
l , B0}+

N((0,S0))∑
i=1

min{Bi, R0(Ti)}, (49)

with N((0, t)) denoting the number of customers arriving during the time interval (0, t) and
R0(t) the remaining service requirement of the tagged customer at time t, see for instance
Wolff [44].

The next lemma presents a lower bound for the sojourn time of the tagged customer.

Denote Z(t) :=
N((0,t))∑

i=1
max{Bi −R0(Ti), 0}.
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Lemma 3. For any δ > 0,

S0(1− ρ + δ) ≥ B0 − Uρ−δ − Z(S0).

Proof. Using the representation (49), we have

S0(1− ρ + δ) = B0 +
L(0)∑
l=1

min{Br
l , B0}+

N((0,S0))∑
i=1

min{Bi, R0(Ti)} − (ρ− δ)S0

≥ B0 +
N((0,S0))∑

i=1

Bi − (ρ− δ)S0 +
N((0,S0))∑

i=1

min{Bi, R0(Ti)} −
N((0,S0))∑

i=1

Bi

= B0 + A(0, S0)− (ρ− δ)S0 +
N((0,S0))∑

i=1

min{R0(Ti)−Bi, 0}

≥ B0 + inf
t≥0
{A(0, t)− (ρ− δ)t} −

N((0,S0))∑
i=1

max{Bi −R0(Ti), 0}

= B0 − Uρ−δ − Z(S0).

ut

The next lemma provides an upper bound for the sojourn time of the tagged customer.
For any y > 0, let Ay(0, t) be a version of the process A(0, t) where all service requirements of
arriving customers are truncated at the level y. For any c > ρ, define V c

y := sup
t≥0
{Ay(0, t)−ct}.

Lemma 4. For any δ > 0,
(1− ρ− δ)S0 ≤ B̂0 + V ρ+δ

B0
,

with B̂0 := B0 +
L(0)∑
l=1

min{Br
l , B0}.

Proof. Using the representation (49),

S0(1− ρ− δ) = B0 +
L(0)∑
l=1

min{Br
l , B0}+

N((0,S0))∑
i=1

min{Bi, R0(Ti)} − (ρ + δ)S0

≤ B̂0 +
N((0,S0))∑

i=1

min{Bi, B0} − (ρ + δ)S0

= B̂0 + AB0(0, S0)− (ρ + δ)S0

≤ B̂0 + sup
t≥0
{AB0(0, t)− (ρ + δ)t}

= B̂0 + V ρ+δ
B0

.

ut

The above two lemmas provide the necessary ingredients for the proof of (48) along the
lines of Lemma 2.
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Proof of Theorem 2 (Lower bound) Using Lemma 3, noting that S0 ≥ B0, we obtain

P{SPS > x} ≥ P{B0 − Uρ−δ − Z(S0) > (1− ρ + δ)x}
≥ P{B0 > (1− ρ + δ + 2ε)x}P{Uρ−δ ≤ εx} inf

y≥(1−ρ+δ+2ε)x
P{Z(y) > εx}.

Because of the law of large numbers, P{Uρ−δ ≤ εx} → 1 as x → ∞. As observed in [24],
inf

y≥(1−ρ+δ+2ε)x
P{Z(y) > εx} → 1 as x →∞.

(Upper bound) Using Lemma 4, we find

P{SPS > x} ≤ P{B̂0 + V ρ+δ
B0

> (1− ρ− δ)x}

≤ P{B̂0 > (1− ρ− δ − ε)x}+ P{V ρ+δ
B0

> εx}.

As demonstrated in [24], P{B0 > x} ∼ P{B̂0 > x} and P{V ρ+δ
B0

> εx} = o(x1−ν) as x →∞.
Invoking Lemma 2 then completes the proof. ut

5.2 The Multi-Class Case

We finally consider the tail asymptotics of the waiting time in the multi-class M/G/1 queue
with priorities as described in Subsection 3.2. We focus on the case of a Non-Preemptive
priority discipline. As mentioned in Subsection 3.2, the tail asymptotics in the case of a
Preemptive-Resume policy immediately follow from the results for a high-priority class in
isolation and a low-priority class in the Non-Preemptive priority scenario. We assume that
the service requirement distribution of at least one of the classes has a regularly varying tail.
Let M be the index set of the classes with the ‘heaviest’ tail.

Consider a tagged class-k customer arriving at time t = 0. The premise is that a long
waiting time is most likely due to the prior arrival of a customer with a large service require-
ment B, let us say at time t = −y, which may belong to any of the classes m ∈ M. Of
course, how likely it is for the culprit customer to belong to a given class m ∈ M depends
on the arrival rates and mean service requirements of the various classes. Due to the Non-
Preemptive priority policy, the identity of the culprit customer is not of any relevance for
the impact on the tagged customer. However, the effect does strongly depend on the iden-

tity of the tagged customer itself. For compactness, denote σk =
k∑

l=1

ρl. Note that from time

t = −y onward, the amount of work in the system that has precedence over the service of
the tagged customer decreases in a roughly linear fashion at rate 1 − σk. In addition, the
tagged customer must wait for the amount of work arriving during its waiting time Wk from
higher-priority classes at rate σk−1. Thus, Wk ≈ B − y(1 − σk) + Wkσk−1, or equivalently,
Wk ≈ (B − y(1− σk))/(1− σk−1). So in order for the waiting time of the tagged customer to
exceed the value x, the service requirement B must be larger than x(1 − σk−1) + y(1 − σk).
Observing that class-m customers arrive as a Poisson process of rate λm, integrating w.r.t. y,
we obtain, for large x,

P{Wk > x} ≈
∑

m∈M

∞∫
y=0

P{Bm > x(1− σk−1) + y(1− σk)}λmdy

=
∑

m∈M

ρm

1− σk
P{Br

m > x(1− σk−1)}.
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