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Abstract

In this note we explore a useful equivalence relation for the delay distribution in the
G/M/1 queue under two different service disciplines: (i) PS (Processor Sharing); and
(ii) ROS (Random Order of Service). We provide a direct probabilistic argument to
show that the sojourn time under PS is equal (in distribution) to the waiting time
under ROS of a customer arriving to a non-empty system. We thus conclude that
the sojourn time distribution for PS is related to the waiting-time distribution for
ROS through a simple multiplicative factor, which corresponds to the probability of a
non-empty system at an arrival instant. We verify that previously derived expressions
for the sojourn time distribution in the M/M/1 PS queue and the waiting-time distri-
bution in the M/M/1 ROS queue are indeed identical, up to a multiplicative constant.
The probabilistic nature of the argument enables us to extend the equivalence result to
more general models, such as the M/M/1/K queue and -/M/1 nodes in product-form
networks.

1 Introduction

In this note we study a useful equivalence result for the delay distribution in the G/M/1
queue, which is one of the most celebrated models in queueing theory. The G/M/1 model
may be described as follows. Customers arrive to a single server according to some renewal
process of rate A, and require independent exponentially distributed amounts of service
with parameter . For stability, the offered load should not exceed the service capacity,
which may be expressed as p < 1, with p := A\/u denoting the traffic intensity.

It is well-known that the distribution of the queue length N at arrival epochs (i.e. the
total number of customers present, either waiting or being served) has a simple geometric
form [6, 11],

P{N=n}=(1-0)o", n=0,1,2,.... (1)

Here z = o is the unique, real zero inside the unit circle of the function z — a(u(l — 2)),
with «a(-) representing the Laplace-Stieltjes Transform (LST) of the inter-arrival time



distribution. Note that o is the probability that the system is non-empty at an arrival
instant. In case of a Poisson arrival process, we have a(z) = A\/(\A + z), so that o = p.
The geometric queue length distribution in (1) holds irrespective of the service discipline, as
long as it is restricted to operate obliviously of the actual service times, see for instance [21].
In contrast, the distribution of the customer delay (waiting time or sojourn time) crucially
depends on the service discipline that is used. For the FCFS (First-Come First-Served)
discipline, it is well-known [6] that the sojourn time has an exponential distribution,

P{V >t} =e #1=9  ¢>0.

If the arrival process is Poisson so that ¢ = p, then the above formula takes the form
P{V >t} = e~ (W01,

Besides FCFS, a second major service mechanism is the Processor Sharing (PS) discipline.
In a PS queue, the service rate is equally shared among all customers present. Thus, when
there are n > 1 customers present, each customer receives service at rate 1/n. Originally,
the PS paradigm emerged as an idealization of round-robin scheduling mechanisms in
time-shared computer systems [13, 14]. In recent years, the PS discipline has attracted
renewed interest as a convenient modeling abstraction for bandwidth sharing protocols in
high-speed networks [15, 20]. The performance of such computer-communication systems
as perceived by the users is largely determined by the response time of tasks, or the
transfer time of documents. Therefore, the sojourn time distribution in PS queues has
been extensively investigated.

Initiated by Kleinrock’s analysis of the M/M/1 PS queue [13, 14], many studies in the
literature have focused on the analysis of the sojourn time conditioned on the service re-
quirement. Extensions of such an analysis to generally distributed service requirements,
multiple servers, and more general sharing disciplines were pursued in [5, 24, 25]. How-
ever, determining the sojourn time distribution in PS queues turned out to be a rather
challenging problem.

For the M/M/1 PS queue, Coffman et al. [4] first derived a closed-form expression for
the LST of the sojourn time distribution conditioned on the service requirement and the
number of customers seen upon arrival. Sengupta and Jagerman [26] found an alternative
expression for the LST of the distribution of the sojourn time conditioned only on the
number of customers seen upon arrival. Building on [4], Morrison [18] established an
expression for the distribution function of the sojourn time. For results on the sojourn
time distribution in M/G/1 PS queues, we refer to the survey papers [28, 29).

The sojourn time distribution in G/M/1 PS queues has received less attention in the
literature. Ramaswami [23] characterized the LST of the sojourn time distribution by a
differential equation and determined the first two moments of the distribution. Jager-
man and Sengupta [9] gave explicit expressions for the LST, and derived a heavy-traffic
limit distribution under proper scaling, showing that, in the limit, the sojourn time is dis-
tributed as the product of two independent exponentially distributed random variables.
The sojourn time in the ‘repair’ node (with PS discipline) of the machine-repairman model
was examined by Mitra [16]. Extensions to multiple customer classes, both in the moder-
ate and in the heavy-traffic regime, were considered by Mitra and Morrison [17, 19].



Comparing the results of Ramaswami [23] with those of Cohen [6, p. 444], Cohen [7]
observed a simple relationship in the G/M/1 queue between the sojourn time distribution
for PS and the waiting-time distribution for Random Order of Service (ROS). As the name
suggests, in a ROS queue, customers are served in random order: whenever a service is
completed, the next customer to be served is selected uniformly at random from the
customers present, if any. An arriving customer which finds the server idle, is taken into
service immediately. The ROS discipline provides a reasonable modeling assumption for,
e.g., contention phenomena in distributed multi-access systems, see [3], where the results
of the present paper are used.

Specifically, Cohen [7] proved that the sojourn time distribution in a G/M/1 queue for PS
is related to the waiting-time distribution for ROS through a simple multiplicative factor:

1
B{Vps >t} = ~P{Wyos >}, £20, 2)

with, as before, 0 := P{N > 0} = P{W,,s > 0} representing the probability that the
system is non-empty at an arrival epoch. Note that the proportionality relation (2) may
equivalently be expressed as follows:

P{V,s >t} = P{W, o5 > t| W, > 0}, t>0.

Cohen’s proof of (2) relies on the fact that the transform of the delay distribution satisfies
in both cases the same differential equation, which possesses a unique solution. In the
present paper, we give a direct probabilistic proof of relation (2). The probabilistic nature
of our proof allows us to extend the relationship to more general settings, including the
above-mentioned machine-repairman model.

The remainder of the paper is organized as follows. In Section 2 we give a probabilistic
proof of the equivalence relation (2). For the case of a Poisson arrival process, we verify
in Section 3 that, indeed, the expressions derived by Flatto [8] for the waiting time dis-
tribution under ROS and by Morrison [18] for the sojourn time distribution under PS are
identical, up to a multiplicative factor p. In Section 4 we discuss some straightforward
extensions of the equivalence result, paving the way for the generalization to product-form
networks in Section 5.

2 Probabilistic coupling

In contrast with the approach of Cohen [7], our proof of (2) relies on a direct probabilistic
coupling argument. The key insight is that whenever a service completion occurs in the
PS system, each of the customers present is equally likely to be the one that departs due
to the memorylessness property of the exponential distribution. In that respect, the pool
of customers competing for service under PS behaves exactly as the pool of customers
waiting for service under ROS.

In order to formalize the above insight, let us focus on two tagged customers, X and Y.
Customer X arrives in a PS system to find n customers present, and joins the pool of
customers being served, which then consists of n + 1 customers. Customer Y arrives in a
ROS system to find n + 1 customers present, one of which is being served, and thus joins
the pool of waiting customers, which then contains n + 1 customers.



We now construct sample paths for the subsequent evolution of the two systems on a joint
probability space such that: (i) customer X leaves the PS system at the same time as
customer Y leaves the waiting pool to be taken into service in the ROS system; (ii) viewed
in isolation, the evolution of each of the two systems follows the correct probabilistic laws.
This is accomplished by coupling each customer in the PS system with exactly one cus-
tomer in the waiting pool of the ROS system ensuring that, in particular, customers X
and Y are coupled. Additionally, we couple the sequences of arrivals and service comple-
tions in the two systems as follows. Let Ay, As, ... be a sequence of i.i.d. random variables
drawn from the distribution of the inter-arrival time. At the time instants determined by
the sequence Ay, a customer arrives to each of the two systems. This pair of customers are
immediately coupled. Let D1, Do, ... be a sequence of i.i.d. random variables drawn from
the exponential distribution with parameter . At inter-departure times governed by the
sequence Dy, a pair of customers are selected uniformly at random from all pairs present
(i.e., one customer from the service pool in the PS system and the customer coupled to
it in the waiting pool of the ROS system are selected). In the PS system, the customer
that belongs to the selected pair departs from the system, whereas in the ROS system, the
selected customer replaces the customer in service, which leaves the system. The above
process is continued until the pair of customers X and Y are selected.

Thus, by construction, customer X departs from the PS system at the same time as
customer Y starts service in the ROS system. In addition, it is easily verified that the
evolution follows the correct probabilistic laws of each of the two systems in isolation. In
fact, the above sample-path construction is a direct translation of the operational rules of
the ROS system. For the PS system, the remaining service requirements of all customers
are independent and exponentially distributed due to the memoryless property of the
exponential distribution. As a result, given a service completion, all of the customers
present are equally likely to be the one that leaves the system.

In conclusion, if we denote the sojourn time of a customer that arrives to a PS queue with
n other customers competing for service by V,4(n), and the waiting time of a customer
that arrives to a ROS queue with n other customers waiting for service and one additional
customer in service by W,,s(n), then the above sample-path construction proves that
Vps(n) and W,s(n) are equal in distribution:

Vps(n) g Wros(n); n=0,1,2,.... (3)

Let us now turn to V,,, the (unconditional) sojourn time in the PS queue, and W, the
(unconditional) waiting time in the ROS queue. For the PS queue we have, conditioning
on the number of customers present at an arrival epoch,

P{V,, >t} = iP{N = n}P{Vp, > t|N=n} = iu — 0)0"P{Vps(n) > t}. (4)
n=0 n=0

For the ROS queue, observing that the waiting time equals 0 exactly when there are no
customers present at an arrival instant,

P{Wyos >t} = > P{N=n+1}P{Wy, >t|N=n+1}

n=0
= o i(l — 0)o"P{W,s(n) > t}. (5)

n=0
The proportionality result (2) then follows from (3)—(5).



Remark 2.1 In the PS literature, many studies have focused on the sojourn time condi-
tioned on the service requirement of the customer. In fact, one of the attractive features
of the PS discipline is that customers with smaller service requirements tend to experience
smaller delays (the sojourn time is in fact stochastically increasing in the service require-
ment of a customer). It is worth emphasizing therefore that the equivalence result does
not extend to the delays when conditioned on the service requirement. Observe that for the
ROS discipline, the waiting time is independent of the service requirement.

3 Special case: the M/M/1 queue

For the case of a Poisson arrival process, expressions for the distributions of W,.,s; and
Vs have been derived by Flatto [8] and Morrison [18], respectively.

In [8], time is normalized such that arrivals occur at unit rate, i.e., A = 1. Thus, For-
mula (1.1) of [8] gives P{W,,s > t/\}, or, equivalently:

P{W,0s > t} = 2(1[)_’)) / ¢

¢=0

(28(¢)—@)cotp  o—[1—(2/1/p) cos p+1/p] At
1T [ (@) cond T 1/

sin ¢d ¢, (6)

where
sin ¢
cos g —\/p

On the other hand, in [18], time is normalized such that the mean service requirement
equals unity, i.e., u = 1. For the generic case, Formula (2.20) of [18] takes the form:

£(¢) = arctan( ), 0<¢&(g) <.

BV /7r 679[2\/57(1+p) cos@]/[(lfp) sin9]7(17p)2,ut/(1+p72\/ﬁcos 0)
S >ty =
{ P } 1—p 9—0 14+ e—7r[2\/,5—(1+p) cos 0]/[(1—/}) sin 9]

sin 0d6. (7)

In the Appendix, we use the above integral expressions to verify the equivalence relation
P{W,os >t} = pP{V,s > t}, t>0. (8)

Via the proportionality relation (8), all results for the M/M/1 PS queue in [18] carry
over to the M/M/1 ROS queue, and vice versa. In particular, Flatto [8] analyzes the
asymptotic tail behavior of the waiting-time distribution in the M/M/1 ROS queue,

P{W o5 > t} ~ k(M) "% exp(—nAt — v(At)'/3), (9)

where

92/33-1/2,5/6 17/12 L+p

1+
(T Vo),

N

K exp(

n = (1/yp—17,

T 3@)2/3[)_1/6-

Through relation (8), the above results directly yield the asymptotic tail behavior of the
sojourn time distribution in the M/M/1 PS queue.



4 Model extensions

The probabilistic nature of the proof in Section 2 allows for various model extensions. In
this section we describe how the equivalence result may be extended to two somewhat
related models: the M/M/1/K queue and the machine-repairman model.

M/M/1/K queue
Consider an M/M/1/K queue with arrival rate A and service rate p. Arriving customers
that find the maximum number of K customers present, are blocked and lost. It is well-
known that the queue length N at arrival epochs then retains a (truncated) geometric
form,
K_ . y_ 1=pp" _

P{N —n}—m, TL—O,I,...,K,
with p := A/u denoting the traffic intensity as before. Obviously, N* has the same
distribution for both service disciplines PS and ROS. For the queue length as observed by
arrivals that are not blocked (denoted by N¥) we have, for n =0,1,..., K — 1,

P{NK =n} =P{N¥ = n|NF < K — 1} = P{NF"1 =} (10)

As we will show, the proportionality relation between the sojourn time distribution for
PS and the waiting-time distribution for ROS is preserved in the presence of a finite
buffer. Now, however, the sojourn time in a PS system of capacity K is related to the
waiting time in a ROS system of capacity K + 1. Both the sojourn time in the PS system
and the waiting time in the ROS system only concern customers that are not blocked
upon arrival. Specifically, let Vg(n) be the sojourn time of a customer which arrives
to find n < K — 1 customers present in a PS system of capacity K. Let WX+!(n) be
the waiting time of a customer in a ROS system of capacity K 4+ 1 which arrives to find
n < K — 1 customers waiting plus one additional customer in service. Using similar

probabilistic coupling techniques as in Section 2, it may be concluded that

VEm) £ WES (n),  n=012... K1 (11)
We have, for the PS queue,
E-1
P{VE >t} = > P{NF =n}P{VE(n) > t}, (12)
n=0
and, for the ROS queue,
E-1
P{W/S >t = Y PN =+ 1IP{W/T (n) > t}. (13)
n=0
Combining (10)—(13), we obtain
1
P{VE >t} = —P{WEH! > ¢ t>0
{ ps > } O_(K) { r0os > }7 — Y
where
K41 1—p¥



is the probability that a non-blocked customer in the M/M/1/K +1 ROS queue must wait
before entering service.

Machine-repairman model

The machine-repairman model consists of a single repairman responsible for maintaining
a pool of K machines which experience random failures according to identical but in-
dependent renewal processes of rate A\. Repair times are exponentially distributed with
parameter p. For notational convenience, define v := p/\. It is well-known that the queue
length at the repair node at arrival epochs has the form

VKfnfl

(K —n—1)!
K—1k ’

& M

P{NK =n} =

The proportionality relation between the sojourn time distribution for PS and the waiting-
time distribution for ROS extends to the repair node in the above model as well. Again,
however, the sojourn time in a PS system with population size K is related to the waiting
time in a ROS system with population size K + 1. Specifically, let V[[,g (n) be the sojourn
time of a customer which arrives to find n < K —1 customers present at the repair node in
a PS system with population size K. Let WX+ (n) be the waiting time of a customer in a
ROS system with population size K + 1 which arrives to find n < K — 1 customers waiting
at the repair node plus one additional customer in service. Mimicking the probabilistic
coupling arguments of Section 2, it may be deduced that
VEm) 2 WEH (),  n=0,1,2,...,K -1,

708

which after similar manipulations as before yields

1
P{V] >t} = m[@{wfgjl >t}  t>0, (14)

with

=
Ey

-1

x|

0

o(K) = P{Nf+ > ) = 220

M=
?r‘t

!

k=0

If the renewal processes governing the failures are non-Poisson, then the above proof
does not directly apply. However, the model may still be viewed as a closed queueing
network consisting of two queues: a single-server queue representing the repairman, and
an infinite-server queue modeling the operational machines. In the next section, we extend
the proportionality result to a class of product-form networks which includes the above
model as a special case, thus generalizing (14) to non-Poisson renewal processes.



5 Product-form networks

In this section we indicate how the equivalence result may be extended to -/M/1 nodes in
product-form networks. We adopt the setting described by Baskett et al. [2], which allows
for nodes with FCFS, PS, ample service, and LCFS (Last-Come First-Served). For FCFS
nodes, the results are restricted to a single class of customers at that node and exponen-
tially distributed service requirements (but service rates may be state-dependent). All
three other service disciplines allow for service requirements with phase-type distributions
(in fact, general distributions [1, 10]). This only highlights the most important elements;
readers are referred to [2] for more details.

Note that this setting can be extended, allowing the FCFS nodes to be replaced with
any non-preemptive service discipline operating obliviously of the service requirements,
for instance ROS. The queue length process obeys the same probabilistic law for any
such discipline. The only difference is that customers might overtake (in various ways)
within the node, but, all of them being of the same type, this does not alter the evolution
of the entire network in terms of the number of customers of each type at the various nodes.

Consider a network as in [2] with one of the FCFS nodes with exponential services, let’s
say node 0, replaced by a ROS node. We call this the “ROS network”. The service rate at
node 0 is denoted by p. (In [2] the service rate at FCFS nodes may depend on the number
of customers at that node, but this is not incorporated in the main result. Although
some forms of state-dependent service rates could be included in the analysis, we shall
not do so.) We impose that all customers that can visit the ROS node are of the same
class, i.e., they all follow the same route through the network and share the same service
distributions at all nodes. If there are external arrivals to this route, we assume that they
occur according to a Poisson process, independent of the state of the network (this can be
generalized too). The rate at which external arrivals occur at other routes may however
depend on the number of customers traveling through the particular route. If the route
through node 0 is closed (i.e., customers on this route never leave the system), we denote
the number of customers on this route by K + 1. For notational convenience we shall
write K = oo if the route is open. Note however that, in the latter case, the number of
customers actually present on the route may vary between zero and infinity, whereas if
K < o0, this number always equals K + 1. We now construct a “PS network” from the
ROS network, changing the service discipline at node 0 from ROS to PS and, if K < oo,
reducing the number of customers on this route in the PS network by one.

Focus on a particular configuration of customers of all types in the PS network (i.e., fo-
cus on a particular state of the PS network) with n > 0 customers at node 0 and call
this configuration z. Associate with it the configuration z + ¢, in the corresponding ROS
network obtained by adding one customer to node 0. Let ZX and ZX*! be distributed
as the configurations (in equilibrium) of customers in the PS and ROS networks, respec-
tively. When the route through node 0 is open, the two random variables have the same
distribution and, using our convention that K = oo in this case, we denote both of them
by Z*°. By [2, Thm. p. 253] we have,

P{ZFH! =2+ e} Cryrd(z +e) (1/p)"
BZE =2}  Crd() (1/p)"

In both networks we have chosen to normalize time such that the rate of external arrivals

at node 0 equals 1. Then, the function d(-) depends only on the numbers of customers

=0(K +1). (15)



on the routes that do not traverse node 0 and, therefore, d(z) = d(z + ¢;). Since Cx and
Ck+1 are normalization constants, we have that o(K + 1) = Ck41/(uCk) is a constant,
independent of the configuration z.

Let us observe both networks at moments when a customer makes a transition into node 0.
Let ZK be distributed as the configuration of other customers in the PS network at such
transition moments, i.e., not counting the customer making the transition. Similarly,
ZE+1 is distributed as the configuration in the ROS network at moments of transitions
into node 0. Now recall the so-called arrival-departure property: when a customer arrives
at a certain queue, it sees the network in equilibrium if the customer is traveling on an
open route; and the customer sees the network as if it is in equilibrium with one less
customer on the route if the route is closed, see Sevcik and Mitrani [27]. By this property
we have that P{ZX = 2z} = P{Z¥~! = z}. Hence, using (15),

P{ZH = 24 ¢} = oK) P{ZY = 2}, (16)

Adding over all possible configurations z in the PS network, we conclude (as before) that
o(K) equals the probability that a customer arriving at the ROS node finds the server
busy. We can interpret (16) as follows: with probability 1 — o(K), a customer arriving at
the ROS node is immediately taken into service; otherwise, with probability o(K), it sees
each possible configuration (not counting the customer in service at the ROS node) with
the same probability as a customer arriving at node 0 in the PS network.

Let us now focus on two customers, customer X arrives at node 0 in the PS network and
sees configuration z, and customer Y arrives at node 0 in the ROS network and sees the
‘corresponding’ configuration z + e;. As before, we couple each customer in the ROS
network to exactly one customer in the PS network, except for the additional customer
in service at node 0 of the ROS network. Customers X and Y are coupled to each other.
Every two coupled customers are located at the corresponding nodes in the two networks,
they belong to the same customer class, are at the same stage of service and will follow
the same route through the network, simultaneously undergoing the same service phases
at each of the subsequently visited nodes. Let V,4(2) be the sojourn time of X at node 0
in the PS network and let W,,s(z + €y) be the waiting time of Y at node 0 in the ROS
network. Since the two networks evolve according to the same probabilistic law as long as
the ROS node is not empty, we can (again) conclude that the sojourn times of X and Y
in their respective pools are equal:

Vps(é) g Wros(§ + Q())'
As before, let V5 be the sojourn time of an arbitrary customer in the PS queue and let
W,.,s be the waiting time of an arbitrary customer in the ROS queue. Now, using (16) and
the interpretation given below that equation, we find, by de-conditioning over all possible
states z seen upon arrival by customer X and the corresponding states z + ¢, seen by Y
(noting that a customer that enters an empty ROS node does not have to wait):

P{Wios >t} = 0+ P{ZFM = 2+ )} P{W,05(2 + ) > t}

- ZO‘(K)]P{QK =2} P{Vps(z) >t}

z

= o(K)P{Vys >},

which proves the proportionality result for product-form networks.



Appendix

In this appendix, we verify the equivalence relation (8) using the integral expressions for
the distributions of the waiting time in the M/M/1 ROS queue and the sojourn time in
the M/M/1 PS queue as given by Formulas (6) and (7), respectively. In order to rewrite
Formula (7) into the form of Formula (6), we first derive some useful identity relations.
For given 6 € [0, 7], let ¢ € [0, 7] be such that

— 1—0p
1-— - _— £ 1
vpe 1= Jpaid (17)
Then the following identity relations hold
(1-p)°
1 -2 0 = 18
oot = Lol (18)
sm@d(9 _ (1 —p)sing _do, (19)
1—p (1+p—2\/pcose)
2,/p— (14 p)cosb
. 2
(1 —p)sind cot¢ (20)

Relation (19) follows from (18) by differentiation. To arrive at Relation (20), we use the
additional relations

(1—p)sing C089_2\/ﬁ—(1—|—p)cos¢
1+p—2/pcos¢’ 1+ p—2pcosg
The latter relations are obtained by equating real parts, as well as imaginary parts, in (17).

Substituting (18)-(20) into (7) and multiplying the numerator and denominator of the
integrand by exp(7 cot ¢), we obtain

™ exp{(m —0)cot ¢ — (14 p—2,/pcos qb),m; sin oo, (21)

sinf =

P{V,s >t}:2(1—ﬂ)/¢:o (1+exp{ﬁcot¢})(1+p—2ﬁcoscb)

Now, using the fact that

sin ¢

tan(e — 0) = tan ¢ — tan 6 B QSinqS(cosqS—ﬁ) B 2cosd>—\/ﬁ
~ 1+tangtanf  (cos¢ — V/P)? —sin? ¢ B 1_ ( sin ¢ )2’
cos p—+/p
and
2 tan <”+‘2b_9)
tan(¢ — 0) = tan(m + ¢ — 0) = ;
1 — tan? (%H)
we have
— 0= 2arctan [ 2P ) (22)
T = 2arcta cosé— /P .

Substituting (22) into (21), we find that P{W,,s > t} = pP{V ), > t}, where P{W,,s > t}
is given by (6), which completes the proof.
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