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Chapter 1

Introduction

The time that telecommunication was synonymous to telephony is long gone.
Modern communication networks are emerging from the convergence between
traditional telephone systems and computer-communication networks. They
are being designed to offer a wide range of services, such as telephony, data
transfer, and (interactive) video, on a common infrastructure. In this thesis we
develop queueing-theoretic models and techniques to study performance issues
in integrated-services (or, multiservice) networks. The focus is on the mathe-
matical analysis of the proposed queueing models. In this introductory chapter
we first motivate our modelling approach, giving a description of integrated-
services networks and discussing their evolution from traditional telecommuni-
cation systems.

1.1 Background

With the integration of different services in a common network, operators aim at
(i) responding to the strong demand for new telecommunication services, and (ii)
achieving a high utilisation of the network resources. However, the interaction
between the different service classes within the network has a significant impact
on their performance. We briefly illustrate this with an example. Consider a
network link which is used for both telephone connections and data connections
(e.g., file transfers). A telephone conversation requires a constant transmission
rate to ensure speech quality. Therefore we assume that each voice connection is
allocated a certain fixed amount of capacity. The remaining capacity is available
for the transmission of data. In comparison with voice, data applications are
usually better able to adapt to fluctuations in the transmission capacity. We
assume each individual data connection receives an equal portion of the total
available capacity. Consequently the transfer time of data typically depends
strongly on the characteristics of the voice traffic. In turn, one may want to
give some “protection” to on-going data transfers against new voice connections.
This may be accomplished by rejecting new telephone calls from the system if
otherwise the transmission rate of individual data transfers would drop below
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some minimum acceptable level. Then the blocking probability of voice calls
also depends on the characteristics of data traffic.

The above example plays a central role in this thesis. We study the inter-
action between two types of traffic — voice and data traffic, or, more generally,
“stream” traffic and “elastic” traffic (see Section 1.3) — which share resources in
a communication network. We model the above sketched situation by a queueing
system in which a server (communication link) serves two types of customers.
Customers of the first type (voice) require a certain fixed amount of service ca-
pacity for some random period of time. If this capacity is not available, a newly
arriving customer is rejected. In contrast, customers of the second type (data)
do not need a constant rate, but involve a random amount of work (number of
data bits to be transmitted). Customers of the second type share equally in the
capacity left over by the first type of customers. This queueing model is com-
posed of two, interacting, elementary models from queueing theory: the Erlang
loss model (for voice) and the processor-sharing queue (for data). This thesis
concentrates on the mathematical analysis of several variants of this composite
queueing model. Particular attention will be devoted to the performance eval-
uation of data traffic. We therefore focus on the analysis of processor-sharing
queueing models with varying service capacity. The variation in service capac-
ity reflects the variation in capacity left over by voice traffic. Processor-sharing
models with varying service capacity have not received much attention and it is
in this area that the thesis contributes to queueing theory. Our results provide a
basis for a careful analysis of performance issues in integrated-services networks.
The ultimate goal of such an analysis is to facilitate the design and control of
future communication networks, addressing issues such as proper dimensioning
and developing adequate capacity allocation strategies.

The remainder of this introductory chapter is organised as follows. The first
two sections are devoted to integrated-services networks. Section 1.2 gives an
overview of the evolution of these networks. A more detailed description of
the various traffic types is given in Section 1.3, providing a basis for a unified
approach in modelling the integration of services. In Section 1.4 we turn to
queueing theory, describing its basic concepts and the relation to telecommuni-
cations. Section 1.5 gives a more detailed description of the above mentioned
queueing model, which plays a central role in the thesis. Since the analysis is
mainly concerned with processor-sharing models with varying service capacity,
Section 1.6 reviews the literature on processor-sharing queues. Section 1.7 gives
an overview of the other chapters.

1.2 Evolution of integrated-services networks

Over the past two decades there has been an explosively increasing need for long-
distance services other than telephony, such as data transfer and (interactive)
video communication. At present the telephone network is already commonly
used to connect personal computers via modems for transmission of data files.
Since telephone networks were designed to specifically carry voice calls, they are
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not particularly suited to support data traffic. Hence, there is a strong need
for a network such as the current Internet, which was specifically designed for
data transfer purposes. In its turn, the Internet is also evolving to offer other
services, and is already (experimentally) being used for applications such as
voice communication and video-conferencing. It is widely believed that these
trends — enabled by technological innovations — eventually will result in future
world-wide networks offering a wide range of services on an integrated basis.
However, whether these networks should be controlled by central operators (like
traditional telephone networks) or in a distributed manner (as is the case in the
current Internet) has so far remained a matter of debate.

The development of the current Internet was initiated in the 1960’s as a
computer-communication network for the U.S. Defense Department. To enable
efficient data communication, the Internet was based on the IP (Internet Pro-
tocol) concept. After dividing a message into so-called packets, each packet is
transported as an independent entity to the destination point, where the mes-
sage is reassembled. By the 1980’s the Internet had evolved into a world-wide
network, interconnecting mainly universities and research institutes. This evo-
lution took place despite the fact that the network performance was still poor.
Crucial progress was made when TCP (Transmission Control Protocol) was pro-
posed by Jacobson [46]. This protocol enables the users to react dynamically to
congestion in the network. The rate at which a TCP-controlled traffic source
transmits is high when the load on the network is light and the rate is low when
the network is congested. This as opposed to traditional telephone networks,
where each user is assigned a fixed transmission capacity (i.e., one channel) for
the duration of the connection. A more detailed description of TCP is given in
Section 1.3.

After the introduction of TCP helped to control traffic in the network, the
growth of the Internet has been impressive. Ten years later, most companies
use the Internet for communication and advertisement purposes. Also more and
more people are using the Internet at home, mostly for information retrieval
(Web browsing) and correspondence (e-mail). Although well-suited for data
transfer applications, today’s Internet does not provide for interactive applica-
tions (such as telephony or video-conferencing). As we saw above, the capacity
available to each individual user typically decreases when more users require
the same resource. As a consequence, transmission delays may increase and/or
transmission quality may degrade. Large delays, however, are unacceptable for
interactive applications. Therefore much effort is put into making the Internet
suitable for supporting such applications, see White and Crowcroft [117] and
Kumar et al. [59].

The integration of different services onto a common platform had long been
anticipated by telephone network operators. It was recognised that traditional
telephone systems would not be able to meet the rising demand for new services.
The discovery that glass-fibre cables provide a means for optical high-speed com-
munication triggered a large world-wide research activity into the applicability
of the new technology in future communication networks. The telecommunica-
tion community established the ATM (Asynchronous Transfer Mode) concept
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as the standard for high-speed communication networks. In this community it
was commonly believed that, like in traditional telephone systems, centralised
traffic control will remain necessary in future networks to provide satisfactory
QoS (Quality of Service). In contrast to TCP/IP, packets (or, cells) in ATM
are labelled with a connection identification rather than treated as individual
entities. This not only enables advanced QoS support mechanisms, but also of-
fers higher transmission capacity because of the limited address space. Because
of the higher implementation complexity, however, the deployment of ATM is
mainly restricted to high-speed back-bone infrastructures. The use of TCP/IP
is widespread, but does not yet allow for QoS support of real-time applications
as explained earlier.

Compared to traditional telephone systems, both TCP/IP and ATM offer
several advantages other than those due to the use of optical technologies (the
latter includes increase of transmission capacity). The two concepts also provide
flexibility of resource allocation in two ways. Firstly, in telephone systems each
connection gets a fixed transmission capacity, namely one channel. In TCP/IP
and ATM the total transmission capacity — henceforth called bandwidth —
may be divided arbitrarily. For instance for video-conferencing typically more
bandwidth is needed than for telephony (in ATM the amount of bandwidth may
be negotiated when a request for a new connection is made). More importantly,
the total bandwidth can be used more efficiently due to statistical multiplexing
gains. These gains are achieved because not all connections constantly need
their individual peak bandwidth. In fact, especially when many connections
are multiplexed, it will be extremely rare that all connections simultaneously
transmit at peak rate. Thus, the sum of the peak rates may exceed the (phys-
ical) total bandwidth, while still almost always meeting the actual bandwidth
requirements.

Future telecommunication systems are still very much under development. It
therefore remains unclear what these networks will precisely look like. However,
we propose models that are not concerned with details of network architectures
or transmission protocols, making only high-level assumptions on services as
experienced by the users. In the next section we further motivate our modelling
approach.

1.3 Modelling traffic in integrated-services networks

Modelling hierarchy

To characterise traffic in modern communication networks it is convenient to
use a three-level hierarchy. At the highest level — the call level or connection
level — connections are being established. For the duration of a connection, in-
formation is fragmentised into so-called packets which are transmitted through
the network. Such networks are therefore called packet-switched networks. Al-
though in IP networks there is no real notion of connections (each packet is
transmitted as an independent entity), we use this term to indicate the infor-
mation flow from a source to a destination. In ATM networks, packets are
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usually called cells, but in this thesis we commonly use the term packet. The
original information is recovered at the destination point by reassembling the
packets. The level at which individual packets are observed as they flow through
the network is called the packet (or cell) level. Packets belonging to the same
connection are usually not generated as a constant flow, but rather in bursts.
This gives rise to an intermediate level — the so-called burst-level — between
the connection level and the packet level.

Let us illustrate the notion of the three time scales for telephony and data
transfers in a packet-switched network. A telephone connection is established
after dialing a phone number and is terminated after hanging up. Packets
consist of speech fragments. Bursts of packets then correspond to periods of
speech (which alternate with periods of silence). In file transfers each packet
contains a segment of the (data) file. The connection duration is equal to
the total transfer time of the file. Usually the complete file is instantaneously
available for transmission. In that case the connection consists of one large
burst of packets.

Communication sessions are not only extremely diverse in traffic character-
istics, but also in the QoS requirements. For instance in a telephone connection,
packet delays of a few hundred milliseconds imply a severe degradation of speech
quality. File transfers on the other hand are more flexible with respect to packet
delays, the transfer time of the complete file being of dominant importance.

The models we propose for the performance analysis of integrated-services
networks at the connection level abstract from a specific network design or traffic
control. Our modelling may apply for instance to both the ATM and the IP
concepts. Next we discuss these concepts in some detail because, at present,
they are the main candidates for realising integration of services on a common
infrastructure. Subsequently we describe a unifying classification of traffic.

ATM versus IP

ATM networks are specifically designed to deal with different traffic types in a
different manner. The CBR (Constant Bit Rate) and real-time VBR (Variable
Bit Rate) transfer capabilities provide real-time services, such as telephony and
interactive video applications. As we already mentioned for telephony, real-time
traffic is extremely delay-sensitive (at the packet-level). For these applications
QoS is guaranteed through bandwidth reservations for individual connections.
More recently the ABR (Available Bit Rate) service was introduced to accom-
modate data transfers. In addition to a typically small guaranteed MCR, (Min-
imum Cell Rate), ABR traffic is granted the bandwidth left over by real-time
services. As stated by the ATM Forum [1], ABR-controlled connections should
fairly share the available capacity. The system instructs the ABR connections
at which rate to transmit. This is done using the following closed-loop feedback
control mechanism. ABR traffic sources periodically transmit so-called resource
management cells which are returned by the destination. As they traverse the
network these cells are marked if congestion is detected. Upon return, ABR
traffic sources adapt their transmission rate to the observed congestion. For
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more details on ATM’s service classes see for instance Kesidis [50].

In Section 1.2 it was mentioned that the current Internet does not specifically
support real-time applications. For future IP networks new standards are being
developed to overcome this shortcoming, see White and Crowcroft [117] and
Kumar et al. [59]. Data is transmitted in the Internet using the TCP protocol.
As opposed to the ABR service in ATM networks (where the rate adaptation
mechanism is regulated by the system), TCP/IP leaves traffic control to the
users. The receiver (destination) of a message sends an acknowledgement for
each received packet to the transmitting user (source). If no acknowledgement is
received within some period of time, the source concludes that the transmission
of the packet has failed due to congestion in the network (the packet is lost),
and re-transmits the packet. In addition, a negative acknowledgement (when
the destination detects an error in a packet) also causes a re-transmission. The
number of packets sent by the source but not (yet) acknowledged by the des-
tination is limited by the window size, and is adjusted dynamically. When the
acknowledgement of a packet is received, the window size is increased (typically
by adding a fixed number of packets), and when a packet is assumed to be lost or
a negative acknowledgement is received, the window size is decreased (typically
by a fixed reduction factor). Note that the window size is roughly inversely pro-
portional to the transmission rate. Effectively, a source of TCP traffic transmits
at a high rate when few packets are lost (i.e., when the load on the network is
light), and at a low rate when relatively many packets are lost (i.e., the network
is congested).

Traffic modelling on connection level

We proceed with a unified approach to the modelling (at the connection level)
of integrated-services networks, of which ATM and IP networks are particular
examples. Based on their QoS requirements, we divide all traffic types into
two broad classes: stream traffic and elastic traffic. A stream traffic connec-
tion requires stringent (packet-level) delay guarantees for the duration of its
connection time (holding time). Stream traffic may be identified with real-time
applications. Elastic traffic on the other hand is more flexible with respect to
packet delays, as long as the total transmission delay is “acceptable”. An elastic
traffic connection involves the transmission of a certain amount of information,
typically present in the form of a data file. Therefore an elastic traffic connection
will often be referred to as a “data/file transfer”. A file transfer is characterised
by the file size, and possibly a minimum and a maximum rate between which the
actual transmission rate may vary. The minimum rate, for instance the MCR
for ABR traffic, ensures a certain maximum transmission delay. We emphasise
that in the current Internet there is no minimum rate for TCP flows. The max-
imum rate may be the consequence of physical limitations, such as the access
link rate or the modem rate. If the minimum rate is equal to zero (i.e., there is
no guarantee on transmission delays), then elastic traffic is called “best-effort”
traffic. This is for instance the case for data transfers in the current Internet.
Bandwidth is allocated to the two traffic types as follows. Connections of
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both types are each given the (minimum) required bandwidth. The remaining
bandwidth is available for elastic traffic, giving each elastic connection an equal
share. Under certain assumptions on packet losses and “fairness” criteria, this
indeed resembles bandwidth allocation to data transfers in both IP and ATM
networks: each data transfer is granted an equal portion of the available band-
width. To ensure that at all times the minimum required bandwidth is available
for each individual connection, there should be connection acceptance control
(see Massoulié and Roberts [70] for a discussion). A simple connection accep-
tance rule is for instance to reject a request for a new connection (of any type)
if it would lead to the violation of the bandwidth guarantee for any connection.

The above traffic characterisation and classification underlies our modelling.
In our approach we study the performance of traffic at the connection level,
assuming a complete separation of time scales. This way we may represent the
(discrete) packet flow within a connection by a continuous fluid flow, possibly
of a varying rate over time. This approach is justified when traffic fluctuations
at the lower time-scale levels are very fast compared to the duration of the
connection, i.e., when packets are very small.

The rough classification of stream and elastic traffic was proposed by Roberts
[94, 95, 96] and is commonly believed to capture the essential issues of service
integration, while allowing thorough mathematical analysis. Furthermore, it
is not desirable to analyse and dimension networks based on highly detailed
traffic characterisations, since future traffic may again have its own specific
characteristics. Networks should thus be flexible enough to be able to cope with
changes in the nature of traffic.

1.4 Queueing theory in performance evaluation

Queueing theory and the development of telecommunication systems have had
a strong influence on one another. The first queueing-theoretic models were
developed by A.K. Erlang in the beginning of the 20" century for the dimen-
sioning of telephone systems. Ever since, queueing theory has played a key
role in the design and performance analysis of telecommunication systems. Vice
versa, queueing theory has developed partly under the stimulus of new problems
encountered in telecommunication systems. For example, the need for computer
communications in the 1960’s triggered new research into networks of queues,
opening up new horizons with the famous papers of Baskett et al. [8] and Kelly
[47]. In the 1980’s and 1990’s the performance analysis of multiservice com-
munication networks further intensified the research activity in this direction.
We refer to Cohen and Boxma [21] for a survey of the evolution of queueing
theory until the mid-1980’s, and to Prabhu [89] for an extensive bibliography of
books and survey papers on queueing systems. Next we briefly outline the basic
concepts of queueing theory. For a thorough introduction into queueing theory
we refer to Kleinrock [54], Cohen [20] and Takagi [110], and to Kelly [48] and
Nelson [80] for queueing networks. For further references see [89].

In general, a queueing model describes a situation where limited resources
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are used to perform certain tasks. The resources are usually called servers (often
there is only a single server). The tasks to be performed are viewed as customers
that arrive to the server(s), requiring a certain amount of work to be done by
the server(s). Characteristic of queueing models is the random nature in which
customers arrive, as well as the randomness in the service requirement. Due to
the limited capacity, the random fluctuations lead to occasional contention for
service among the customers, and hence to congestion effects.

The most elementary queueing model is the single-server system depicted in
Figure 1.1. Suppose the customers arrive to the system one at a time. An inter-

Figure 1.1: The single-server queueing model G/G/1

arrival time is defined to be the time interval between two consecutive arrivals.
The arrival process is usually assumed to be such that interarrival times form
an i.i.d. (independent and identically distributed) sequence of random variables.
The service requirement of a customer is defined as the amount of time that
the server needs to serve the customer if the latter would receive the server’s
complete capacity (it might be the case that the server works on several cus-
tomers at the same time). Further it is assumed that service requirements are
i.i.d., and that customers only leave the system after having received their entire
service requirement. The described queueing model is often called the G/G/1
(or GI/GI/1) queue, a notational convention proposed by Kendall [49]. The G’s
in this notation stand for general probability distributions, the first referring
to the distribution of interarrival times and the second to the distribution of
service requirements. The alternative notation GI is sometimes used to empha-
sise that the sequence referred to (either the interarrival times or the service
requirements) is an independent sequence. The number 1 refers to the single
server.

In order to describe the evolution of the queue-length process, we need to
specify the service discipline, i.e., how the server’s capacity is allocated to the
customers. Many different service disciplines have been proposed and studied
in queueing theory. We mention the two that are most relevant for this the-
sis. Perhaps the most natural discipline is the FCFS (First Come First Served)
discipline. In this discipline the customers are served in order of arrival. In
the processor-sharing discipline the service capacity is divided among all cus-
tomers in the system, each of them receiving an equal share. In the latter case
customers with a small service requirement may overtake others with a larger
service requirement.

Many variations to the basic G/G/1 model have been studied in the queueing
literature. We already noted that different choices of the service discipline lead
to different system behaviour. More generally, we may consider the G/G/c/c+d
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queue, in which there are c servers (instead of one) and d positions for customers
waiting for service. In such a system new customers may be rejected (blocked)
from the system, if all the waiting positions are occupied. The last symbol
in the notation is omitted when d = oo, as we did in the single-server queue
of Figure 1.1. Other modifications which have been studied include the case
where customers sometimes — for instance when the queue is large — choose
not to enter the system (balking), or abandon the queue if they have to wait
too long. An important class of queueing models arises when we assume that
the arrival process is a Poisson process, the so called M/G/c/c+ d model. The
symbol M stands for the Markovian (or Memoryless) nature of the Poisson
process. The Poisson arrival process arises naturally in applications when there
are many individuals which (at any time) may require service, each with very
small probability (independently of each other), see Feller [30, page 355].

1.5 The basic model of the thesis

We propose the following queueing system as a connection-level model of a link
in a communication network carrying both stream traffic and elastic traffic. A
stream traffic connection is represented by a “stream customer” and an elastic
traffic connection (a file transfer) by an “elastic customer”. We assume that the
two types of customers arrive according to two independent Poisson processes.
The mean number of stream customers and elastic customers arriving per unit
of time are denoted by A(®) and A(®), respectively. Upon arrival of a customer,
the service station decides whether the new customer is taken into service or
rejected from the system. A discussion of several issues regarding this decision
is given below. A rejected customer never enters the system — the customer is
lost — and does not affect the service of other customers. A customer that is ac-
cepted, is immediately taken into service until the complete service requirement
is fulfilled.

The total service capacity of the station (link bandwidth) equals C > 0.
A stream customer requires a fixed capacity r(®) for the duration of a random
holding time (for instance the length of a telephone conversation). The sequence
of these holding times is assumed to be i.i.d. with distribution B;(t), ¢ > 0. An
elastic customer requires a random amount of service. Service requirements of
elastic customers — i.e., file sizes in case we model file transfers — are i.i.d.
with distribution Be(x), > 0. Each elastic customer gets an equal share of the
capacity left over after giving each stream customer the required capacity r(®).
However, at any point in time the rate at which an elastic customer is served
must be between a minimum rate r@ > (0 and a maximum rate rgf). Elastic
customers leave the system upon having received their full service requirement.
Finally we assume that holding times, service requirements, and interarrival
times of both customer types, are mutually independent.

The above description has immediate implications for allowable acceptance
(rejection) policies. If we denote the number of stream customers and elastic
customers at a given point in time by k() and k(®), respectively, then clearly
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Figure 1.2: Basic model with two customer types

the capacity restriction,
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must be satisfied. If accepting a newly arrived customer would cause this con-
straint to be violated, the new customer must be rejected (it is not allowed to
compromise on the capacity requirement of any customer, or to remove an al-
ready accepted customer from the system). In addition, acceptance of customers
may be subject to other constraints. For instance, a certain fixed capacity could
be reserved for stream traffic and/or for elastic traffic.

As noted previously, the model presented here is a combination of the stan-
dard Erlang loss model (for stream customers) and the processor-sharing queue
(for elastic customers). We analyse several variants of this hybrid model, fo-
cusing on the performance of elastic customers. In the different models we
make different assumptions regarding the service requirement and holding-time
distributions.

Remark 1.5.1 In general we do not explicitly consider the presence of stream
customers, and instead assume that the service capacity (for elastic customers)
varies according to some exogenous process. This process may also be dependent
on the service process of elastic customers. This way the considered models
for elastic traffic are flexible with respect to the precise nature of the service
fluctuations.

The above approach to modelling the integration of stream traffic and elastic
traffic was used in Nifiez Queija and Boxma [86], Blaabjerg et al. [14], Altman et
al. [5], and Kulkarni and Li [57]. Other papers in which processor-sharing queues
are used for the modelling of elastic traffic are Heyman et al. [43], Roberts and
Massoulié [97], Berger and Kogan [11], and Massoulié and Roberts [70, 71]. An
experimental investigation of the processor-sharing queue to model TCP traffic
is provided by Kumar et al. [58].
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1.6 Processor-sharing queues

In view of the central role of processor sharing in this thesis, we give an overview
of the relevant literature in this section. In the (egalitarian) processor-sharing
service discipline, when there are n > 0 customers in the system, all these
customers simultaneously get an equal share of the service capacity, i.e., each
customer gets a fraction 1/n of the capacity. The processor-sharing service dis-
cipline became of interest as the idealisation of time-sharing queueing models
which arose with the introduction of time-sharing computing in the sixties. As
we saw in the previous sections, today processor-sharing models can be applied
for the performance analysis of elastic traffic in integrated-services communica-
tion networks, in particular for the ABR service class in ATM networks and for
TCP traffic in IP networks.

An extensive body of literature on processor-sharing queues was initiated by
Kleinrock [52, 53] who studied the M/M/1 case. In particular he showed that
the mean sojourn time conditional on the service requirement is proportional to
the service requirement. Sakata et al. [99, 100] derived the steady-state queue-
length distribution of the M/G/c queue with processor sharing, showing that
it is insensitive to the service time distribution except from its first moment.
In the multi-server processor-sharing queue with ¢ identical servers, each with
capacity 1, the total service capacity is equally shared among all customers
present, with the restriction that an individual customer can not be served
at a rate higher than 1. As a special case, the queue-length distribution in
the M/G/1 processor-sharing queue turned out to be geometric, inheriting the
above insensitivity property. Sakata et al. [99, 100] also extended Kleinrock’s
proportionality result to the M/G/c case, see also Kleinrock [55, Section 4.4].
All the above results were extended by Cohen [19] to a general class of networks,
where the rate at which customers at a particular node are served is a function
of the node and of the number of customers at that node (there called gener-
alised processor sharing). However, determining the sojourn time distribution
in processor-sharing queues turned out to be a very difficult problem.

For the M/M/1 queue with processor sharing, a closed-form expression for
the LST (Laplace-Stieltjes Transform) of the distribution of the sojourn times
— conditional on the amount of service required and the number of customers
seen upon arrival — was first derived by Coffman et al. [17]. Sengupta and
Jagerman [105] found an alternative expression for the LST of the distribution
of the sojourn time conditioned only on the number of customers seen upon
arrival. In particular they found that the n*® moment of the conditional sojourn
time is a polynomial of degree n in the number of customers upon arrival. The
distribution function of the sojourn times, conditioned on the amount of service
required, was studied by Morrison [78].

The sojourn time distribution in the M/G/1 processor-sharing queue was
first analysed by Yashkov [120]. Schassberger [101] considered the M/G/1 queue
with processor sharing as the limit of the round-robin discipline. Ott [87] found
the joint LST and generating function of the distribution of the sojourn time
and the number of customers left behind by a departing customer. Van den Berg
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and Boxma [10] exploited the product form structure of an M/M/1 queue with
general feedback for an alternative derivation of the sojourn time distribution
in the M/G/1 processor-sharing queue. Rege and Sengupta [91] gave a decom-
position theorem for the sojourn time distribution for the M/G/1 queue with K
classes of customers and discriminatory processor sharing. Grishechkin [39, 40]
described the M/G/1 queue with batch arrivals and a generalised processor-
sharing discipline by means of Crump-Mode-Jagers branching processes. For a
more extensive overview of the literature on processor-sharing models we refer
to Yashkov’s survey papers [122, 123].

An essential difference between the processor-sharing models from the lit-
erature cited above and those analysed in this thesis is that in our case the
available service capacity varies according to a stochastic process. As described
in Section 1.5, the variation in service capacity is motivated by the fluctuation
in available bandwidth for elastic traffic in integrated-services networks due to
the presence of high-priority stream traffic. Processor-sharing queues with vary-
ing capacity have not been studied with any rigour before. This thesis presents
the first analytical results for sojourn times in such queues. The fact that the
service capacity fluctuates makes the analysis of performance measures, such
as the number of customers in the system and their sojourn time, considerably
more complicated than in the case of a constant service capacity. As we shall
see, several “nice” properties are lost when the service capacity varies, including
the earlier mentioned geometric queue-length distribution as well as the propor-
tionality relation between the conditional mean sojourn time and the service
requirement of a customer.

1.7 Overview of the thesis

In this first chapter we have motivated the use of processor-sharing queues with
variable service capacity for the performance evaluation of (elastic) traffic in
integrated-services networks. In the remainder of the thesis we are concerned
with the analysis of such queueing models.

In Chapter 2 we give a detailed analysis of the queue length (that is the
number of customers in the system) of a processor-sharing model with varying
service capacity. The model includes a large class of hybrid models as described
in Section 1.5. In particular we study the impact on the performance of elastic
customers when stream customers arrive and depart on a very different time
scale than elastic customers do. The theoretic analysis of the influence of time-
scale differences is illustrated by means of numerical results from the application
of the model to a particular telecommunication system. Chapter 2 builds on
the analysis presented in Nufiez Queija and Boxma [86] and Nufiez Queija [82].

In Chapter 3 we turn to sojourn times in processor-sharing models with
varying service capacity. We present the analysis of Nufez Queija [83] for the
extreme case where the service facility alternates between “on-periods”, during
which the service rate is constant, and “off-periods”, during which no service
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can be rendered. For this on/off-model closed-form expressions are obtained
for the first two moments of the distribution of sojourn times conditional on
the service requirement. Higher moments can be computed recursively. The
conditional sojourn time distribution itself is characterised by means of its LST
in terms of the LSTs of two fundamental variables. For the latter a solution is
given in terms of an integral equation.

Chapter 4 presents the results of Nuifiez Queija [84] for sojourn times in
models with a more general structure of service capacity fluctuations than the
one in Chapter 3. A processor-sharing queue in a Markovian environment is
considered, where the service rate depends both on the state of the random
environment and on the number of customers in the queue. The evolution of
the random environment itself may also depend on the queue-length process.
The LST of the sojourn times conditional on the service requirement is found
in terms of a matrix-exponential function. We discuss how the conditional
mean sojourn time can be computed and propose an efficient approximation
for it. The results are validated through the extensive numerical investigation
of Nufiez Queija et al. [85], where the model is applied to the performance
evaluation of a telecommunication system under different integration strategies
for elastic and stream traffic.

In Chapter 5 we focus on heavy-tailed service requirement distributions. It
is well-known that, if the service requirement distribution is heavy-tailed then,
under any non-preemptive service discipline, the tail of the sojourn time dis-
tribution is “one degree” heavier: it is as heavy as the integrated tail of the
service requirement distribution. A service discipline is called non-preemptive
if at most one customer is served at any time and no customer’s service is inter-
rupted. In contrast, for the processor-sharing discipline it was shown by Zwart
and Boxma [128] that the two tails are “equally heavy”. We present a new proof
of this fact based on Markov’s inequality, which we apply to the moments of the
distribution of sojourn times conditional on the service requirement. Using the
new approach, we extend the result of Zwart and Boxma [128] to the on/off-
model of Chapter 3. We also establish the “preservation of tail-heaviness” for
two other service disciplines: FBPS (Foreground-Background Processor Shar-
ing) and SRPT (Shortest Remaining Processing Time first).
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Chapter 2

Queue length in the case of a varying
service capacity

Before focusing on customer sojourn times in processor-sharing queues with
varying service capacity we study their queue-length process. Although cus-
tomers do not queue in processor-sharing systems — they simultaneously share
the service capacity — we use the term “queue length” to indicate the number
of customers in the system. This slight abuse of terminology is common in the
literature of processor-sharing models. This chapter presents a detailed study of
the steady-state queue-length distribution of a rather general processor-sharing
model with varying service capacity. The model considered here contains many
variants of the hybrid model presented in Section 1.5, which allow us to capture
different aspects of traffic in integrated-services networks. In our analysis we
are concerned with the queue-length performance of elastic customers in hybrid
models of the type presented in Section 1.5. For an integral analysis of a large
class of such models we abstract from the precise nature of the fluctuation in
the service capacity that is available to elastic customers. Instead of specifically
modelling stream customers in the system, the capacity available to elastic cus-
tomers is governed by the state of a general finite Markovian birth and death
process. Such a process generalises in a natural way the arrival and departure
process of stream customers in (variants of) the model in Section 1.5. After “re-
placing” stream customers by the birth and death process, the only customers
considered are elastic customers.

This chapter extends the analysis of Niifiez Queija and Boxma [86] and
Nifez Queija [82] to more general models. We briefly describe the model of
Nifez Queija and Boxma [86] which we use for illustration purposes, see also
Section 1.5. An individual elastic customer does not require a minimum service
capacity (r@ = 0), and can be served at any positive rate (r_(f) = ). A
fixed part of the system capacity is reserved for elastic customers and there
is a finite waiting room for stream customers. Because r® = 0 there is no
bandwidth guarantee for elastic customers. The capacity reserved for elastic
traffic, however, protects elastic customers from stream customers taking up all
the capacity. A waiting room for stream customers could for instance model re-

15
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dialing in telephone calls. The model presented here also allows for impatience
in re-dialing: After having re-dialed during a random period of time, a customer
becomes impatient and leaves the system.

For the class of models that we consider here, we assume that the birth and
death process regulating the amount of capacity available to elastic customers
evolves independent of the past arrival and service process of elastic customers.
In the light of the hybrid models of Section 1.5 and [86], this assumption cor-
responds to stream traffic not being affected by the dynamics of elastic traffic.
Le., whether or not a new stream customer is taken into service does not de-
pend on the number of elastic customers in the system. We further assume
that the service requirements of elastic customers have an exponential distribu-
tion. Moreover, the Markovian nature of the birth and death process regulating
the service capacity available to elastic customers corresponds to exponentially
distributed holding times (and re-dialing times) of stream customers. These as-
sumptions allow for a detailed study of the queue-length distribution of elastic
customers, providing useful qualitative insight into the performance of elastic
traffic.

The model gives rise to a two-dimensional Markov process. The two compo-
nents are (i) the number of (elastic) customers and (ii) the state of the server,
that is, the state of the birth and death process regulating the service rate. Since
stream customers are not explicitly modelled here, when referring to customers
we mean elastic customers (unless otherwise indicated). As a further generali-
sation we also let the arrival rate depend on the state of the server. With this
generalisation the model includes variants of the model in Section 1.5 where
both types of customers come from a common finite population.

We determine the steady-state queue-length distribution and compare it to
the case with a fixed available service capacity. Both an infinite and a finite
queueing capacity are considered. The finite queue can be used to model the

case that individual customers have a guaranteed minimum rate (r(f) > 0).
Obviously, in that case there is a maximum to the number of customers in
the system. We find the simultaneous steady-state distribution of the queue
length and the state of the server. We do so using arguments from the theory of
matriz-geometric solutions developed by Neuts [81] and the spectral-ezpansion
approach, see for instance Mitrani [73], Mitrani and Mitra [77], Mitrani and
Chakka [75], or Haverkort and Ost [42]. A third approach for solving the models
described in this chapter relies on using generating functions. This method is
developed, for instance, in Gail et al. [36]. The three methods are closely related,
as we will see in the course of this chapter. We choose using the matrix-geometric
approach to enable probabilistic interpretation of various entities. The link with
the spectral-expansion approach is made to facilitate the analysis.

The chapter is organised as follows. We present the models in Section 2.1 and
discuss related literature in Section 2.2. Section 2.3 provides a starting point
for the analysis using the theory of matrix-geometric solutions in combination
with the spectral-expansion technique. A detailed spectral analysis is presented
in Section 2.4. The steady-state queue-length distributions for both the infinite-
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queue and the finite-queue model are given in Section 2.5. In Section 2.6 the
influence of fast and slow service rate fluctuations is studied. The models are
modified in Section 2.7 to include the case where TE:) < 00. The results are
illustrated by numerical experiments in Section 2.8, using the model of [86].
Conclusions are drawn in Section 2.9.

2.1 Model description

We consider a service station of which the capacity changes according to a
birth and death process on {1,2,...,N}, N being a positive integer. This
process is denoted by [Y(t)],5,- When Y (t) = i, the birth rate is ¢/ > 0,
i € {1,2,...,N — 1}, and the death rate is ¢; > 0, ¢ € {2,3,...,N}. For
notational convenience we set q; = q?(, = 0 and further define ¢; := ¢; + q;" .
The station works at rate ¢; > 0 when Y (¢t) =4 € {1,2,...,N}.

When Y (t) =¢ € {1,2,...,N}, new customers arrive to the system accord-
ing to a Poisson process with rate A;. We assume that the service requirements of
customers are i.i.d., having an exponential distribution with mean 1/u, and are
independent of the arrival process. Furthermore, Y (t) — the state of the birth
and death process at time ¢ — is assumed to be independent of all interarrival
times and service requirements of the customers before time ¢. The available ca-
pacity is shared among all present customers according to the processor-sharing
discipline. Because of the exponentially distributed service requirements, the
queue-length process is identical to that of the same model with the FCFS
(First Come First Served) service discipline.

So far we did not impose any restriction on the number of customers in the
system. Suppose that the maximum queue length is L < oo. If a customer
arrives at the service station and finds L other customers present, the new cus-
tomer is rejected and lost. To denote various entities, such as state descriptors
and steady-state probabilities, we use the superscript (“) for the finite-queue
model and the superscript (*) for the infinite-queue model. When concerned
with both, no superscripts are attached.

Remark 2.1.1 The model with L < oo includes variants of the model in Sec-
tion 1.5 when r(_e) > 0. In that case the number of customers in the queue can

be at most
I mlnz-{)c,-} ,
re

where |z] is the largest integer smaller than or equal to . Note that this implies

that no customers can be accepted when ¢; = 0, for some 7 € {1,2,...,N}. In
our analysis we consider the more general case where some of the ¢; may be
equal to 0.

In Section 2.7 we also extend our models to include variants of the model in
Section 1.5 where individual customers can not be served at a rate greater than

a maximum allowed rate rf,_e) < 00.
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Let X(t) be the number of customers present in the system at time ¢.
Then the process (X (t),Y(t)) is an irreducible and aperiodic Markovian pro-
cess. When X(¢) = j and Y(t) = 7 we say that the process (X (¢),Y(t)) is
in state (j,i). By definition, Y (¢) is not influenced by X (¢). If we define
pi =P {Y =i} :=lim; o, P {Y (¢) = i}, then

) -1

B ( N i qz;l
o= 1+ ] =
k
: qu_1 .
bi = le — Z:2a""N7 (21)

1=2 k=2 q
k=2 Yk

see for instance Cohen [20, Section 1.4.1]. The (row) vector of these steady-
state probabilities is denoted by p = (p1,pe,--.,pn).- We further define the
simultaneous equilibrium probabilities

i i =P{X =34Y =i} := 1tlirn P{X()=3Y() =1}, (2.2)
—00
and partition them into (row) vectors 7; := (mj,1,7j2,...,mjn) of length V.

The vector 7; is associated with level j, that is the set of states in which exactly j
customers are present. The partition enables us to write the equilibrium vector
as a block vector 7(®) = (fg“),ﬂ“),fg""), ...) for the infinite-queue model,
and 7F) = (ﬁ((]L) ,ﬁgL) . .,f(LL)) for the finite-queue model. The corresponding
infinitesimal generators of the processes (X (°)(t), Y (t)) and (XX (t),Y (t)) —
we do not use the superscripts (*) and (F) in the notation of Y (¢), because in
both cases that process evolves independently of the corresponding X-process
— are given by:

r 0
P
o d
Q) = o M Q; A o .. | (2.3)
. )
WA 0 ... ... 0
M Qi A 0
o) .— 0 .ot (2.4)
: . M Q4 A
o0 ... 0o M QY |

Q) consists of L + 1 block rows and block columns. The matrices on the
diagonal are given by Q,(jo) =QM A, Qs=QY)—A—M, and Q,(iL) =QM—M.
The matrices Q(Y), A, M and Qg are all of dimension N x N. A is the diagonal
matrix diag[A1, A2,-..,An], M is the diagonal matrix diag[uc1, pea, .. ., pen],
and QY) is the (tri-diagonal) infinitesimal generator of the process Y (t):
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[ —q1 q1+ 0 0 ]
q; —q2 q;_ (1 e N 0
0 2 - 0 0
Q| . B TE BT N BT
0 vee e Gn_1 —QN-1 qJ—C_l
L 0 ... . an _QNJ

A two-dimensional Markov process (X (t),Y (t)) with a block tri-diagonal
generator as in Definitions (2.3) and (2.4) is called a QBD (Quasi Birth and
Death) process. We refer to Neuts [81, Chapter 3] for a general discussion of
QBD processes. By Theorem 3.1.1 of Neuts [81], we have that the process
(X()(t), Y (t)) is ergodic if and only if

N N
pi= sz’)\i/# < Zpici =:c
=1 =1

where p is the mean traffic load, that is the amount of work arriving to the
system per unit of time, and ¢ is the mean service rate. In the sequel, when
addressing the infinite-queue model, we assume that p < c¢. For the finite-queue
model the steady-state distribution also exists when this is not the case.

In the analysis a special role is played by the number of states of the server
for which the arrival rate is zero, and by the number of states for which the
service rate is zero. We denote these numbers by

mo = #{i : A\ =0},
ng = #{i : ¢ =0}.

2.2 Related literature

The model of Section 1.5 with rff) = 00, r(_e) = 0, and exponentially distributed
file sizes and holding times, is a special case of the one studied in this chapter. To
see that, take u = 1/f(°) and further, Vi, A\; = A, gt = A\®) ¢~ = (i—1)/h0),
and ¢; = C — (i — 1)r(®), At time ¢, X (t) is the number of elastic customers,
and Y (¢) — 1 is the number of stream customers. This model is analysed by
Nuflez Queija and Boxma [86]. Note that stream customers have preemptive
priority over elastic customers. Variants of this priority model were studied by
several authors. Mitrani and King [76], and later Gail et al. [35], solved the
case where both types of customers have an infinite waiting space and within
each customer class the service discipline is FCFS. Lehoczky and Gaver [64]
developed a diffusion approximation. Gail et al. [34] also studied the non-
preemptive case of this model. Falin et al. [26] analysed the model of [86] with
an infinite waiting room for stream customers. A discrete-time variant modelled
as an M/G/1-type Markov chain was solved by Gail et al. [33]. An extensive
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treatment of the spectral analysis of M/G/1-type Markov chains by means of
generating functions is given in Gail et al. [36]. Yechiali [125] and Daigle and
Lucantoni [23] studied the present model. Here, we are able to carry the analysis
somewhat further and, additionally, we discuss the case with a finite queue.

The analysis presented in [86], which is the basis for the analysis in this
chapter, was motivated by the introduction of the ABR transfer capability for
data transmissions in ATM networks. Several studies concerned with the appli-
cation of similar models to the performance analysis of ABR have appeared in
the literature around the same time as [86, 82]. We mention Altman et al. [5],
Blaabjerg et al. [14], and Kulkarni and Li [57].

2.3 Preliminaries

This section provides the starting point for the analysis. A central role is played
by both the theory of matrix-geometric solutions developed by Neuts [81] and
the closely related spectral-expansion technique, see for instance Mitrani [73] or
Mitrani and Mitra [77]. For comparisons of both approaches see Mitrani and
Chakka [75] or Haverkort and Ost [42].

It is well known that if p < ¢, then the unique probability vector 7(*) =
(ﬁ(()oo) , ﬁgoo),fgoo) ,...) satisfying 7(*) Q(>) = ( has the matrix-geometric form,

T =7 R, (2.6)
or equivalently,
w0 = 7RI, (2.7)

where the “rate matrix” R is the minimal non-negative solution to the quadratic
matrix equation,

A+ RQs+ R*M =0, (2.8)
see Neuts [81, Theorem 3.1.1].

Remark 2.3.1 For the infinite-queue model, the element [E], ;, of the matrix
R equals —[Qa]y, 5, times the expected cumulative time spent in the state (j +
1, k') starting from (j, k), before either the first return to the level j or, when
p > ¢, “drifting to infinity”, see [81, Section 1.7].

For the finite-queue model a related result holds when p # ¢ (we come back
to this assumption in Remark 2.3.6). In that case the steady-state probability
vector can be written as a sum of two matriz-geometric terms,

ﬁ‘gL) ZEOR]. +ELSL_].’ .7 € {0>1,-'-aL}, (29)

see Naoumov [79, Corollary 5] or Krieger et al. [56, Theorem 1]. This result
was first observed by Hajek [41, Remark following Theorem 5|, but here we
follow the terminology of [56]. The vectors Tp and Z are both of dimension
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N, and their concatenation (Zp,Zr) can be found as the solution to a set of
linear equations of dimension 2N, see [56, Equation (21)]. The matrix S is the
minimal non-negative solution to

S*A+5Qq+ M =0, (2.10)

and the matrix R is as above.

Remark 2.3.2 The matrix S may be interpreted as the analogue of the matrix
R in the “dual” QBD process with levels {...,—2,—1,0} having generator:

0 M Q A 0
0 M Qi A |’
o M QY

where Q((io)’ = Q") — M. For this process, the element [S], ., is — [Qa], ,, times
the expected time spent in (j —1, k') starting from (j, k) before either returning
to the level j or drifting to minus infinity.

Remark 2.3.3 The condition p # c is equivalent to SA + Q4 + RM being
non-singular as required by Naoumov [79, Corollary 5] and Krieger et al. [56,
Theorem 1]. The backward implication is given in [56, Proposition 1.(3)]. The
forward implication can be proved using probabilistic arguments by noting that
if p # c then the two-sided infinite QBD process is transient. For that process,
the matrix SA 4+ Q4 + RM can be interpreted as the subgenerator containing
the transition rates of eventually returning to the level of departure, see also
Remark 2.3.4. This matrix is non-singular if and only if it is a true generator,
which is not the case when the two-sided infinite QBD process is transient.

Lemma 2.3.1 The eigenvalues of the matrices R and S lie inside or on the
unit circle in the complex plane. Moreover, all the eigenvalues of R lie inside
the unit circle if and only if p < ¢, and all the eigenvalues of S lie inside the
unit circle if and only if p > c.

Proof The statements for the matrix R can be found in Neuts [81, Theorems
1.3.1 and 3.1.1]. By symmetry the analogous results follow for the matrix 9, see
also Naoumov [79, Proposition 12] or Krieger et al. [56, Proposition 1.(2)]. O

In order to study the eigenvalues of the matrices R and S, we define the
quadratic matrix polynomial T'(z):

T(2) := A+ 2Qq + 2° M. (2.11)

A treatise of the general theory of matrix polynomials can be found in Gohberg
et al. [38]. Here we exploit the tri-diagonal structure of the matrix T'(z) for a
detailed spectral analysis.
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The roots of det [T'(z)] as a (scalar) polynomial function of z are called the
nullvalues of T'(z). Suppose v is an eigenvector of the matrix R corresponding
to the eigenvalue 1. After pre-multiplying both sides of Equation (2.8) by v, it
follows that ¥ is in the left nullspace of the matrix T'(y)). Hence, det [T'(¢))] = 0,
i.e., 9 is a nullvalue of T'(2). Similarly, using Equation (2.10), if ¥ # 0 and 1/%
is an eigenvalue of S then 9 is a nullvalue of T(z). We further explore these
properties in the following lemma by factorising the matrix polynomial T'(z).
Similar factorisations have been established by Zhao et al. [126, Theorem 3.8(a)]
for very general Markov processes having generators with repeating block rows.
The following lemma is a restatement of the factorisation obtained by Nifiez
Queija and Boxma [86].

Lemma 2.3.2 The matriz polynomial T(2) can be factorised as

T(z) = (2] — R) (zM + RM + Qg), (2.12)

or alternatively as
T(z) =T —25)(A+2SA+ 2Qq) . (2.13)

Proof By writing out the multiplication of individual terms and using Equa-
tions (2.8) and (2.10). O

Corollary 2.3.3 If v is an eigenvalue of R with algebraic multiplicity m, then
Y is a root of the polynomial det [T'(z)] and its multiplicity is at least m. And
if U is an eigenvector of the matriz R corresponding to the eigenvalue 1, then T
is a left nullvector of T (v).

If ¢ #0 and 1/¢ is an eigenvalue of S with algebraic multiplicity m, then
Y is a root of det [T'(2z)] and its multiplicity is not smaller than m. Moreover,
if U is an eigenvector of S corresponding to the eigenvalue 1/1, then U is a left
nullvector of det [T'(¢))].

Proof Directly from Lemma 2.3.2. O

The previous corollary does not account for a zero eigenvalue of the matrix S.
This problem will be tackled by Corollary 2.3.5, which follows from the next
lemma.

Lemma 2.3.4 The left nullspaces of R and A coincide, and so do the left
nullspaces of S and M.

Proof We prove the statement for R and A. The statement for S and M
follows from an analogous argument. Suppose R is singular with left nullvector
v. After pre-multiplying Equation (2.8) by v it is seen that ¥ is also a left nul-
lvector of A. Conversely, suppose \; equals 0, and so the vector 1; with the *®
entry equal to 1 and all other entries equal to 0 is a left nullvector of A. Then
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in the infinite-queue model the level can not increase (i.e., no customers can
arrive) when the state of the server is 7. Therefore starting from (j, %), for any
7, no state of the level j + 1 can ever be visited before another state in level j
is visited. Hence, from Remark 2.3.1, all entries in row 4 of the matrix R equal
0, so that 1; is a left nullvector of R. O

Corollary 2.3.5 The matriz S is singular if and only if ng > 0, i.e., if there
is at least one c¢; equal to 0. In that case z = 0 is a zero of the polynomial
det [zQT(%)] , the multiplicity of this zero is not smaller than the algebraic mul-
tiplicity of the eigenvalue 0 of S.

Proof From Lemma 2.3.4 and Expression (2.13). O

Remark 2.3.4 The factorisation of T'(z) given by Expression (2.12) — and
analogously for Expression (2.13) — can be further elaborated on to obtain:

T(z) =(R—2I)(Qa+ RM) (2G - 1), (2.14)

where the matrix G is the minimal non-negative solution to AG2+Q4 G+M = 0.
The element [G], ;, of the matrix G is the probability that in the infinite-queue
model, for any j, startlng in state (j+1,4) the process enters the level j for the
first time through the state (j,4'), see Neuts [81, Section 3.3]. In the ergodic
case the matrix G obviously is stochastic. Using probabilistic arguments it can
be argued that AG = RM. Both sides of this equality contain the transition
rates of returning to a level from the level above it. For a technical proof of this
identity (in the discrete-time case) see Latouche et al. [61, Theorem 2.1]. With
this identity Equation (2.14) is readily verified. This factorisation leads to the
identification of the eigenvalues of G as the inverses of roots of det [T'(z)], see
Nuifiez Queija [82].

In Section 2.4 we show that both for R and S the set of eigenvectors spans
RY. If p < ¢ we can thus rewrite Expression (2.7) in the “spectral-expansion”
form:

_(Oo) Z o ’(/Jk Uk, 7=0,1,2,. (2.15)
k=1

with 91,...,9% N the eigenvalues of the matrix R and vy,...,0n the correspond-
ing left eigenvectors, i.e., Ty R = Uk, k € {1,..., N}. Similarly, if p # ¢ and

mo = ng = 0 then, for j =0,1,..., L, Expression (2.9) can be rewritten as:

L b
_( ) = Z,Bk oi) Tk + Z ,Bk( ) T (2.16)
k=N+1

Here, 91,...,%y and v1,...,Uy are as before, and 1/¥n41,...,1/than are the

eigenvalues of S with corresponding left eigenvectors Tn41,-..,02N.
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In Section 2.5 we show how the coefficients ay, in Expression (2.15) and the
coefficients Sy in Expression (2.16) can be found once the required v and vy,
are determined.

Remark 2.3.5 If mp > 0 or ng > 0 (or both) then Expressions (2.15) and
(2.16) essentially remain valid. If S has a zero eigenvalue, then we set the
corresponding 1 equal to co and we write 1/¢, = 0. Moreover, by convention
we set 00 = 1.

Remark 2.3.6 If p = c then both R and S have an eigenvalue 1, since ¢y =
Yn+1 = 1, and p — of which the entries are defined by Expression (2.1) — is
the (unique) corresponding left eigenvector for both matrices. The steady-state
distribution for the finite-queue model can not be written as in Expression (2.9).
However, Expression (2.16) can be modified to include this case. When p = ¢,
the steady-state queue-length distribution can be written as

N-1 ] 2N 1 L—j
w0 = Bnp+ Bner [@+ 50+ Y B (W) T+ > B (—> Uk- (2.17)
k=1

k=N+2 wk

Here % is a vector satisfying GQ(Y) = 5[A — M]. Note that such a vector indeed
exists, since the row space of the matrix Q(Y) is exactly the hyperplane that is
perpendicular to the column vector 1 consisting only of ones. Note that when
p=c, indeed p[A — M]1 = 0. The vector u is unique up to a translation along
the vector p. We choose the unique % which is perpendicular to p, i.e., @ is such
that (u,p) = 0.

Remark 2.3.7 Using generating functions, the steady-state probabilities for
the infinite-queue model are obtained from the equation:

7 (2) [*A + 2Qa + M| = (1 - 2)7 M.

Hence, the poles of the generating function 7(*)(2) := Z;io 2 fgoo) correspond
to the inverses of the nullvalues of T'(z). See Gail et al. [36] for an extensive

treatment of this method.

2.4 Spectral analysis

We investigate the roots of the polynomial det [T'(z)]. We show that all these
roots are real and positive. Yechiali [125] and Daigle and Lucantoni [23] present
a related spectral analysis for the finite-queue model when p < ¢. We extend
their results for that case and also analyse the case with p > ¢. In particular,
in [23] it is not proved but assumed that the zeros of det [T'(z)] are different to
ensure the validity of Expression (2.15). Except for the matrix symmetrisation
used in the proof of Lemma 2.4.1, the techniques used in our analysis are differ-
ent from the ones in [125, 23]. We mainly use continuity arguments to prove our
results, whereas for instance in [23] the authors use the fact that the matrices
A, QYY) and M are semidefinite.
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Lemma 2.4.1 For real z # 0 the matriz T(z) has N different, real, eigenvalues.
Proof Note that T'(2) is a tri-diagonal matrix with off-diagonal elements:

T(2)i-1i = ¢ 12

T(2)iic1 = ¢; 2
where i = 2,3,..., N. We denote the i*! diagonal element T(2)i,; by ti(2),
tz(z) :)\z—{Qz—f—)\z‘Fﬂcz}Z‘i'Nszza 1217277N

For real z the matrix T'(z) is similar to a real symmetric matrix, i.e., there exists
a non-singular matrix D such that DT(z)D ! is a real symmetric matrix. Take

D to be the diagonal matrix diag|[di,ds,...,dn] with d; = ,/5—:. The p; are

given in Expression (2.1). Define the symmetric matrix S(z) := DT (z)D~!.
The eigenvalues of T'(2) and S(z) coincide, and hence it remains to prove
the assertions for S(z). The entries of S(z) are given by [S(2)];; = ti(2),

[S(2))ii1: = [S(&)]ii1 = z1/4;_1g; and are zero in all other positions. The
fact that, for real z # 0, S(z) has N different real eigenvalues, can be seen
as follows (see also Parlett [88, Section 7.7]): First, every eigenvalue of a real
symmetric matrix is real. Second, any real symmetric matrix has a full set of
eigenvectors, therefore if S(z) has an eigenvalue 6 with (algebraic) multiplicity
larger than 1 then there must be (at least) two independent eigenvectors corre-
sponding to . But S(z) is tri-diagonal with non-zero elements directly above
and directly below the diagonal, and so each eigenvalue has a unique corre-
sponding eigenvector (up to multiplication by a scalar). O

The fact that the eigenvalues of T'(z) are real for real z, simplifies the analysis
considerably. In the sequel we only consider the eigenvalues of T'(z) as real
functions of the real variable z. Therefore, using Lemma 2.4.1, for real z # 0,
we may denote the eigenvalues of T'(z) by

01(z) < 02(,2) <L < 0N(z) (218)
Obviously,

{61(0),82(0), .., 0x(0)} = {A1, Aay .-, AN} (2.19)

In general the eigenvalues of a matrix are not continuous functions of the en-
tries, see for instance Gail et al. [33]. However, using Lemma 2.4.1 the following
is true for real values of z:

Lemma 2.4.2 All eigenvalues 0x(2), k =1,2,..., N, are continuous functions
of z € R.
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Proof By Lemma 2.4.1 the roots of det [T'(z) — 0] as a polynomial of 6 are
real, for real z, and we may order them as in Relation (2.18). The roots of a
polynomial depend continuously upon the coefficients of the polynomial, except
for the coefficient of the leading term at the value 0, see Horn and Johnson [44,
Appendix D]. The leading term of the characteristic polynomial is 8%V, hence
its coefficient is 1, independent of z. Hence, using the established ordering, the
eigenvalues are continuous functions of the coefficients of the characteristic poly-
nomials. The coefficients of the non-leading terms are themselves polynomials
of z and therefore continuous in z. m|

Recall that mg and ng are the numbers of states ¢ € {1,2,..., N} for which
A; = 0 and ¢; = 0, respectively. The next lemma localises all but one of the
2N — ng nullvalues of T'(z).

Lemma 2.4.3 If mg > 0 then 6:(0) = 62(0) = ... = 01,,(0) = 0. Moreover,
On(1) =0, for k =mo+1,mp+2,...,N — 1 the equation 0x(z) = 0 has (at
least) one solution for z € (0,1), and for k = no + 1,n9 +2,...,N — 1 the
equation 0y (z) = 0 has (at least) one solution for z € (1,00).

Proof It is clear that det[T(1)] = 0, since the rows of T'(1) sum to 0. Fur-
thermore, by Ger§gorin’s theorem all the eigenvalues of 7'(1) are non-positive,
since each eigenvalue must be in at least one of the N Ger§gorin discs (see for
instance Marcus and Minc [69, Section I11.2.2]). Consider the GerSgorin discs
in the complex plane corresponding to the rows of the matrix. Each row deter-
mines such a disc in the following way: the diagonal element in the row is the
center of the disc and the radius of the disc is equal to the sum of the absolute
values of the off-diagonal elements in the row. Since (i) the diagonal elements
of T(1) are negative reals, (ii) the off-diagonal elements are non-negative reals,
(iii) all rows sum to 0, and (iv) the eigenvalues are real, all eigenvalues must be
non-positive. This combined with det[T'(1)] = 0 and Relation (2.18) gives

6o(1) < 01(1)... < On(1) = 0.

The roots in [0, 1) now follow immediately from Equation (2.19) and the conti-
nuity of the 6x(z), since each of the 0x(z), for k = mo+1,mo +2,...,N — 1,
must cross the horizontal axis at least once, somewhere in (0, 1).

The remaining zeros can be found by repeating the above argument for the
matrix zZT(%). Note that, for z # 0, the eigenvalues of this matrix are given
by 9x(z) := 0k(1), k =1,2,...,N. By continuity we may define the 9 (0):

{191(0)’ 192(0)7 R 7191\{(0)} = {,U‘cla HC2, - - -y :U'CN} .
Note that ¥1(0) = 92(0) = ... = 9p,(0) = 0 < Fpe4+1(0) < ... < In(0),
and each of the ¥¢(z), for kK = ng + 1,n9 + 2,...,N — 1, must cross the
horizontal axis at least once, somewhere in (0,1). Hence, the 6i(z) for k =
ng + 1,n9+2,...,N — 1, must cross the horizontal axis somewhere in (1, c0).
O
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Lemma 2.4.4 If p < ¢, then On(z) = 0 for some z € (0,1). If p > ¢, then
On(z) = 0 for some z € (1,00). If p = ¢, then the zero of On(2) at z = 1 is of
multiplicity 2.

Proof See Appendix 2.A. O

Theorem 2.4.5 The polynomial det [T(z)] has a root of multiplicity mg located
at z = 0. All remaining 2N —mg —ng roots are positive reals. For their location
we distinguish three cases:

(i) If p < c then all non-zero roots are single, N — mg of them lie in (0,1),
one at z=1, and N —ng — 1 in (1, 00).

(%) If p > c then all non-zero roots are single, N —mqo—1 of them lie in (0,1),
one at z =1, and N —ng in (1,00).

(i3) If p = c then the zero at z =1 is of multiplicity 2 and all other non-zero
roots are single. N —mgy — 1 of them lie in (0,1) and N —ng — 1 lie in
(1,00).

Proof From the definition of T'(z) it follows that the degree of det [T'(z)] is
2N — ng. By Lemmas 2.4.3 and 2.4.4 we have found all roots of det [T'(z)] with
the required locations. O

Corollary 2.4.6 The matrices R and S have a full set of eigenvectors, all their
non-zero eigenvalues are single, and their left nullspaces correspond to the left
nullspaces of A and M, respectively.

(i) If p < c then the non-zero eigenvalues of R correspond to the zeros of
det [T'(2)] in (0,1) and the nonzero eigenvalues of S correspond to the
inverses of zeros of det[T'(2)] in [1,00).

(i) If p > c then the non-zero eigenvalues of R correspond to the zeros of
det [T'(2)] in (0,1] and the non-zero eigenvalues of S correspond to the
inverses of zeros of det [T(2)] in (1,00).

(i3) If p = c then 1 is an eigenvalue of both matrices R and S. The other
non-zero eigenvalues of R and S correspond to the zeros of det [T'(z)] in
(0,1) and to the inverses of zeros of det [T'(z)] in (1, 00).

Moreover, if 1) # 0 is an eigenvalue of R or 1/1 # 0 an eigenvalue of S then
the corresponding left eigenvector (of R or S) equals the unique left nullvector

of T(¥)-

Proof The Corollary follows from Lemmas 2.3.1 and 2.3.4, Corollary 2.3.3,
and Theorem 2.4.5. In particular the full dimension of the eigenspaces is en-
sured by Lemma 2.3.4 for the zero eigenvalues (since A and M are diagonal),
and by the fact that all other eigenvalues are single. O
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2.5 Queue length in steady state

Corollary 2.4.6 ensures that the matrix R has a full set of eigenvalues, hence,
if p < c then the equilibrium distribution for the infinite-queue model can be
written as in Expression (2.15). As before, let mo and ng be the number of \;
and the number of ¢;, respectively, that are equal to 0. We order the eigenvalues
of R, which are the roots of det [T'(z)] in (0,1), as ¢ =0, for k =1,2,...,my,
and 0 < Ymot1 < Ymot+2 < ... < Yy < 1, and construct the diagonal matrix
¥ = diag[¢1,%2,...,%¥n]. The corresponding (normalised) left eigenvectors
T1,Ta,...,UnN constitute the matrix V, T, being the k' row of V. We have the
obvious Jordan decomposition R = V" 1IV.

Having determined the 14 and 7}, as the roots inside [0,1) of det [T'(-)] and
the corresponding left nullvectors of T'(-), respectively, it remains to find the

coefficients oy, in Equation (2.15). Writing @ = (a1,a2,...,an), and using
Yito ﬁg-oo) = P, we have,
a(l-9)"'V=p (2.20)

Indeed, the inverse of I — U exists, since 1 is not an eigenvalue of R when p < c,
cf. Lemma 2.3.1. The entries of the probability vector p are given by Expression
(2.1). Equation (2.20) uniquely determines @, since V' is non-singular. Hence,
the steady-state probability vectors ﬁg-oo), 7=0,1,2,..., are determined through
(2.15). In particular, the marginal queue-length distribution is given by

N
k=0

Remark 2.5.1 From Expression (2.21) the moments of the number of cus-
tomers in the infinite-queue model are easily determined, in particular the mean
E [X(*)] and the variance Var [X(*)]. Using Little’s formula we immediately
obtain the mean processing time (or sojourn time) from E [X(*)].

Now we turn to the steady-state queue-length distribution for the finite-
queue model, for the case that p # c¢. Analogous to the infinite-queue case, we
order the zeros of det [T'(z)] as ¢ =0, for k =1,2,...,mg, and

0 < VPmot1 <+ <YN <1< Yng1 < .o < Y2N-_ng-

The corresponding (normalised) left nullvectors of T'(z) are again denoted by
Ug. It was already noted below Expression (2.9) that the vectors Ty and Zj, are
uniquely determined by a set of linear equations of dimension 2N, see Naoumov
[79, Corollary 5] or Krieger et al. [56, Equation (21)]. Here we derive an alterna-
tive set of equations which uniquely determines the coefficients 8 by combining
Expression (2.16) with the boundary equations,

o) [Q(Y) - A] +7PM = 0,
mhAm) (@) M| = 0,



2.6 Fast and slow fluctuations of the service rates 29

and the normalisation condition Zf:o 791 = 1. The resulting equations for

J
the coefficients B are

(:817"'a/8N75N+17-"7ﬂ2N)
X[ VI[QY) —A]+¥VM xIrL*1VA+\1/LVJQ<Y>—M] ]

LW [QY) —A] + LW M WA+ W [QY) — M]
= (0,0), (2.22)
with the normalisation
L+1
i s % 1- (ka
BTl + Br———— Ul =1,

o 1o k=N-+1 1-3

with l_li’f:rl = L+ 1 when £ = 1. The matrix ¥ is, as before, the diag-

onalisation of R, i.e., ¥ = VRV ™!, Similarly ® = WSW~! is the diago-
nalisation of S. Thus, ® is the diagonal matrix containing the eigenvalues
1/¥ny1,1/¥ny2,-..,1/an, of S and the k** row of W is Uy, which is the
left eigenvector of S corresponding to 1/vxnyx. As in Remark 2.3.5, if the kb
eigenvalue of S equals zero we write ¥y = 00 and 1/9nr = 0.

Remark 2.5.2 Since there is a unique equilibrium distribution 7%) for the
Markov process, a vector (31, fa, - .., B2n) must exist such that Equation (2.22)
is satisfied. Recall that any such vector would lead to a solution of the internal
balance equations, that is a solution to the equilibrium equations corresponding
to the levels j = 1,2,...,L — 1. Two different solutions to Equation (2.22) can
not lead to the same steady-state probability distribution 7X), using Expression
(2.16), since p # c. Hence, the vector (81,82, .- ., B2n) solving Equation (2.22)
is unique up to multiplication by a scalar.

Remark 2.5.3 If p = ¢, the steady-state queue-length distribution for the
finite-queue model is given by Expression (2.17). In the same way as for Equa-
tion (2.22) we can derive a set of 2N equations for the S, by substituting
Expression (2.17) into the boundary equations. We can argue in the same way
as in the previous remark that this defines the 3 uniquely (up to multiplication
by a common scalar).

2.6 Fast and slow fluctuations of the service rates

If the service capacity fluctuates very fast compared to the rate at which cus-
tomers arrive (and depart), we may expect the queue-length processes to behave
as those in the standard M/M/1/L queues (including L = oo for the infinite-
queue model) with constant service capacity. An intuitive argument for this is
that customers stay so long in the system, with respect to the fluctuations of
the service rate, that the average service capacity during the residence time of
a customer in the system is close to the (overall) mean service capacity.
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When the service capacity changes very slowly, we expect the queues to
behave as if the customers with probability p; arrive to an M/M/1/L queue
with service rate c;, ¢ = 1,2,..., N. Similar to the intuitive argument above,
this can be explained by arguing that the service requirements of customers are
so small that they typically do not see a change of service rate. In this argument
special care should be given to the case that for at least one ¢ € {1,2,..., N}
the average amount of work arriving to the system, Zfil DiXi/ 1, is larger than
or equal to the service rate c¢;. Then with L = oo the “limiting” model is
non-ergodic.

The limiting behaviour of the models is often referred to as nearly complete
decomposability of the Markov chain under consideration. The first rigorous
treatment of nearly completely decomposable Markov chains with a finite state
space was given by Simon and Ando [107]. The authors argued that in many
previous studies nearly complete decomposability was used to develop approx-
imations of, for instance, the steady-state distribution of Markov chains. The
results in [107] provide a theoretical basis for such an approximation. Courtois
[22] further developed the theory giving an error analysis of the approximation,
and applied it to various models, including queueing networks. For another ap-
plication of nearly completely decomposable Markov chains in the performance
analysis of multiservice communication networks see Reiman and Schmitt [92].
In this section we formalise the above statements about the limiting behaviour
for fast and slow fluctuations of the service rate. We do this using a direct an-
alytic approach based on the spectral analysis of Section 2.4. The finite-queue
model could be analysed using the results of [107], but for the infinite-queue
model that approach is not suitable. For completeness we choose to include the
analysis of the finite-queue model too.

We study the above mentioned nearly complete decomposability by intro-
ducing a time scale parameter € € (0,00). For fixed €, we define a Markovian
birth and death process Y, (¢) with infinitesimal generator &) = Q). Let
Y (t) = Y.(t) be the state of the server at time ¢. Note that the generator Q™)
has the same structure as the generator Qy of the process Y (¢), see Expres-
sion (2.5), only the time scale has changed: transitions of the birth and death
process occur € times faster. The steady-state probability distribution of the
process Y(t) is independent of €, see Expression (2.1). Therefore p and c are
independent of € too, and in particular the ergodicity condition for the infinite-
queue model, p < ¢, remains unchanged. We extend previous definitions by
using a subscript e. For instance, we define the matrix T,(z) as the analogue of
T(z). It will be convenient to write

To(2) := (1 = 2)A 4+ 2QY) + 2(z — 1) M,

where we used the definition of T'(z) in Expression (2.11), and substituted Q4 =

) _ A — M. All results proved in Section 2.4 for T(z) remain true for T,(z)
as a function of z, when € € (0, 00) is fixed. The case ¢ = 0 is not included. For
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€ € (0,00) we also define the eigenvalues of T¢(z)
0c1(2) <0c2(2) <...<bcn(2), z€R,
and the roots of det [T.(2)]

'l/}e,l S 1/)6,2 S R S "/}e,ZN-

Remark 2.6.1 When p = ¢, the steady-state queue-length distribution of the
finite-queue model is given by

N-1

1 . j =
fe;'L) = ,Be,Nﬁ + /36,N+1 [EE + Jp:| + Z ﬁe,k (1/)67’9)] Ve,k
k=1

2N 1 L—j
+ Z ﬂe,k <ﬂ> ’l_]e,ka

k=N+2

cf. Expression (2.17) for the case e = 1. The vector @ is defined as in Remark
2.3.6. Obviously the vector %ﬂ is continuous in € € (0, 00).

Using the previous remark we can analyse the case p = ¢ by similar argu-
ments as for p # c. For ease of presentation we make the following assumption
throughout this section.

Assumption 2.6.1 The mean arrival rate and the mean service rate are not
equal, i.e., p # c.

Lemma 2.6.1 For z € R, the eigenvalues 0 (2), k=1,2,..., N, are real and
continuous functions of € € [0,00). Moreover,

{0o(z): k=1,2,..., N} ={(1 - 2) (A — pcxz) : k=1,2,...,N},

and,

lim QEL(Z) = 201 1 (1).

€—00 €
Proof For € > 0 we know from Lemma 2.4.1 that the eigenvalues of T,(z) are
real. As in the proof of Lemma 2.4.2, the continuity of the 6. x(z) as functions
of € then follows from Horn and Johnson [44, Appendix D]. Because of the con-
tinuity in e, the limit lim¢ o 6 x(2) is found by setting € = 0 in T,(z), which
then becomes a diagonal matrix. Applying the same arguments to T.(z)/c as
a matrix polynomial in 1/e, using lim. o, 72(2) /€ = 2QY), and Q1Y) = T (1),
we find the second limit. m|

Lemma 2.6.2 For k = 1,2,...,2N — ngy, the nullvalues 1. and the corre-
sponding left nullvectors U, of the matriz Tc(z) are continuous functions of
e € (0,00).
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Proof For € # 0, the coefficient of the leading term of det [T¢(z)], as a polyno-
mial of z, is non-zero. Therefore the roots 1. are continuous in € # 0, see also
the proof of Lemma 2.4.2.

The continuity of the nullvectors follows from the following construction of
Uek, for k = 1,2,...,2N —ng. Let ¥ = (v1,vs,...,vn) be the vector with
components vy := 1, v := — [Te(Yek)l; | / [Te(Yer)ly ;> and for i =3,4,..., N,

—Vi-1 [TE("/’e,k)]i 1,i—1 — Vi-2 [T (7/)6 k)]z 2,i— 1
(Te(We,r)]; i1

Since the nullvalues are continuous in € > 0, so are the v;. Normalising the
nullvectors such that their (Euclidean) norm equals 1, we have Ty = I%Iﬁ' |

V; =

Corollary 2.6.3 The coefficients aer, k=1,...,N, and B, k=1,...,2N,
are continuous functions of € € (0, 00).

Proof For e > 0, the matrix V, is non-singular and, from Lemma 2.6.2, contin-
uous in €. Hence, so is the inverse matrix V.71. The continuity of the coefficients
ek now follows from @, = pV, ' [I — ¥.], see Equation (2.20).

The proof of the continuity of the coefficients 3 x is somewhat more involved
but follows along the same lines. Asin Remark 2.3.5, for k = 2N —ng+1,...,2N,
we set by convention ., = 400 and —k = 0 is a constant (and contlnuous)

function of e. For € > 0 we formulate the analogue of Equation (2.22):

(Beis- -3 Be,Ny Be,Nt15 -+ -, Be2n)

V.M 4V, [Q(Y) Al wEvA ey Q) -
SLIWM +0FW, (@ — A oW+ W, Q) - M]
= (0,0). (2.23)

X

For fixed € > 0 the coefficients [, ; are unique. Hence, Equation (2.23) together
with the normalisation condition defines a non-singular system. We conclude
that these coefficients are continuous in € > 0. O

Let p; := X\;/p, i € {1,2,..., N}, and define the numbers I, := # {i : p; < ¢;}
and ly := #{i: p; > ¢;}. Furthermore, the permutation o of {1,2,...,N} is
such that it orders the ratios p;/c; in non-decreasing order:

pa(l) < p0(2) < pa(N)
Co(1)  Co(2) = Co(ny

The permutation o is not necessarily unique. Recall that by convention we set

% equal to +oo, see Remark 2.3.5. To exclude the case p; = ¢; = 0, for some ¢,

we make the following assumption for the remainder of this section.



2.6 Fast and slow fluctuations of the service rates 33

Assumption 2.6.2 For alli=1,2,...,N, either A\; > 0 or ¢; > 0.

This assumption is not essential for our analysis, but facilitates the presen-
tation. Moreover, the general case where we allow p; = ¢; = 0, for some %, can
be derived from the results under the assumption that it is not allowed. In the
following remark we indicate how this can be done.

Remark 2.6.2 When Assumption 2.6.2 is not satisfied, the states of the server
that violate the assumption may be “eliminated” in the following way. Suppose
Ai =¢; =0, for some i € {1,2,...,N}. Consider the length of the queue and
the state of the server (for either model) only at times ¢ that Y (¢) # i. The
resulting model is one with the same structure as before, only now the state of
the server can be in a total number of N —1 states {1,2,...,i—1,i+1,...,N}.
From state ¢ — 1 the server moves to ¢ + 1 with rate q;“_1 X (qf /qi) , and from
state i + 1 to ¢ — 1 with rate ¢;;, X (g; /g;) - All other transition rates for the
state of the server, as well as the arrival and service rates of customers, are
as before. The steady-state queue-length probabilities in the translated model
correspond to those in the original model conditional on the state of the server
not being equal to i.

Lemma 2.6.4 The limits 1 = limejg e r and Vo = limeyo e r exist for
k=1,2,...,2N. Fork € {1,2,...,N}, it holds that

wO,k — min { pa(k) , 1} ,

Co (k)

Yokt N = max{pa(k),l}-
Co(k)

For k € {1,2,...,N}, if pok) < Co(k) then To [A — p"—”‘;M] =0, otherwise

dos (i [A = M]+ Q™)) =0,

where 0 < ky < KN—1 < ... < KN—i,+1 < 00 are all the Iy non-negative and
finite nullvalues of the matriz polynomial Kk [A — M)+ Q™).

Forke {N+1,...,2N}, if po(k—N) > Co(k—nN) then Tk [A - MM} =

Co(k—N)
0, otherwise

Tk (i [A = M]+ Q™)) =0,

where 0 > Kny1 > KNg2 > ... > KN4y, > —0o0 are all the i non-positive and
finite nullvalues of the matriz polynomial k[A — M)+ Q).

The matrices Vo := lim¢o Ve and Wy := limco W are non-singular. It
further holds that if py(ry = co(x) then Vok = Vo, N+k-

Proof See Appendix 2.B. O
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Corollary 2.6.5 For k=1,2,...,N,
. . pcr(k)
1 ek = Do 1-— 1
Elﬁ)la k= Do(k) < mm{ca(k)’ }) Yk

Tk = Z [V(J_l]i,k ,

. Po(i) _ Po(k)
"Co(i)  Co(k)

where

i.e., Y is the sum of the entries i in the k' column of %_1 for which p,(;) =
Po(k)-
Proof Write the vector  as a combination of the rows of Vj, this is possible

since Vj is non-singular, see Lemma 2.6.4. Then the limits follow from Equation
(2.20) and Lemma 2.6.4. |

Corollary 2.6.6 Let Uy be the non-singular matriz with its successive rows
equal to Vo, @ € {1,2,...,N —lo} U{2N -l +1,2N — I, +2,...,2N}. For
k=1,2,...,N, it holds that

(i) if por) < Co(k) then

1— Po(k /Ca k .
) ( )L+1 Yk hﬁ}ﬂe,N+k =0,
1= (pok)/Co)) ¢

16%1 Be,k = Po(k)

(%) if Po(k) > Co(k) then

1= (Cok)/Po(k)) )
Yk s lim ,Be,k = Oa
1- (cfr(k)/pa(k))L+l e40

leli{]l ﬂe,N—i—k = Po(k)

(#3) if Po(k) = Co(k) then
. 1
161%1 Bek + Be,N+k = Po(k) L——i—l%’

where
Ve = [Ual]i,k'

;. Pa(i) _ Po(k)
"Co(i)  Co(k)

Proof See Appendix 2.C. O

Now we derive the limiting steady-state queue-length distributions, when
€ J. 0, for both the infinite-queue and the finite-queue models. Note that in the
infinite-queue model, if at least one of the ratios py/ck is not smaller than 1,
then the queue-length process becomes unstable in the limit.
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Theorem 2.6.7 Foric {1,...,N}, j€{0,...,L},
1 o/ N
nmp{xgnz$nzﬁ}:pr___&ﬁhj(&),

gt 1= (pife)™ \e

11—z R 1 _
where =57 = T when x = 1.

If p < c then forie{1,...,N}, j€{0,1,...},

J
. (00) _ 5 _al - Pi . Pi
IGIE)IP{Xe 73, Y. 2} i <1 mln{Ci,1}> (mln{Ci,l}> .

Proof The limiting distributions follow directly from Lemma 2.6.4 and Corol-
laries 2.6.5 and 2.6.6. |

Having determined the limiting steady-state queue-length distributions for
slowly fluctuating service rates, we now turn to the case where the fluctuations
in the service rates are fast with respect to the mean arrival and departure rates
of customers.

Lemma 2.6.8 The limits oo := liMe_s00 Ye i aNd Voo 1= lime_yo0 De ; exist

for k =1,2,...,2N. The limits of the nullvalues are given by Yoo = 0, for
k=1,2,...,N -1, by Yoo, =00, fork=N+2,N+3,...,2N, and by

Yoo = min{21},
Yoo, N41 = max{g,l} .
Moreover, for k=1,2,...,N,
Voo [ Q) +&A] =0,
Uoo,N+k [Q(Y) - CkM] =0.

Here o0 > & > €2 > ... > &En = 0 are the nullvalues of the matrix polynomial
QW) 4 ¢A, and0=C > (> ... > (n > —oo are the nullvalues of the matriz
polynomial Q) — (M. In particular, Voo,N = Uoo,N+1 = D. The matrices
Voo i=lime_ 00 Ve and Wy, := lime_, oo We exist and are non-singular.

Proof See Appendix 2.D. m]

Corollary 2.6.9 Ifp < c, then

lim e, = 0, k=1,2,...,N—-1,
€E— 00
lim aey = 1-— B.

€—00 C
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Proof Lemma 2.6.8 states that V, exists and is non-singular. The vector p is
(up to multiplication by a scalar) equal to the last row of Vo, and, hence,

lim pV " = (0,...,0,1).

€E— 00
The desired limits now follow directly from Equation (2.20). ad
Corollary 2.6.10 For k=1,2,...,N—1,N+2,...,2N, it holds that

lim B¢, = 0.
E— 00

If p < c then limc_; o0 Be,n+1 = 0 and

1—p/c
1 N =
oy Pen 1—(p/c)t+t
If p > c then lim_, o, B,y = 0 and
1-—p/c

Jlglo Be,N+1 = W

Proof See Appendix 2.E. O

In the next theorem we use the above results to find the limiting steady-
state queue-length distributions, when € — 0o, for both the infinite-queue and
the finite-queue models. Indeed, the limiting distributions correspond to the
case where the arrival and service rates are fixed and equal to A := Zszl Pk
and c, respectively.

Theorem 2.6.11 Forie {1,...,N}, j€{0,...,L},

1—p/c J
1 (L) p—tl ] p—tl ) p—tl '7p B
elggop Xe ¥ Z} iy (p/c)E+1 (c) ’

Ifp<c, then fori € {1,...,N}, 7 €{0,1,...},

lim P{X§°°) — Y. = z} = p; (1 _ 3) (B)j.

€—00 Cc C

Proof Follows from Lemma 2.6.8 and Corollaries 2.6.9 and 2.6.10. |

Remark 2.6.3 In this section we concentrated on finding the limiting distri-
bution. A next step would be to investigate the speed of convergence to the
limiting distributions, as € tends to zero or to infinity. The speed of convergence
is an indication of the error when approximating the probabilities 7 ;) by
their limits, as € tends to 0 or to 0o, see also Courtois [22, Chapter 2]. Partial
results were obtained in the proofs of Lemmas 2.6.4 and 2.6.8 and in the proof
of Corollary 2.6.6. In particular we found that if p; # ¢; for all 4, then the error
of the approximation, 7, ;) — 7o,(j,i), is of the order O(e) when € | 0, for both
the infinite- and finite-queue models.
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2.7 Incorporating a maximum service rate

We show how the models presented in Section 2.1 can be modified to incorporate
the case where the maximum rate rg_e) at which one customer can be served is
smaller than the maximum service rate of the station max; {c;}. When the

number of customers in the system is j and the state of the server is ¢, the
departure rate of customers is equal to min { UCiyJ m*(f) } We define

S ’Vmax{ci % :(8)1,2,...,N}w 1
T+
which is not smaller than 1 by assumption. For any z € R, [z] is the smallest
integer which is larger than or equal to z. Note that J+1 is the minimum number
of customers needed such that in any state of the server the total service capacity
can be employed to serve customers. We illustrate the effect of the maximum
service rate on the analysis of the infinite-queue model. Similar arguments hold
for the finite-queue model.

The generator of the Markov chain describing the state of the server and the
number of customers in the infinite-queue model can now be written as

0
O
M® QP A

0 = MO QP A

M Qs A

M Q4 A

M is the diagonal matrix with i*" diagonal entry equal to min { UCiyJ ur(f)

and ng) =QY)—A-—MU, for j =1,2,...,J. All other matrices are as before.

Remark 2.7.1 The discussion below also holds (with minor modifications) in
the case that the matrix A inrow j =0,1,2,...,J —1, is replaced with a matrix
A which may be different for different j.

Since the modification of the rates — with respect to the original model of
Section 2.1 — only concerns a finite number of states, the ergodicity condition
p < c does not change. Moreover, the equilibrium equations for the levels
j > J remain exactly the same as in the original model, hence, in the ergodic
case we still have Relation (2.6) for j > J, and with ezactly the same matriz
R as before. Therefore, the analysis with respect to the homogeneous part
of the state space (all levels j > J) remains unchanged. However, once the
eigenvalues and eigenvectors of the matrix R have been determined, we need to
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solve the following finite set of equations to find the 7_r(()°°),7_r§°°), . ,ﬁ(Joo) (up

to multiplication by a scalar):

72 QY +m P MW 0,
T+ IQY) + ) MUY 0, j=1,...,0—1, (2.24)
TN+ 700 + 7 RM = 0.

Here, ﬁf,o:i)l in the last equation has been replaced with ﬁf,oo)R according to
Relation (2.6), which is now valid for j > J. Having solved these equations, we
can find the coefficients oy, in the following modification of Expression (2.15)

N
0= e W)k, j=d I 41,042, (2.25)
k=1
by solving
aV =7,
Note that ﬁf,w) — as well as f((fo),fgoo), ... ,f(J°_°)1 — was found up to multipli-

cation by a scalar, hence, so is @. The common scalar can then be found by
requiring the resulting distribution 7 to sum up to 1.

2.8 Numerical experiments

In this section we present numerical results to illustrate the influence of a varying
service rate on the performance of (elastic) customers. We are particularly
interested in the effect of fast and slow fluctuations of the service rate, which we
studied extensively in Section 2.6. We use the variant of the model of Section
1.5 presented by Nufiez Queija and Boxma [86]. This model was described in
some detail in the introduction of this chapter and in Section 2.2. It arises as
a special case of the infinite-queue model in the following way. The customers
in the general model of Section 2.1 are elastic customers, and in this section we
denote the queue length at time ¢ by X (t) = X{°(t). To avoid confusion, we
note that here we replace the superscript (®) — in the numerical experiments
we only consider an infinite queue for elastic customers — by the superscript
(¢), The number of stream customers Xe(s)(t) determines the state of the server:
Y.(t) = x® (t) + 1. Here it will be more convenient to work with the number of
stream customers than with the state of the server. In steady state we use Xe(e)
and X instaed of X{?(¢) and X{¥(¢). As in Section 2.6, ¢ > 0 is a time scale
parameter. Stream customers arrive according to a Poisson process with rate
eA®). Each stream customer requires a fixed capacity r(®) for the total duration
of the holding time, which is exponentially distributed with mean h(®) /. In [86]
) is equal to the capacity of one server. We further denote the work offered
to the system by stream customers by p(® := eX® x h(s)/ e = A®hE) | which
obviously is independent of €. In the numerical experiments we assume that the
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total service capacity of the system C is available for stream customers, that
stream customers have preemptive resume priority over elastic customers, and
that there is no waiting room for stream customers. We further assume that C
is a multiple of #®): C = L®)r(), Here L®) is the maximum number of stream
customers in the system. Note that N = L(® 4 1, since the number of stream
customers can vary from 0 to L(®). Furthermore, the (marginal) process x¥® (t)
evolves as the queue-length process of the M/M/L(S) queue. The departure
rate of stream customers is ¢;,; = je/ h® when X (t) = Y(t) -1 = j,
j=1,2,...,L® and the arrival rate is q;-r_H =eX®, j=0,1,...,L06) —1.
The steady-state probabilities of the number of stream customers (the state of
the server) given by Expression (2.1) indeed become the well known truncated
Poisson distribution of Erlang’s loss system in equilibrium:

()7 /41
P{x=j}=pj= L((p)# j=0,1,...,L®,
Do (P®)F /!
The mean service requirement of elastic customers is f(®) = 1/p and their

arrival rate is independent of the number of stream customers, i.e., A\; = A(®),
for all 4. The work load of elastic customers (previously p) is denoted by p(®).
An individual elastic customer does not require a minimum service capacity
(r(_e) = 0), and can be served at any positive rate (rff) = 00). Hence, with
j stream customers and at least 1 elastic customer in the system, the (total)
service rate of elastic customers (cj11) is C' — jr(®.

For normalisation purposes we choose x =1 and A(®) =1 (this is no restric-
tion). These values are such that stream customers and elastic customers have
the same mean service requirement for ¢ = 1. In all cases we take L(®) = 17. In
our first experiment we choose p(*) = 10. We note that p(® is not equal to the
amount of work processed for stream customers, since new stream customers are
rejected from the system if there are L(®) other stream customers present. The
value of p(® determines the steady-state distribution of the number of stream
customers and, in particular, the mean service rate for elastic customers

L)

c= Z (C—jr(s))P{XE(S) =j},

=0

which inherits the independence of € from the distribution of Xe(s).

In Figure 2.1 we have plotted for e = %, 1 and oo, the mean number of elastic
customers for increasing p(®. On the horizontal axis we indicate p(e)/ c. The
lowest curve, denoted by € = oo, corresponds to the ordinary M/M/1 queue
with fixed service capacity c. In Figure 2.2 we have done the same for the vari-
ance of the number of elastic customers. We observe a significant performance
degradation for elastic customers when the service fluctuations are very slow,
particularly when p(® is close to c.

Next we investigate the impact of the chosen value of p(® on the observed
service degradation for small e. For this we consider the system for a fixed
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Figure 2.2: Queue-length variance; p(®) = 10
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amount of carried traffic. Clearly, since all elastic customers are eventually
served, the amount of elastic traffic carried equals the amount of elastic traffic
offered, which is p(¢). Stream customers are not always accepted into the system.
Using the definition of ¢, the mean capacity available to elastic customers, we
may write for the mean amount of stream traffic carried per unit of time:

rOE [XE(S)} =C-c

Note that ¢ is completely determined by p®, which we indicate by writing
c = c¢(p®). For a fixed amount of carried traffic v := p(®) 4+ C — ¢(p®)), we
compute the mean and the variance of the number of elastic customers in the
system for varying p(®) and p(®). We do this for € = %, 1,5, and oco. Obviously,

e) @©\?
P{Xéi)oo:j}:(l—”—) (”—) i=0,1,2,...,
C C

hence,
01 A
E [Xezoo} = 4=, (2.26)
© ©
Var [Xe(i)oo} = 7= (1 + A= U) . (2.27)

In Figures 2.3 and 2.4 the results are shown for v = 0.7C, and in Figures 2.5
and 2.6 for v = 0.9C. As p(® increases from 0 to v, p® decreases such that
at all times p(®) + C — ¢(p(®) remains equal to the chosen value of v. On the
horizontal axis p(®) is normalised as p(®) /u. In all of the Figures 2.3 — 2.6, the
top curve corresponds to the case e = %, the second to € = 1, the third to € = 5,
and the bottom curve to € = co. In accordance with Expressions (2.26) and
(2.27), in Figures 2.3 and 2.5, the bottom curve is a straight line, and in Figures
2.4 and 2.6 the bottom curve has a quadratic shape. Further note from Figures
2.4 and 2.6 that for “slow” stream traffic (e = £), the queue-length variance is
not a monotone function of p(®). This may be explained by the fact that, as
p(® increases, a trade-off between opposite effects takes place. On one hand the
load of elastic traffic increases as p(® increases; this expectedly has an increasing
effect on the variance. On the other hand the load of stream traffic (and the
variability of the capacity available to elastic traffic) decreases, such that the
total amount of carried traffic v remains constant. This has a decreasing effect
on the variance of the number of elastic customers in the system.

We observe that the mean and the variance of the number of elastic cus-
tomers in the system are particularly sensitive to ¢ when the amount of traffic
carried of either type is of the same order (p(®) &~ C — c) and when the system
utilisation is large (v = C).

Remark 2.8.1 The numerical evaluation of this model proved to be fast and
stable in many experiments over a wide range of parameter values. In general,
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use of spectral methods instead of matrix-geometric routines, to find the matrix
R, improves the computational efficiency. With matrix-geometric techniques the
computation time increases with p = p(¢), while the computational effort using
spectral methods is insensitive to this parameter. Based on this observation, the
use of the spectral-expansion technique is advocated by Mitrani [73], Mitrani and
Chakka [75] and Haverkort and Ost [42]. However, Latouche and Ramaswami
[62] show that matrix-geometric routines tend to be more robust, due to the fact
that the matrix iterates in the algorithms are stochastic matrices. Thus, at each
intermediate step, the matrices can be re-normalised such that the rows sum to
1. In our case, numerical evaluation is facilitated by the fact that the roots of
T(z) are positive real numbers. We have computed these roots using essentially
a bisection search routine, and no serious problems were encountered. Finding
the left nullvectors vy and the coefficients oy did not lead to complications,
even when the dimension of T'(z) was of the order of several hundreds. We
emphasise that the numerical stability of this straightforward procedure is due
to the tri-diagonal structure of T'(z). For more general models this procedure
may not give satisfactory results.

2.9 Concluding remarks

In this chapter we have studied a queueing model with a server that changes
its service rate according to a finite birth and death process. Both the cases
of an infinite and a finite maximum queue size were considered. The models
constitute an important subclass of the basic model presented in Section 1.5.
Under exponentiality assumptions on the service requirements and the process
regulating the available service capacity (a finite birth and death process), we
were able to give a detailed analysis of the distribution of the number of (elastic)
customers in the system. Although the assumption of exponentially distributed
service requirements is restrictive, the model is useful to gain qualitative insights
into the performance of elastic traffic.

Particular attention was devoted to the effect of the varying service rate
on the queue-length distribution. In numerical experiments we observed that,
depending on time scale differences, ignoring the service variability and fixing
the capacity at the mean, can be a very bad approximation.

From the mean queue length we also obtain the mean sojourn time (process-
ing time) through Little’s formula. In the remainder of this thesis we investigate
the sojourn time in greater detail. Special attention will be given to the sojourn
time conditional on the service requirement.

Appendix
2.A Proof of Lemma 2.4.4

Lemma Ifp <c, then On(z) =0 for some z € (0,1). If p > ¢, then On(z) =0
for some z € (1,00). If p=c, then the zero of On(z) at z =1 is of multiplicity
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2.

Proof First we single out the known root at z = 1 by factorising the determi-
nant of T'(z),
det [T(2)] = (1 — 2)g(2), (2.28)

with g(z) the determinant of the matrix obtained by replacing the last column
of T'(z) by the sum of all columns and then dividing that column by 1 — z:

ti(z) gz AL — pcrz
a2z ta2) @iz A2 — pcaz

1% tn-1(2)  An—1—pen-1z
an? AN — HCNZ

All non-specified entries are zero. We evaluate g(1) by manipulating the above
matrix evaluated at z = 1. First add to each column, except for the first and
the last one, all columns to the left of it. We now have:

_qi*' 0 A1 — per
q —q; 0 A2 — pco
9(1) = .
adN_2 _({N—2 0+ .
dn_1 —qn_1 AN—1— MCN_1
dn AN — peN
N i1 N
= > DN —pe) [[=ah) T1 4
i=1 k=1 k=i+1

with the empty product being equal to 1. The last equality follows by expanding
the determinant with respect to its last column. Using the probabilities p; given
by Expression (2.1) we rewrite this to

N

o) = (DY = pe) [T

k=2
HN q_ N N
(—1)N_17k;12 . (Zpi)\i —meci)-
i=1 =1

If p < c then sign[g(1)] = (—1)V. By using det[T(z)] = H,ICV:l 0r(z), Equation
(2.28), and Lemmas 2.4.2 and 2.4.3 it follows that Onx(z) < 0 for z in some left
neighbourhood of 1, i.e., there is an € > 0 such that fx(z) < 0 for z € (1—¢,1).
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Therefore 6 (z) must cross the horizontal axis somewhere in the interval (0, 1).
Similarly, if p > ¢ then 6x(2z) < 0 in a right neighbourhood of 1 and, hence,
On(z) must cross the horizontal axis somewhere in the interval (1,00) (see the

proof of Lemma 2.4.3). Finally, if p = ¢ then lim,_,; bn(z) _ g, |

1-z

2.B Proof of Lemma 2.6.4

Lemma The limits Yo := limjo Yer and Vo := limeyo Ve exist for k =
1,2,...,2N. For k € {1,2,...,N}, it holds that

wO,k = min{mal}a

Co (k)

Yok+N = max{m,l}-
Co(k)

For k€ {1,2,...,N}, if por) < Co(k) then To [A - MM] =0, otherwise

Co (k)
Vo, k (Hk [A - M] + Q(Y)) = 6,

where 0 < ky < KN—1 < ... < KN—l,+1 < 00 are all the Iy non-negative and
finite nullvalues of the matriz polynomial k [A — M)+ Q™).

Fork e {N +1,...,2N}, if po(k—nN) > Co(k—n) then Dok [A — p"(k—_N)M] =

Co(k—N)
0, otherwise

G (e [ — M)+ Q™) =0,

where 0 > Kny1 > Kny2 > ... > KNy, > —0o are all the I3 non-positive and
finite nullvalues of the matriz polynomial Kk [A — M|+ Q™).

The matrices Vo := lim¢o Ve and Wy := lim¢o We are non-singular. It
further holds that if p,(x) = co(k) then Vox = Vo,N+k-

Proof Under Assumption 2.6.2 the continuity of the nullvalues, as functions
of €, can be extended to the point ¢ = 0, since in that case the coefficient of
the leading term of det[Z.(z)] does not vanish at ¢ = 0. The continuity at
€ = 0 implies the limits of the nullvalues. The existence of the limits of the
corresponding left nullvectors then follows from the construction of these in the
proof of Lemma 2.6.2: each entry of a left nullvector is a bounded rational
function of the corresponding nullvalue. From that construction of the left
nullvectors we also directly find Uy when p,) < co(x), and Vg x4y when
Po(k) > Co(k)- The nullvalues corresponding to the remaining left nullvector
tend to 1 as € | 0. Suppose 9.; — 1 as € | 0. Then lim, o T.(¢. ;) is a matrix
with all entries equal to 0. Therefore the argument above does not apply. We
consider the matrix x [A — §M]+6Q(Y) as a polynomial in k € R with parameter
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6 € (0,00). For fixed & smaller than but close enough to 1 (such that A\; # duc;
for all 7), the matrix polynomial x [A — M|+ QY) has nullvalues

KN+, (0) < ... <kn+1(6) <0< kn(d) <...< Ki4+1(0).
For fixed § larger than but close to 1, the nullvalues are
Kon—1,(0) < ... < kN41(0) <0< kNn(d) <...< KN—i,41(]).
For § =1 we have

KN4l (].) <. < Ii‘,N+1(l) <0< ISN(l) <. < NN_12+1(1),

and we define ky_,(1) = ... = K, +1(1) = +00 as the limits of the correspond-
ing nullvalues as ¢ 1 1, and kan—i,(1) = ... = KN4, +1(1) = —oo as the limits
of the corresponding nullvalues as ¢ | 1. In all cases ky(d) < 0 if and only if
p <c, and Kn4+1(6) > 0 if and only if p > c.
Note that if 9. ; — 1 as € | 0, then
1- we,i

K4 (11[}6,1) - € I
and T, is the left nullvector of the matrix K;(¢e;) [A — e M| + ;be,iQ(Y).
The desired limit of ¥.; now follows from continuity arguments. Note that
if py(5) = Co(s) then k(1) = 400 and knyi(1) = —oo. The corresponding
limiting nullvectors are indeed nullvectors of A — M.

The non-singularity of the matrix V is a consequence of the fact that it
contains the full set of left eigenvectors of a matrix Ry. The same argument
applies for Wy with Sy instead of Ry.

Finally to see that if p,(x) = c,(x) then Up x = Vo N4k, We note that both are

equal to the unique limit of the left nullvector of the matrix %A— M+ mcl(ls) QM

as 6 — 1 (from the left or from the right, respectively). Note that lims_,; #(5) =
0.

O

2.C Proof of Corollary 2.6.6

Corollary Let Uy be the non-singular matriz with its successive rows equal
to o, ¢+ € {1,2,...,N—-L}U{2N -lb+1,2N -1, +2,...,2N}. For k =
1,2,...,N, it holds that

(1) if po(k) < Co(k) then

1- Po Co .
(k)/ (k)L 1 Yk lim /86,N+k = 05
1— + el0
(Potk) /Cotr))

li =
im Bek = Po(k)
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(%) if Po(k) > Co(k) then

1 — (cow)/Po(k)) "
L+1 ks
— (Cotk)/Pa(r))

el,II})l ﬂe,N—i—k pa(k) el,]I})I /Be,k Oa

(ZZ’L) if Po(k) = Co(k) then

1

li € € — Po i
elﬁ]lﬂ,k + Be,N+k =P Oyl

where
V= [Uo_l]i,k'

i:Poi) _Pa(l)
‘Co(i)  Co(k)

Proof Note that since p #£ ¢, for all j =0,1,...,L,

L
(0,1) 3 (L)_Z,Bek (Yek) Do + Z ﬂek( = ) Ter, (229

k=1 k=N+1 Ve,k

and after summing over j we have, Ve > 0,

N - )L+1 (¢1 >L+1
:Z ok Uek+ Z ﬁek — Ve,k» (230)

1= %ek k=N+1 "/’e,k

with % =L+ 1 when z=1.

First we prove the limits under the assumption that the coefficients S ;,
1t =1,2,...,2N, remain bounded as ¢ | 0. Below we justify this assumption.
Consider row i of the matrix in the left-hand side of Equation (2.23) and let
€l 0. Ifi € {1,2,...,N} and p,(;y < ¢y, or i € {N+1,N +2,...,2N} and
Po(i) = Co(i) then row i vanishes. Under the boundedness assumption we obtain
from Equation (2.23)

N+tly
li 7] —Al=0
61&1 Z BekVoe [M — Al =0
k=N+1—I,

where, as before, 1 := #{i:p; <c¢;} and Iy := #{i: p; > ¢;}. Recall that
Tok, for k€ {N+1—13,N+2—1Is,...,N + 1}, are the left nullvectors of the
matrix polynomial «[A — M] + Q) corresponding to the finite nullvalues, see
Lemma 2.6.4. No non-zero combination of these can be a left nullvector of A—M,
since the latter correspond to the nullvalue k = oo, either +00 or —oco. There-
fore limejg By =0 for k € {N+1—-13, N+2—15,...,N +1;}. Again using
Lemma 2.6.4, and in particular that if p,(x) = c,(x) then Vo x = Vo, N1k, We have
that the Tog, for £ € {1,2,...,N—-L}U{2N -3 +1,2N -1, +2,...,2N}
constitute a basis for RY. Therefore we may write 7 as a combination of these,
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and from Equation (2.30) we note that this uniquely determines lim. o g s for
ke{l,2,...,li}U{2N — [+ 1,2N — [y +2,...,2N}, and lim, o Be x + Be,N+k
for k € {l;+1,l1+2,...,N —1Iy}. The precise form of these limits can be
obtained from Equation (2.30) by elementary linear algebra.

It remains to be shown that the coeflicients 8¢ ;, ¢+ = 1,2,...,2N, remain
bounded as € | 0. Suppose this is not the case. Then we can select a se-
quence €, > 0, n € {1,2,...}, such that lim, ,, €, = 0 and for some k €
{1,2,...,2N}, lim, o Be,, k is equal to +00 or —o0, and |Be,, i| < |Be, k|, when
n is large enough, for all 7. Note that because of Equation (2.30) it must
be true that 3. x # 0. We assume k € {1,2,...,N}; the alternative case
ke {N+1,N+2,...,2N} can be treated by analogous arguments. Divide
both sides of Equation (2.23) by (.. Note that the right-hand side is unaf-
fected. Substitute ¢, for ¢ and consider row ¢ of the matrix in the left-hand
side of that equation as n — oo. Since S, i/Be,,k is bounded for all ¢, we
conclude, using the same arguments as above, that lim. g S, i/Be, . = 0 for
i=N+4+1—-1I03,N+2—15...,N+1;. In particular note that £ can not be
in theset {N +1—1I03, N+ 2—13,...,N +1;}. Now divide Equation (2.30) by
Be,r and note that, after having substituted e, for €, the left-hand side vanishes
as n — oo. This uniquely determines lim,_, o B, i/Be,..k for i € {1,2,...,11} U
{2N —l2 +1,2N — 13+ 2,...,2N}, and limy, 00 (Be,. i + Ben,N+i)/Ben i for i €
{li+1,l1 +2,...,N —l5}. All these limits are equal to 0 because the left-hand
side vanishes. This can only be true if k € {1 + 1,11 +2,...,N — Iz}, i.e., if
Po(k) = Co(k)- Note that, in particular, the ratio Ben ,N+k/Ben i tends to —1
as n — 00. We show that is not possible either. We can not apply the same
argument as above since the rows k and N + k of the matrix in the left-hand
side of Equation (2.23) vanish as € | 0.

From the proof of Lemma 2.6.4 we have that if p,;) > c,(;) then

. 1- d)ei
lim —— = k;(1 0

fim — ri(1) € [0, 00),
and if Po(i) < Co(i) then

1- € i
lim 71/) N+

= kn4i(1) € (=00, 0].
im =N (1) € (00,0

Using similar arguments we now show that if p,;) < c,(;) then

lim (po(i)/ca(i) - 7;[)6,1') (]- - 1/16,2')
€l0 €

=K, € (0,00),

and if p,(;) > cg(;) then

lim (pa(i)/ca(i) - ,(/)E,N-‘ri) (1 - we,N—H)

o0 c = KN+'i (S (—O0,0)

To see this, we consider the matrix K [A — M| + (6 — 6p)6Q(Y) as a matrix
polynomial in K € R for fixed parameters 6 € R and 69 € R. Suppose
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Po(i) < Coi) and set & := p,(iy/co(i)- Then, for & close to but not equal to
8o the matrix polynomial K [A — 6M]+ (6 — 60)6QY) has N distinct and finite
nullvalues which we denote by K;(d,d), ¢ € {1,2,...,N}. The indices of these
nullvalues are such that it is the i largest eigenvalue of the matrix polynomial
(which are all distinct for § # 0 and § # d9) which is equal to zero at the point
K = Kz(é, (50) Clearly,

Ki(we,iapa(i)/ca(i)) _ 1- 1/)6,7:
Ye,i = Po(i)/ Coli) €

Note that if pr = dpcg then all entries in row k of the matrix polynomial have
a common factor § — §y. For each of these rows take this common factor out of
the determinant of the matrix polynomial. The roots of the resulting (scalar)
polynomial are still equal to the nullvalues K;(4, o). Passing § — o we see that
the nullvalues have a finite limit. Only the nullvalue(s) for which the largest (if
0 1 dp) or the smallest (if § | §p) eigenvalue is zero can have a zero limit. This
gives the desired limits for 9 ; in the case py(;) < cy(;)- Similarly the limits for
e, N+i When p,(;) = ¢,(;) can be obtained.

We further note that the entries of 7. ; are rational functions of € and . ;
with a proper limit as € | 0. Hence, also the limits

1
lelﬁil Yei — Yo,i (et = o)
are well defined. Moreover, these limiting vectors coincide for the indices ¢ and
N + i when p,(;y = cy(;); this can be seen in the same way as we proved the
equality o ; = VUo,n+; in Lemma 2.6.4.

It was already noted that if p,(x) = (k) then in Equation (2.23) the entire
k' column of the matrix in the left-hand side vanishes as € | 0. From the above
limits we have that if we divide this column by /e then, if also Po(i) = Co(i)s
the entries in row 72 and N + 7 have a finite non-zero limit, and all other entries
still vanish (for € | 0). We obtain

lim Z {KZ Bensi —G—KNHﬁe"’M}ﬁo,iM =0.
n—oo . — ﬂe’n,k ,Ben,k:
1Po(i)=Co(i)

This defines a non-singular system from which we conclude

lim {KZ@ +KN+1-M} =0,

n—00 €n,k /Ben,k:

for all 7 such that p, ;) = co(;), and in particular for ¢ = k. Since Ky > 0 and
Knik <0, the coefficients 8., n+r and B, r must be of the same sign for large
n, which is a contradiction with the earlier observation that their ratio tends to
—1. Hence, B, must be bounded for all n. a
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2.D Proof of Lemma 2.6.8

Lemma For k = 1,2,...,2N, the limits Yook := liMeyoo Ve x aNd Voo i :=
lime_; 00 Ve, exist. The limits of the nullvalues are given by Yoo = 0, for
k=1,2,...,N =1, by Yooy =00, for k=N +2,N+3,...,2N, and by

woo,N = min{gal}a
c
Voo, N41 = max{g,l}.
c
Moreover, fork=1,2,...,N,

Voo [Q) +&A] =0,
500,N+k |:Q(Y) — CkM:I =0.

Here 0o > &1 > & > ... > &En = 0 are the nullvalues of the matrix polynomial
QW) 4+ eN, and0=(1 > (2 > ... > (N > —o0 are the nullvalues of the matriz
polynomial QYY) — (M. In particular, Voo,N = Uoo,N+1 = P. The matrices
Voo 1= lime_y00 Ve and Wy, 1= lime_, o, We exist and are non-singular.

Proof If p < cthen 9 nyy1 =1 for all € > 0, and if p > c then 9y =1 for all
€ > 0. In both cases p is the corresponding left nullvector for all ¢ > 0. Thus, it
remains to prove the statements for the nullvalues 1), ; which are not identical
to 1 for all € > 1, and their corresponding left nullvectors.

The limits of the nullvalues ey for k € {1,2,...,N-1,N+2,...,2N}
follow from Lemma 2.6.1. All but the largest eigenvalue of T,(2) converge point-
wise to a linear function in z which goes through the origin and has a negative
slope. Each of these eigenvalues is continuous in z and has a root in [0,1) and
one in (1,00). Therefore, as € — 0o, the root in [0,1) must go to 0 and the root
in (1, 00) must go to oo.

To investigate the limiting behaviour of the left nullvectors corresponding to
the nullvalues inside the unit interval, we consider

3 _ ¥) _
T 5(0) = €A+ Q) —€oM

as a matrix polynomial in £&. Note that éA + Q(Y) — ¢6M is well defined for
all 6 > 0. Mimicking the arguments in the proofs of Lemmas 2.4.3 and 2.4.4
it can be shown that if § > 0 then éA + Q(Y) — £6M has at least N —mg — 1
nullvalues for £ € (0, 00), at least one nullvalue at £ = 0, and at least N —ng —1
for £ € (—o00,0). The remaining zero lies in (0, 00) and is single if p < dc, it is
single and lies in (—00,0) if p > dc, and it is equal to 0 if p = dc. In the last
case the nullvalue £ = 0 is of multiplicity 2. Let these nullvalues be denoted
by 00 > Eme+1(0) > ... > EN_ny(0). As in Remark 2.3.5 we set { = +oo, for
k=1,...,mg, and { = —o0, for k = N —ng,..., N. Note that for ¢ > 0 and
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t=1,2,...,2N, it must be true that (¢ ;) = ;. Fori=1,2,...,N —1,
we noted above that lim, g 9.,; = 0, hence, by the continuity of &;(§) in é > 0,
1- "»be,z' o 1

lim ey, ; lim

€—00 €—00 gi('(pe,i) gl(o) ‘

Also, T.; is the left nullvector of EA + Q(Y) — ¢5M for ¢ = IQij" and § = e ;.
Again by continuity arguments the 7, ; follow, for ¢ = 1,2,... ,’N - 1.

Suppose p < ¢. Then also 9, y lies in (0,1) for all € > 0. Now we argue that
Ye,n > p/c for all € > 0. From Lemma 2.6.4 it follows that this is certainly true
for € close enough to 0. Using the relation n (e, n) = €, n, and the fact that
én(p/c) = 0, we must conclude that indeed it can not be that v n = p/c for
some € > 0. Then the desired inequality ¢ v > p/c follows from the continuity
of ¢, v in €. Combining the relation v yTe(1e,n) = 0, for all € > 0, with the fact
that 1), v can not vanish, it is clear from the construction of the left nullvectors
in the proof of Lemma 2.6.2, that 7. x tends to the unique left nullvector p of
Q(Y), as € — co. The analogue of Equation (2.8) for € # 1 is given by

A+R, [QQ’)—A—M]+R§M:0.

Pre-multiply this equation by . n, and post-multiply by 1, the column vector
consisting only of ones. What remains is a quadratic (scalar) function in . n:

Ve, NAL + e N (@,N [QEY) —A- M] T) + 1/’§,N (Ue,n MT) = 0.

Since QEY)T is the transpose of 0, 1.,y = 1 is a solution of the above equation.
However, ¢ v < 1 for all € > 0, hence,

7/’6,N = _,USLA]-— — pa
Ve, NM 1 C
as € — 00.

Vs is non-singular since different nullvalues of lim¢_, % [5 A+QY) —¢sM ]
yield independent nullvectors. Furthermore, the nullvalues which are equal to
+00 also have a complete set of nullvectors, since limg_, % (A + Q1Y) — ¢6M]
is a diagonal matrix.

The statements about the nullvalues outside the unit interval and their cor-
responding left nullvectors follow by analogous reasoning, using the matrix
%T%(l/é) = (A + QYY) — (M. In the proof, the role of £ above is now
played by (. O

2.E Proof of Corollary 2.6.10
Corollary Fork=1,2,...,N—-1,N+2,...,2N, it holds that

lm B = 0.
E— 00
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If p < c then lim¢_, o Be,n+1 = 0 and

_ 1-p/c
ell>nolo Be.n 1—(p/c)l+?
If p > c then lim_, o B,y = 0 and
1-—p/c

N YD

Proof We assume that lim,_,, B,; exists (possibly equal to +o00 or —o0), for
alli=1,2,...,2N. This assumption can be dropped by considering appropriate
sequences of €,, n € {1,2,...}, that tend to +00 as n — 00, as we did in the
proof of Corollary 2.6.6. Select k € {1,2,...,2N} such that S, ;/B¢, k remains
bounded, as € — oo, for all ¢ € {1,2,...,2N}. Such a k always exists (but is
not necessarily unique). Assume that k € {1,2,..., N}; the alternative case
ke {N+1,N+2,...,2N} can be treated by analogous arguments.

Note that in Equation (2.23), if we divide the matrix in the left-hand side
by € and then let € — o0, it becomes

Voo Q) 0
0 W Q)

where the (block) entries denoted by 0 represent matrices with all entries equal
to zero. Here we use Lemma 2.6.8. In particular, the only non-zero entries
of the matrices ¥o, and @ are [Too]n N = Yoo,n and [Pool1,1 = 1/%00 N+1,
respectively. Furthermore, the last row of V., and the first row of W, are equal
to P, which is the left nullvector of QY). Now, if we divide Equation (2.23)
by €8x and let € = oo, we conclude that £ = N. This follows from the fact
that in the above matrix all rows ¢ € {1,2,..., N — 1} have non-zero entries,
and all entries in row N are zero. Similarly, if k € {N +1, N +2,...,2N} then
k=N +1.

Now we show that B¢, n and B¢ nv+1 must be bounded as € — co. Suppose
Be,n is unbounded for large e. If we divide Equation (2.29) by B n and let
€ — 0o we conclude that

. Bent1 Py .
Elig)loﬂ——(z)], J—0,1,2,...,L.
This can not be true since p # c. We conclude that all coefficients B¢ ;, i =
1,2,...,2N remain bounded as € — .

Using the boundedness of the coefficients and letting ¢ — oo in Equation

(2.22) yields Bex — 0, k € {1,...,N—-1,N +2,...,2N}. Finally, we use the

equality (7e wi )) Al = (T (& ))]+1MT, or equivalently,

N 2N
Zﬂe,k (we,k)j (6e,kAT) + Z /Be,k(]-/we,k)L_j (ie,kAT)

k=1 k=N+1

N 2N
Z k(W) T @epMI) + Y Bek(1/ter) 7 ([T MT),

= k=N+1
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for j =0,1,..., L. These equations result from summing the balance equations
— in Q. = 0 — corresponding to all levels [ = 0,1,2,...,47. For j =
0,1,...,L — 1, we have that

</36,N (min { g, 1})j+1 ipkuck + Be,N+1 (1/ max { g, 1})L_j_1 il%#@c)
k=1

k=1
(o i {20) e v (/e {2.1)) 7 Yo
k=1 k=1

tends to 0, as € — oco. If p < c¢ this leads to lim,_,o ﬁoo,NJrl(ZkN:l prpck)(1 —
p/c) = 0, and hence, B, n+1 — 0, as € — oco. From Equation (2.30) we then
obtain lim¢ ;o Be,ny. The limits of B¢,y and B¢ n+1 in case p > c are found
similarly. O



Chapter 3

Sojourn times in the case of service
interruptions

In the previous chapter we analysed the queue-length distribution of a large class
of processor-sharing queues with varying service capacity. In the remainder of
the thesis we study the sojourn times of customers in such queueing models.
In this chapter we start by presenting the analysis of Nuiflez Queija [83], where
the extreme case is considered that the available capacity alternates between
a positive value and zero. In Chapter 4 we consider a more general structure
of the service fluctuations. A model of which the service capacity alternates
between a positive value and zero is obtained by taking N = 2, ¢; > 0, and
c2 = 0 in the models described in Section 2.1. Periods during which service
is available will be called on-periods (or availability periods). When no service
is available we speak of service interruptions, breakdowns, or off-periods. In
the above mentioned example from the models of Section 2.1 (with N = 2,
¢y > 0, and co = 0) the lengths of the on- and off-periods are exponentially
distributed with means 1/g; and 1/gq, respectively. In this chapter we study
the more general case where the off-periods may have an arbitrary distribution.
However, we do require that the service requirements of customers and the
lengths of the on-periods are exponentially distributed. The case of generally
distributed service requirements is studied in Chapter 5. We only consider the
case where there is no restriction on the number of customers in the queue. Thus,
we are dealing with an M/M/1 processor-sharing queue with a server that is
subject to breakdowns, with exponentially distributed availability periods and
generally distributed breakdowns.

Remark 3.0.1 Because of the generally distributed off-periods, the model also
includes the following cases of the infinite-queue model described in Section 2.1:

e ¢; >0 for some i € {1,2,...,N} and ¢; =0 for all j # ¢,

eci=cny>0,¢;=0forall je{23,...,N—1}, and q{":qg,ﬂii for all
i€{1,2,...,N—1}.

55
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The assumption of exponentially distributed service requirements may be
relaxed for some parts of our analysis. This will be done in Chapter 5. For
instance, the decomposition result in Section 3.2 may be obtained for generally
distributed service requirements (see Theorem 5.3.2). Also, the results of Sec-
tions 3.3 and 3.4 may be generalised for that case, using the Laplace Transform
method for solving differential equations (see Section 5.4). In this chapter the
reasons for presenting the results for exponentially distributed service require-
ments are twofold. Firstly, the fundamental ideas are the same as for general
service requirements, while the presentation is more transparent. Secondly,
some of the closed-form results obtained under the exponentiality assumption
for service requirements — which allow to carry the analysis further — could
not be extended to general service requirement distributions.

Queueing models with unreliable servers have received much attention in
the literature for the case that the service discipline is FCFS (First Come First
Served). The first ones to consider queueing models with service interruptions
(and their connection with priority models) were White and Christie [116].
Gaver [37] obtained the steady-state queue-length distribution of the MX /G /1
queue with exponentially distributed on-times and generally distributed off-
times. We further mention the early work of Mitrani and Avi-Itzhak [74] on a
queueing model with multiple servers which are subject to breakdowns, and the
work of Neuts [81, Chapter 6] concerned with queues in a random environment.
Bounds and approximations for queue lengths and sojourn times when the on-
times have a general distribution as well, are studied by Federgruen and Green
[27, 28] and Sengupta [103]. Takine and Sengupta [111] consider an unreliable
server with a Markovian Arrival Process, possibly dependent on the on/off pro-
cess. Li et al. [66] give a transient analysis of the model of this chapter (with
the FCFS service discipline) and Lee [63] studies a discrete time variant. For
an extensive overview of the literature on queueing models with service inter-
ruptions we refer to Federgruen and Green [27, 28]. More recent references can
be found in Takine and Sengupta [111].

To the author’s knowledge, the first analytic results for processor-sharing
queues with service interruptions — which we present in this chapter — were
derived in Nuifiez Queija [83]. Recursive computational schemes to evaluate
queue-length probabilities and the (unconditional) mean sojourn time may be
found in Almasi [3] and Almdsi and Sztrik [4], see also references therein.

The chapter is organised as follows. In Section 3.1 we describe the model
and give the joint steady-state distribution of the state of the server and the
number of customers in the system. In Section 3.2 we represent the sojourn
time of a customer conditional on his service requirement, by a branching pro-
cess. We characterise the distributions of two fundamental random variables
in the branching process in Section 3.3, by deriving differential equations for
the LSTs (Laplace-Stieltjes Transforms) of their distributions and then solving
these in terms of a single integral equation. We derive the first two moments of
the two fundamental random variables in Section 3.4, and give the general form
of higher moments. In Section 3.5 we use these results to obtain closed-form
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expressions for the first two moments of the sojourn time of a customer condi-
tioned on his service requirement, the state of the server upon arrival and the
number of other customers in the system upon arrival. In particular we extend
a result of Sengupta and Jagerman [105], proving that the k'" moment of the
conditional sojourn time is a polynomial of degree k in the number of customers
upon arrival. In Section 3.6 we give the LST of the distribution of the sojourn
time of a customer conditioned only on the customer’s own service requirement,
assuming that the system is in steady state upon arrival. In particular we see
that — unlike the case without server breakdowns — the mean sojourn time of a
customer is not proportional to the service requirement. The next two sections
are devoted to an asymptotic analysis of the model. In Section 3.7 we study
sojourn times of customers with large service requirements (tending to infinity),
and in Section 3.8 we consider the heavy-traffic case. We conclude the chapter
in Section 3.9 with some final remarks.

3.1 Model description

We consider a server which alternates between an on-state and an off-state. The
on-periods are assumed to be exponentially distributed with mean 1/v, indepen-
dent of everything else. The off-periods are i.i.d. random variables (generically
denoted by T,¢s) having probability distribution F(t) := P {Tosr <t}, t > 0.
The LST of this distribution will be denoted by

b(s) = /t : e TStAF(t), Re(s) > 0,

and the k*® moment of F(t) by

mg ::/ thdF (t).
t=0

Throughout this chapter we assume that m; < oco.

Customers arrive to the server according to a Poisson process with rate A,
requiring an exponentially distributed amount of service with mean 1/u. There
is room for infinitely many customers at the server. When the server is on, all
customers present are simultaneously served according to the processor-sharing
discipline. Thus, because of the exponentially distributed service requirements,
the service of any of the customers is completed within the next At time units
with probability XuAt + o(At). During off-periods the service of all customers
is interrupted until the server becomes active again.

We define the random variable X (t) to be the number of customers at the
server at time ¢ > 0. The random variable Y (¢) is equal to 1 if at time ¢ > 0 the
server is on, and Y (¢) is equal to 0 otherwise. Under the ergodicity condition,

A 1
=< —— = 3.1
P I <17 vmy O (3:-1)
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the pair (X(t),Y(¢)) has a non-trivial limiting distribution. In Condition (3.1)
p is the traffic load (the average amount of work that arrives to the system
per unit of time), and c is the average service capacity per unit of time, which
is equal to the fraction of time that the server is available. Let (X,Y) be a
pair of random variables having the limiting distribution of (X (¢),Y (t)), under
Condition (3.1). Below we show that the joint distribution of (X,Y") satisfies,
for |z| <1,

Xwv_4] _ p= AL+ vm)
E [z Y= 1} B b= Az — z/z—l_¢(1)\_(i—z)) ’ (32)
Xy _ 1=9(M1—-2) ol X v _

and P{Y =1} =1 —-P{Y =0} = c. For later use, we give the means of the
above conditional distributions:

EX|Y=1] = cfp<1+(1—c)xz’%), (3.4)
E[X|Y =0] = ,\%Jrcfp(u(l—c),\%). (3.5)

By deconditioning Expressions (3.2) and (3.3), we find the p.g.f. (probability
generating function) of the marginal distribution of X:

E [ZX] =c (1+,,1 —/c\ﬁ((lA(_lz—)z))> M_;;;_ASZ% (3.6)

In the remainder of this section we give an informal discussion of the deriva-
tion of Expressions (3.2) and (3.3). In particular, in Remark 3.1.1 we discuss
the equivalence of the queue-length process in our model with the queue-length
process of two queueing models with the FCFS queue discipline. Expression
(3.2) can be found by considering the queue-length process only during on-
periods. For this, we “delete” all off-periods and interpret the arrivals during
an off-period as a batch arrival. In the resulting transformed model there are
three types of events: (i) Departures of customers at rate p when there is at
least one customer present, (ii) single arrivals according to a Poisson process
with rate A, and (iii) batch arrivals according to a Poisson process with rate v
and batch sizes having p.g.f. ¢(A(1 — 2)), which is the p.g.f. of the number of
arrivals during an off-period. Note that batches are “empty” with probability
#(A). To avoid this, we may consider only non-empty batches which arrive with
rate v (1 — ¢())), having p.g.f. M%W The balance equations for this
transformed model readily lead to Equation (3.2).

The factor % in Equation (3.3) is the p.g.f. of the number of cus-
tomers that arrive during the backward recurrence time of an off-period. This
can be explained as follows. At an arbitrary time instant at which the server is
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off, the number of customers in the system is the sum of the number of customers
that were at the server when the server turned off and the number of customers
that have arrived since that time. The elapsed time since the server turned
off is distributed as the backward recurrence time of an off-period. Moreover,
because of the exponentially distributed on-periods, we may use the PASTA
(Poisson Arrivals See Time Averages) property — see Wolff [119] — to show
that the number of customers present when the server turns off has the same
distribution as X given that Y = 1.

Remark 3.1.1 Because of the exponentially distributed services, the queue-
length process remains unchanged if we replace the processor-sharing service
discipline by the FCFS discipline. Expression (3.6) can therefore be obtained
from Gaver [37, Formula 8.4], where the p.g.f. of the number of customers in
the system at arbitrary points in time is given for the case of a general service
time distribution. The analysis is based on completion times of customers, see
Gaver [37, Section 4.2]. In our case the distribution of the completion times has
LST

= @
s) = , Re(s)>0. 3.7
B(s) s (=9 () (s) (3.7)
These “inflated” service times are the sum of the actual time it takes to serve
a customer (exponentially distributed with mean 1/u) and all off-periods that
occur during such a service. It can be shown that the first customer in a busy
period has to wait before his service begins (this corresponds to the server
being in the off-state in the original model with breakdowns) with probability
p = %, in which case the distribution of the residual off-period has
A — (A
sy  #s) = 60)
1-0¢(N) A—s
Accordingly, Expression (3.6) can also be verified using the LST of the queue-
length distribution in an M/G/1 queue with exceptional first service, see Welch
[115, Theorem 2]). In that queue the distribution of the regular services has
LST f(s) and that of the exceptional first services has LST (1 — p + pd(s)) B(s).

Re(s) > 0.

Remark 3.1.2 If the breakdowns (off-periods) are exponentially distributed
too, i.e., ¢(s) = (1 + mys)~1, the probabilities P{X =i,V = j}, j € {0,1},
i=0,1,..., can be found in Neuts [81, Theorem 6.3.1].

Remark 3.1.3 Expression (3.6) implies the decomposition X 4 X1+ Xo of

the steady-state queue length, where 2 means equality in distribution and the
random variables X; and X, are independent. Furthermore, the p.g.f. of the
random variable X; is given by Expression (3.2), i.e., X; is distributed as
the steady-state queue length in a (particular) M%/M/1 batch-arrival queue-
ing model without service interruptions (see the discussion above). The random
variable X5 is equal to 0 with probability ¢, and with probability 1 — ¢ it is
distributed as the number of Poisson arrivals, with intensity A, during a back-
ward recurrence time of the off-periods. This decomposition does not fit into
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the framework of Fuhrmann and Cooper [32]. Even if we assume a FCFS service
discipline — as in Remark 3.1.1 — Assumption 4 (non-preemptive service) of
[32] is not satisfied.

3.2 A branching process representation

We show how the sojourn time of a customer (that is the total time spent in the
system) can be studied by means of a branching process. For this purpose we
will observe the process on a transformed time scale. The first to use this time-
transformation method — commonly called the method of random time-change
— for the analysis of processor-sharing queues apparently was Yashkov [121].
In its most essential form, but without transformation of time, this method was
already used for the analysis of the M/G/1 processor-sharing queue in Yashkov
[120]. Foley and Klutke [31] studied the queue-length process and the process
of accumulated work after applying the random time change to a processor-
sharing model in which the total service capacity may depend on the number of
customers in the system, see also the model of the next chapter and particularly
Section 4.3. Grishechkin [39, 40] further exploited the method by reformulating
it in terms of Crump-Mode-Jagers branching processes and applying it to the
analysis of queues with a general class of service disciplines, including processor
sharing. For more references on the time-transformation method and its use in
the analysis of processor-sharing queues we refer to Yashkov [123, Section 2.4].

We present a direct use of the time-transformation technique to analyse so-
journ times in the processor-sharing queue with service interruptions presented
in Section 3.1. However, the same approach is applicable to more general mod-
els, for instance those in Grishechkin [39, 40]. In Remark 3.2.1 we illustrate
how the analysis in this section may be extended to the case with generally
distributed service requirements. Restricting ourself to the model of Section
3.1 makes the presentation more transparent, while the fundamental ideas are
the same as in the more general cases. Furthermore, we are able to carry the
analysis further, and in particular in Sections 3.5 and 3.6 we obtain closed-form
results.

In our presentation we first assume there is a permanent customer which
never leaves the system. For this customer we study the accumulation of received
service. All other (“non-permanent”) customers — which arrive according to
a Poisson process with rate A — have an exponentially distributed service re-
quirement with mean 1/u. Let Z(t) be the number of non-permanent customers
at the server at time ¢t > 0. For the service process we use the same notation as
before: Y'(t) is 1 if the server is on at time ¢ and 0 otherwise. This is justified
since the marginal distribution of the process Y (t), for all ¢ > 0 is the same as
before (when there was no permanent customer in the queue). Then, at time ¢,
the permanent customer receives service at rate

Y(t)

1+ Z(t)
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Let the random variable R(t) be the amount of service received by the permanent
customer during the time interval [0, ¢]:

_ [N Y
R(t) = /u s i
We define for 7 > 0:
V(r):=inf{t>0 : R(t)>71}.

Thus, V(1) is the moment that the amount of service received by the permanent
customer reaches the level 7. In Figure 3.1 a typical realisation of R(t) and V(1)
is depicted. In that picture, at time ty = O there are two other customers in

R(t)
T

0=t t t, V(1) t

2 3

Figure 3.1: R(t) and V(7).

the system along with the permanent customer, therefore R(t) increases at rate
1/3 immediately after time to. At time ¢; one of the customers leaves and the
rate increases to 1/2. From t5 until ¢3 the server is off, and during this period 3
customers arrive, leading to a rate 1/5 immediately after t3. At time t4 another
customer arrives, etc. V(7) is the moment that the service received by the
permanent customer reaches the level 7.

If at time ¢ = 0 the permanent customer is replaced by a customer requiring
an amount of service 7, then V(7) is the time at which this customer leaves the
system, i.e. V(1) is the sojourn time of that customer. Our goal is to determine
the distribution of the random variable V'(7), for arbitrary 7 > 0.

We distinguish between the cases where Y (0) = 1 (start with a working
server) and Y (0) = 0 (start with a server in the off-state). For n € Ny :=
N U {0}, we denote by V,, 1(7) the process V() conditional on Y (0) = 1 and
Z(0) = n, or equivalently: V, 1(7) := V(1) |{Y(0) =1,Z(0) =n}. Similarly
we define the conditional processes Z,1(t) := Z(t) |[{Y(0) =1,Z(0) = n} and
Yoi1(t) := Y(){Y(0)=1,Z(0) =n}. First we concentrate on V, 1(7), the
conditional sojourn time of a customer that arrives when the server is working
and the number of customers is n. At the end of this section we derive the
results for the sojourn time of a customer that arrives when the server is off.

In the sequel we use the notation z(y+) := lim,, z(u) and z(y—) :=
lim,4y z(u) for any function x(y) for which these limits exist.
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Lemma 3.2.1 For arbitrary n € Ny, it holds with probability 1 that V, 1(0+) =
0.

Proof The lemma follows immediately from the fact that, for small 7, V,, 1(7)
is equal to (n + 1)7 with probability 1 — ()\ + et 1/) (n+1)7+o0(r). O

Consider the model with one permanent customer and suppose that at time 0
the server is working and n non-permanent customers are present, i.e., Y(0) = 1
and Z(0) = n. Denote the number of times that the server turned off during
the period (0,¢) by the random variable N,, ;(t), and the length of the i*" off-
period started after time 0 by D;, i € {1,2,...}. Note that {D;,Ds,...} is an
i.i.d. sequence with distribution F(t), and that N, 1(¢) does not depend on n.
Furthermore, define for 7 > 0:

(1) =Ny (Va1 (7).

The random variable N;, ;(7) is well defined because V,, 1(7) — also a random
variable — is strictly increasing in 7 (with probability 1). Note that N, | (T+) —
Ny, 1(7) = 1 if and only if at time ¢ = V},1(7) the server turns into the off-state.
Otherwise Ny, 1(7+) — Ny, 1(7) = 0.

Similar to Ny, 1 (), we define for 7 > 0 the processes Z,, (1) := Zy,,1(Vn,1(7))
and Y, ;(7) := Y1 (Va1 (1) +)-

Lemma 3.2.2 The process V,,1(7) is related to Zy, 1(7), N, 1(7), and the se-
quence D;, i € {1,2,...}, through the equation
T N;,I(T)
Vit (r) = / [1+2,,(@)]do+ Y D (3.8)
g i=1

=0
with the empty sum being equal to zero (when Ny, 1(T) =0).
Proof Consider any realisation of the arrival process, the sequence of required

services, and the process {Y (¢),t > 0}. In Figure 3.1 a particular realisation is
depicted. Note that if N;, ;(7+) — Ny, 1(7) = 0, then

an 1(7’) ’
Sl 142z
dT + n,l(T)a
and if Ny, 1(7+) = Ny, 1(7) =1, then Vo 1 (7+) = Vo1 (1) = Dz | (r4)- O

From the definition of the processes {Z], ,(7),7 >0} and {N}, ,(7),7 > 0},
and with the aid of Figure 3.1, we make the following observation:
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Lemma 3.2.3 The transformed process (Z, , (t), N}, 1 (1)) is Markovian, with
transition rates given in the following table for n, k and j € Ny,

from state ‘ to state | transition rate
(n, k) (n+1,k) (n+1)A

(na k) (n -1, k) nyp

(n, k) (n+34,k+1) | (n+1)vp;

where p; is the probability that during an off-period, j new customers arrive:

> 2P = 6(A(1 = 2))-

Proof In words, the transformation from (Z, 1 (¢),Np1(t),Yn1(t)) to the
process (Z,, (1), N}, ; (1)) consists in (i) shrinking the time scale by a factor
n+1 when Z, 1(t) =n and Y, 1(t) = 1, and (ii) replacing off-periods by batch
arrivals of customers. From this construction it is clear that in the transformed
process the residence time in any state is exponentially distributed and that the
transition rates are as stated. O

In Equation (3.8), Vp,1(7) also depends on Dx, ..., Dy: (r). We emphasise
that, if N, (1) — N, 1(7—) = 1 then Z,, ,(7) — Z,, (7—) and Dy: (- are not
independent: Dy: () is the length of an off-period in the original process and

Zna(m) = 2

7,1(7—) is the number of customers that arrived during that period:

E | PV Zna () = Zna(m=) |0 (1) - N2y (r—) = 1

= ¢(s+ A1l — 2)).

In order to study the distribution of V;, 1(7), we construct a branching pro-
cess that is “equivalent” with (Z;L’1 (1), Np1 (7); D1y DN/(T)), and associate
a reward structure with this branching process that will turn out to be useful.
Consider a population P of elements which evolves in the following way: The
life time of an element of the population has an exponential distribution with
mean duration 1/u. During its life time an element receives a reward at rate 1
(per time unit). An element generates children in two ways, independent from
all other living elements. According to a Poisson process with rate A an element
gives birth to children, one at a time. In addition, according to another (in-
dependent) Poisson process with rate v, an element generates nests of children
(possibly empty nests), and receives an immediate reward which depends on the
number of children in the nest in a stochastic way. The joint LST and p.g.f.
of the simultaneous distribution of A children in the nest and the immediate
reward D, is given by

E [e_SDzA} =¢(s+ A(1—2)).
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Finally, there is a permanent element in the population which generates children
— and receives rewards — in the same way as the other elements (but never
dies).

Suppose that at time 0 there are n non-permanent elements in the population
P. Denote the number of non-permanent elements in the population at time
T > 0 by Z!/(7), the number of nest-births between time 0 and time 7 by N}/ (1),
and the reward of the i‘" nest by D}'.

Lemma 3.2.4 For all n € Ny and 7 > 0, it holds that
(ZZJ (1) s Nyt (T);Dl,---,DN;,l(T)> = (ZZ (1) s Ny, (7) §D'1'a---aD3(/;;(T)) ;

where 2 means equality in distribution.
Moreover, Vy, 1(7) is distributed as the reward of the population P from time
0 until time T, starting with n individuals in the population at time 0.

Proof The lemma follows from Lemma 3.2.3 and by comparing the transition
rates of both processes. O

In the next theorem we formulate the main result of this section. For this,
we need to introduce the random variables C;(7), i € {0,1,2,...}. Co(r) is
the reward for the permanent element and his offspring between time instants 0
and 7. Similarly, C;(7), i = 1,2,...,n, is the reward for the i*" non-permanent
individual, who was present at time 0, plus the reward for his offspring between
time instants 0 and 7. Note that all C;(7), ¢ > 1 have the same distribution.

The decomposition of the sojourn time given in the theorem was established
by Yashkov [120, Expression (3.4)] for the ordinary M/G/1 processor-sharing
queue, and by Rege and Sengupta [91, Theorem 6] for the M/G/1 queue with
discriminatory processor sharing.

Theorem 3.2.5 The conditional sojourn time V,, 1(7) of a customer who finds
the server working upon arrival, with n other customers present, can be decom-
posed as,

Vn,l(T) i C()(T) + Z Ci(T),
i=1
where < means equality in distribution. All random variables involved in the

right-hand side are mutually independent. In particular, Cy(T) 4 Vo,1(7).

Proof Using the reward-interpretation of V,, 1(7) given in Lemma 3.2.4, we
can split V,, 1(7) into the individual rewards of all elements. By construction,
the elements of the population P behave independently of each other. There-
fore, the C;(7) — including Cy(7) — form an independent sequence. |
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We now turn to the sojourn time of a customer that arrives to the system
during a service interruption. As before, suppose that the number of customers
present is n, and that the service requirement of the arriving customer is 7. Let
Dy be the residual off-period at time zero and Ay be the number of arrivals
during Dy. The LST of the distribution of Dy will be denoted by ¢g(s) .

If V,,0(7) is the sojourn time of the arriving customer, then by conditioning
on the length of Dy and the number of arrivals Ag:

Voo () {Do = do, Ao = k} £ do + Vayia (7). (3.9)

Corollary 3.2.6 V, o(7), the conditional sojourn time of a customer who finds
the server in the off-state upon arrival with n other customers present, can be

written as:
n+Ap

Vio(r) £ Do + Co(r) + Z Ci(7).

All random wvariables on the right-hand side are mutually independent, except
for the pair (Dy, Ag) which has the joint distribution,

B[ #D0240] = go(s + AL~ 2)), Re(s) >0, ]2/ < 1.

Proof The corollary follows from Theorem 3.2.5 and Relation (3.9). O

We define the LSTs of the distributions of Cy(7) and C;(7), 7 € {1,2,...},
by go(7;s) and g1(7;s): For Re(s) > 0,

go(r;8) = E [e—sco(T)} , gi(r;s) = E [e_SC"(T)] L i=1,2,....
From Theorem 3.2.5 and Corollary 3.2.6 we have, for Re(s) > 0,
E[eVDy(©0) =1,2(00=n] = g(ris) {an(ris)}", (3.10)
Ele V) y(0)=0,20)=n] = golrss){gu(r;9)}"
xo(s +A(1 = g1(739)). (3.11)

In Section 3.3 we characterise go(7;s) and g;1(7;s) by means of a set of differ-
ential equations, which we solve in terms of an integral equation.

We conclude this section with the following remark, which indicates how the
representation of the sojourn time by a branching process can be extended to
the case of general service time distributions.

Remark 3.2.1 The generalisation of this representation by branching pro-
cesses to general service time distributions, B(z), > 0, can be obtained by
using the method of supplementary variables. We extend the state space rep-
resentation with the vector (21,2, ..., Z,) when there are n customers in the
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system. We again assume that a newly arrived customer with service require-
ment 7 finds the server available, and we further condition on the number of
customers in the system upon arrival (n) and the residual service requirement
of each of those customers (z;, i = 1,2,...,n). If we denote the conditional
sojourn time of the new customer by V,, 1(7;21,...,Zy) then

Vo1 (T521,. .., 2n) 4 Co(7) + Z Ci(m;z;),

i=1
where the Cy(7) and C;(7;z;), i« = 1,2,..., are the analogues of the earlier
Co(7) and C;(7) for the population model with life time distribution B(z). Thus
Ci(7;x;) is the reward for a family until time 7, starting with one individual
with a remaining life time x;. This generalisation is studied in greater detail in
Section 5.3. See also Yashkov [120] for a related analysis of the case without
service interruptions.

3.3 Characterisation of go(7;s) and g;(7;s)

We derive a set of differential equations which uniquely determine go(7;s) and
91(7; s), the LSTs of the distributions of Cy(7) and Ci(7). We then express
go(7; 8) in terms of g1(7;s), and — for real s > 0 — derive a useful integral
equation for g;(7;s).

Lemma 3.3.1 For Re(s) > 0 and 7 > 0, go(7;s) and g1(7;s) are uniquely
determined by the following set of differential equations,

sai(ris) = — (At pt g HMalmel ta (312)
+vg1(7;8)d(s + A(1 — g1(75 9))),
a27_90(7'; s) = —(s+A+v)go(r;s) + Ago(158)91(7; 9) (3.13)

+vgo(T;8)d(s + A1 — g1(758))),
and initial conditions,
90(0; s) = g1(0;5) = 1. (3.14)
Proof See Appendix 3.A. O

Theorem 3.3.2 We can express go(T;s) in terms of g1(7;3s) as,

airis) =atmen{u(r- [ awstw)}. @

Proof From Equations (3.13) and (3.14) we immediately obtain go(7;s) in
terms of g; (73 3):

go(rs 8) — exp {—<s st [T D)+ 6l + A0 - g1(ui )] du}-
(3.16)
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If we also use Equation (3.12) we may rewrite this as,

T 9 g1 (uy8) — —g1(u;s
go(T;s):exp{/=0 01 (t55) 11— 01 ))du},

91(u; s)

which leads to Relation (3.15). O

The remainder of this section is devoted to finding the solution of Equation
(3.12) for real s > 0. We first define the clearing period of the model of Section
3.1 as the time it takes for the system to become empty, starting with one
customer and a working server. If there were no off-periods, the clearing period
would be equal to the busy period. We generically denote the clearing period by

the random variable C'P and the LST of its distribution by 71(s) = E [e_SCP ] .

Lemma 3.3.3 The clearing period has the same distribution as the busy period
of an ordinary M/G/1 queue with arrival rate A and LST of the service time
distribution B(.) given by Expression (3.7).

As a consequence, for Re(s) > 0, z = r1(s) is the unique root — inside (or
on) the unit circle in the complex plane — of the equation:

(s+A+p+v)z =+ p+ved(s+ A1 —z)). (3.17)

Proof Note that for the model with the FCFS queue discipline — described in
Remark 3.1.1 — we may define the clearing period as we did above for the model
of Section 3.1. Moreover, the clearing periods of both models have the same
distribution. It is easily seen that the clearing period of the model in Remark
3.1.1 has the same distribution as the busy period of an ordinary M/G/1 queue
with arrival rate A and LST of the service time distribution B (.). This proves
the first statement of the Lemma. Furthermore, we immediately have that for
Re(s) > 0, r1(s) is equal to the (unique) root inside (or on) the unit circle of
the equation,

2= B(s+ A1 —z)),
see for instance Cohen [20, p. 250]. This equation readily leads to Relation
(3.17). |

Lemma 3.3.4 For s >0 and T >0,
r1(s) < gi1(758) < 1.

Proof Fix s > 0. Obviously, C1(7) is non-decreasing in 7 with probability 1,
and so g1 (7; s) is non-increasing in 7. Therefore, the right-hand side of Equation
(3.12) is negative for 7 > 0. Indeed, for 7 = 0 this is easily verified because
91(0;8) = 1. If r1(s) > g1(7;s), for some 7 > 0, it follows from Lemma 3.3.3
that the right-hand side of Equation (3.12) is positive for this 7, since the zero
r1(s) has multiplicity 1. O
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Theorem 3.3.5 For real s > 0, the solution to Equation (8.12) satisfying Con-
dition (3.14), is obtained from,

a1 (rsa) 1
de =r. 3.18
/ac:l p—(s+A+p+v)z+ A2 +vzd(s+ A — Az) =T (3.18)

Proof The integral in Relation (3.18) is well defined, because the denominator
of the integrand has no zeroes in (r1(s),1) for s > 0, see Lemma 3.3.3. The
integral is taken for z from 1 to g1(7;s) so that the initial Condition (3.14) is
satisfied. By differentiating with respect to 7, it is readily seen that Equation
(3.12) is also satisfied. |

In Section 3.7 we use Relation (3.18) to study the asymptotics of g1(7; s) as

7 — oo. This in turn enables us to prove the convergence in probability of C°T(T)

and (more importantly) @ for 7 — oo. Relation (3.18) is not very practical
for determining moments of C1(7) (and Co(7)). In Section 3.4 we study these

moments directly.

Computational issues

In the remainder of this section we show how the distribution of C;(7) can be
computed in the case that the distribution of the off-periods has a rational LST.
We also discuss some difficulties regarding the computation of the distribution
of C() (’l’ )

Suppose for the moment that — for real (and positive) values of s — g1 (7; )
can be evaluated from Relation (3.18). Then we use the Gaver-Stehfest algo-
rithm, see Abate and Whitt [2, pp. 52-55], to compute the distribution func-
tion of C;(7). We emphasise that the (generally more stable) algorithms Euler
and Poisson, see Abate and Whitt [2, pp. 48-51], can not be used because in
Relation (3.18) we assumed s to be real. To evaluate the n'* Gaver-Stehfest
approximant, one typically needs 2n-digit precision in the calculations. In gen-
eral taking n = 15 gives good results — relative errors are typically less than
3% for tail probabilities of the order 1072 — and comparison with the results
using n = 20 provides a useful accuracy check.

To illustrate how g;(7; s) can be evaluated, let us first consider the case that
the off-periods have a hyper-exponential distribution. In that case the LST of
the distribution of the off-periods is of the form:

k

d(s)=>

S 1ms

w®

with w® > 0, Zle w® = 1, mgl) > mf) > > mgk) > 0, and Re(s) >
-1/ mg). Note that m; = Zle w(")mgl). After multiplying the numerator and
the denominator of the integrand in Relation (3.18) by
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k
[T{1+mf s+ 20 -2)},
=1
it becomes a rational function in x with the degree of the denominator equal to
k42, and that of the numerator equal to k. It can be seen that the denominator

mpmnWemrzZOamibrx:(s+A+Lm#0/Awmnimo¢metm

denominator is negative for z = 1 and for z = (s +A+1 /mgi)) /A when ¢ is

even. Moreover, if £ — 0o then the denominator tends to +o0o when £ is even,
and to —oo when k is odd. Therefore, for s >0and ¢ =1,2,...,k+2, the roots
r;(s) of the denominator satisfy:

s+A+ s+A+ —
Tl ) < e ——— ™ s).

A A +
This relation enables an efficient computation of the roots, for instance using
the Newton-Raphson method (combined with the bisection method) on each of
the above intervals containing exactly one root. By partial fraction expansion,
Relation (3.18) can now be written as:

0<ri(s) <1<ry(s) <

_ g1(7;8) k+2 a; (8) B k+2 ' . (8) —a (7—; 3)
= /z:l ; T‘i(s)——l'dw - ;al(s) In (n(s)——l) . (3.19)

The functions a;(s) are given by:

I (14 {5+ A1 = ri(s))})
M TTS_ m T (s) = 7i(s))

Note that, for s > 0, r1(s) < g1(738) < 1 and a;(s) > 0, whereas 7;(s) > 1
and a;(s) < 0, i € {2,3,...,k+2}. After computing the roots r;(s) and the
coefficients a;(s), g1(7;s) can be found from Expression (3.19), again using the
Newton-Raphson method.

We tested the above procedure to compute the distribution function of C (7)
for the case of no service interruptions, and for the case of exponentially dis-
tributed off-periods. In the first case a closed-form expression for g;(7;s) can
be found in Coffman et al. [17, Equation (16)]. Using this expression, the Euler
algorithm — see Abate and Whitt [2, Section 7] — gives a reliable alternative
to compare the results. In general, the outcomes of both methods agreed up to
a relative difference of at most 3% for tail probabilities of the order 10~3. In the
case of exponentially distributed off-periods we compared our results to those
generated by simulation, and again found that the relative differences were at
most 3%.

We saw above that for hyper-exponential off-periods the roots r;(s) are all
real and positive, and we found disjoint intervals on the positive real line, each
containing exactly one root. When the distribution of the off-periods has a

ai(s)
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rational LST, but is not a hyper-exponential distribution, the analysis proceeds
along the same lines. However, in general some of the roots may be complex.
This is for instance the case when the off-periods have an Erlang distribution.

Serious complications arise when the distribution of the off-periods does
not have a rational LST. In principle, the left-hand side of Relation (3.18)
can be computed using for instance Simpson’s rule (or a higher order Newton-
Cotes method) for numerical integration. However, like any other inversion
method, the Gaver-Stehfest algorithm is highly sensitive to small errors in the
computation of the LST that is to be inverted. Therefore, computation of the
integral in Relation (3.18) requires exceedingly long computation times due to
the typical accuracy problems with numerical integration.

The same difficulties are encountered in the computation of go(7;s) using
Equation (3.15). Even if g;(7;s) has been computed accurately, for instance
using the above procedure for the case that the distribution of the off-periods
has a rational LST, evaluating the right-hand side of Equation (3.15) requires
an additional numerical integration leading to prohibitively long computation
times (poor results were obtained even after 2 hours on a Sun Sparc 4 station).

3.4 Moments of Cy(7) and Ci(7)

In Section 3.3 we saw that go(7;s) and g1(7; s), the LSTs of the distributions of
Co(7) and Cy(7), are determined by a set of differential equations. The solution
for these differential equations is given by Relations (3.15) and (3.18). However,
this solution is not very practical for determining moments of Cy(7) and C4 (7).
In this section we show how the moments of Co(7) and C(7) can be found by
directly solving an alternative system of differential equations. Yashkov [120]
also remarks that, in the M/G/1 processor-sharing queue, such an approach
leads to a more tractable derivation of moments. First we state the following
theorem which is a consequence of a result of De Meyer and Teugels [72, Lemma

3].

Theorem 3.4.1 If the k*® moment of the off-periods, my, exists, then so do
the k*® moments of Co(T) and C1(T) exist.

Proof See Appendix 3.B. O

We start by illustrating the derivation of the first and second moments of
Co(7) and Cy(7). We then formulate and prove Theorem 3.4.2 which reveals
the structure of the higher moments, as a function of 7.

By differentiating both sides of Equations (3.12) and (3.13) with respect to
s and then setting s = 0 we get,

%E [Ci(T)] = 14wvmi—{p—A1+vm)}E[Ci(7)], (3.20)
(%E [Co(T)] = 14+vmi+ A1+ vmi)E[Ci(7)]. (3.21)
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Formally it should first be verified that interchanging the order of differentiation
is allowed. However, in our case, we can also find Equations (3.20) and (3.21) by
directly applying the argument of conditioning on the events in a time interval
of length A to E[Cy(7)] and E [C;(7)], and then letting A | 0. Using the initial
conditions Cy(0) = C;1(0) = 0, we find:

E[Ci(7)] = Cli_#p (1-er@=plo)T), (3.22)
BlOs) = T, M (et Ty Gy

If my < oo, we can repeat this procedure to find E [Co(7)?] and E [C1(7)?].
Differentiating Equations (3.12) and (3.13) twice w.r.t. s and then setting s =0
(or again by a direct conditioning argument) we find

(%E [01(7)2] = —{u-A1+vm)}E [01 (7)2} +2(1 + vm)E[C1(7)]
+2X(1 +vm)E[CL (7)) + vmz {1 + AE[C1(1)]},(3.24)
C%E [00(7)2] = 2(1 + vm)E[Co(r)] + 2A\(1 + vm1)E [Co(r)] E [C1(7)]

FA(L + vmy)E [01 (7)2] +uma {1+ AB[Cy(7)]}2. (3.25)

We can solve this using Expressions (3.22) and (3.23):

E [01(7')2] = —(a1 +2as)Te ¥ (L—p/e)T
+W (1 _e k(1 —=p/c) T) (3.26)
+M (Za_z > (1 —e2u(1=p/c) T) ,
E [CO(T)Z] = b7+ bym? + bgTe M (A —p/e)T _ by (1 — ekl =p/e) T)
by (1 _e2u(l—p/c) T) , (3.27)
where
) y
ar = 2(14+vm+ )\sz)c _Mp’ 2
ay = M2(14vmq) + Avmy) (:i’i)) )

c 3
b1 = l/mg( ) ,
c—p
1 2
b2 - ( ) ’
c—p
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2+ p(1 4 vmy) + Aevmy
p

b3 = 2 ’
p(c—p)°
2 2¢c — 1
by = P 4( ¢ p+§cym2 (3c2—p2)),
p(c—p) H
2 2 1 2p—c
bs = p74(—2+—umgcp )
(c=p)" \p° 2 K

The same approach can be applied to determine higher moments. In Theorem
3.4.2 this is done to reveal the structure of these moments.

Theorem 3.4.2 For k > 1, provided that mj, < oo, and thus E [C1(1)*] < oo
and E [Co(7)*] < oo,

k k—m
E[Ci(r)] = o+ e m=p/T S o) (3.28)
m=1 n=0
k k—m
E[Co(r)t] = Y e mr(l=p/0)T 3™ g on (3.29)
m=0 n=0

where the a((Jk), agf,)n and ﬁr(,lf,)n are coefficients that are independent of T.

Proof See Appendix 3.C. m]

3.5 Moments of the conditional sojourn time

In this section we study the moments of the sojourn time of a customer condi-
tioned on the service requirement, the state of the server upon arrival, and the
number of other customers in the system. We give these moments in terms of
the moments of Cy(7) and C;(7). In particular, using the expressions for the
first two moments of C;(7) and Cy(7) found in Section 3.4, we find closed-form
expressions for the first two moments of the conditional sojourn time. From the
definition of V,, ;(7) in Section 3.2 we obviously have:

E[Vou(n)] = E[V(n)"{Y(0) =1,2(0) =n}],
E [Vao(n)] = E[V()*{¥(0)=0,2(0)=n}].
Lemma 3.5.1 For k,n € N and 7 > 0,
k
BV = 3 (5 )Rl By, (3.0

k

=
N
=
—~
=
~—
)
|

k 2o ’
< ; )E <D0+Zci(T)) E [V,1 ()], (3.31)

j=
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with E [Vo,1(1)*] = E [Co(7)*] and

E (Do-l-zo:ci(T)) ] = (—1)j%¢0(5+/\—/\91(7§3))

s=0

Dy is the residual off-period at time zero, ¢o(.) denotes the LST of the distribu-
tion of Dy, and Ag is the number of arrivals during Dy.

Proof From Theorem 3.2.5, we have for k,n € N, and 7 > 0,

E[Var(r)f] = E[(Co(r)+...Ca(r)"]

) i (5 )leam 1 &[G +...Coms(r)Y]

= zk: ( I; ) E [Ci(7)* ] E [Vao1a(7)],

Jj=0

and E [Vo,1(7)*] = E [Co(7)*] . Moreover, combining Theorem 3.2.5 and Corol-
lary 3.2.6, we find Expression (3.31). O

Remark 3.5.1 The derivatives %(ﬁo(s + A= 2Agi(m; s))‘ can be found by
s=0

using Lemma 1 of De Meyer and Teugels [72] to expand ¢g(s+ A — Ag1(7;s)) in
a Taylor series, analogous to Equation (3.53) below.

From Relation (3.30) we can compute the conditional moments E [V, 1(7)*]
recursively, once we have the moments of Cy(7) and Ci(7). The moments of
Vo(7) are then found from Equation (3.31). In particular we have for k = 1, see
also Equations (3.10) and (3.11),

E[V,1(1)] = E[Co(r)]+nE[Ci(T)], (3.32)
E[Vao(r)] = E[Do]+E[Co(r)]+ (n+ AE[Do]) E[Cy(7)], (3.33)
and for k£ = 2,
E [Vn’l(T)2:| = E [CO(T)2] +nE [01(7)2] + 2nE [Co ()] E[C1(7)]
+n(n — DE[Ci ()], (3.34)
E[Vao(r)?] = E|[Dg] +2E[Do] (E[Co()] + nE[Ci(7)])
+2XE [D3] B[Cy(r)] + B [Co(r)’]
+2(n+ AE[Dg]) E [Co(7)] E [C1(7)] (3.35)

+(n+ XE Do) E [C1(7)?]
+ (n(n — 1) + (2n — 1)AE [Dy] + X*E [DZ]) E [C1(7)]? .

Using Expressions (3.22), (3.23), (3.26) and (3.27) we have closed-form formulas
for these first and second moments.
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Theorem 3.5.2 Let k € IN be fired. If mpy < oo and E [D{)“] < oo then
E [Vo,1(7)¥] and E [V, 0(7)*] are polynomials in n of degree k:

k

=Y "einnt, ie{o,1}. (3.36)

=0

The coefficients c( )(T) are recursively defined by

)

]
. { > v (1) e (3.37

Sy (1) (5) e din |

7=l i=l

() = E[Co(r)k
1

1
C§c l)+1( ) =

withk € N, and !l = 0,1,...,k — 1. The empty sum (whenl+2 =k+1) is
equal to zero.
Forke N, andl =0,1,...,k, the C](c?;(T) are given by

k k—j
& (r) = Z( ;“ ) W (r <D0+ZC ) . (3.38)

3=l

Hence, for i € {0,1}, k € N, and | € {0,1,...,k}, the functions c( )( ) are of
the same form as E [Co(7)*] in Theorem 3.4.2.

Proof To prove Expression (3.36), for ¢ = 1, note that Recursion (3.30)
uniquely determines the E [V, 1(7)*] for k,n € N, and that Expression (3.36),

for ¢ = 1, with the c,(:l) () defined by Equation (3.37), satisfies the recursion.
Expression (3.36), for ¢ = 0, and Relation (3.38) then follow from Relation
(3.31).

The last statement follows from the fact that a product of two functions of
the class defined by Relation (3.29), one with k£ = [;, and the other with k =[5,
gives a function of the same class, with & =13 + 5. O

Sengupta and Jagerman [105, Theorem 1] proved that, in the M/M/1 pro-
cessor-sharing queue without server breakdowns, the k" moment of the sojourn
time conditional on starting with n competing customers, is a polynomial in
n of degree k. As a corollary of Theorem 3.5.2 we have that the result of
Sengupta and Jagerman is also true for the M/M/1 processor-sharing queue
with (generally distributed) server breakdowns.
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Corollary 3.5.3 If mj, < oo and E [D§] < oo then, fori € {0,1},

E[(Vn,i)k} = /Too E [V,:(r)*] pe #Tdr—z /T e FTdr.

=0

(T)ue”HTdr < oo,

Proof From the last statement of Theorem 3.5.2, f —o ,(c)l
(3.36). m

for i € {0,1}. The corollary then follows from Expressmn

3.6 Sojourn times in steady state

We study the sojourn time distribution of a customer with service requirement
T, arriving to the system in steady state. As before, we denote the number of
competing customers in the system and the state of the server at the beginning
of the sojourn time by Z(0) and Y (0), respectively. Obviously, in steady state,

d
(2(0),Y(0)) = (X,Y),
and the distribution of (X,Y’) is given by Expressions (3.2) and (3.3).

Theorem 3.6.1 For Re(s) > 0, the LST of the distribution of V(7) is given
by,

e—sV(7) 1] = (b= A1+ vma)) go(7; 5)
E [ |Y'(0) 1} 1 — Agi (7 8) — vgi (T S)%w, (3.39)
=l Owo ] = Bl O - S
— ¢\ = Ag1(733))

ml)\(l —g1(7;8) (340)
Proof Expression (3.39) is found from Expressions (3.2) and (3.10). To find
the sojourn times that start with an off-period, we remark that the residual
length of that off-period is distributed as the forward recurrence time of the
off-periods, i.e. ¢o(s) = %;(:) Then using Expressions (3.3) and (3.11) we get
Expression (3.40). O

Corollary 3.6.2 The mean sojourn time is given by

EV([@)] = —— +(1-c)

c—p 2mq

+(1- C)p%"1 X (ic__pg’z (1-e (1—p/e) 7). (3.41)
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Proof From Theorem 3.6.1, by differentiating w.r.t. s and putting s = 0, we
find

BV O -1 = s a-afe (L) (1ment-p97),

c—p 2mq \c—p

ma T mo pP pP
X 24+ (1-
2mi1 c—p 2m c—p( + c)c—p>

x (1 _e—u(l—p/C)T),

Alternatively, we may find E [V (7) |Y(0) = 1] more directly by substituting Ex-
pression (3.4) for n in Expression (3.32), and using Expressions (3.22) and (3.23).
Similarly, we can find E [V (7) |[Y(0) = 0] by substituting E[X |Y =0] , given
by Expression (3.5), for n in Expression (3.33), and using E [Do] = 57=. Fi-
nally after deconditioning, using P{Y =1} =cand P{Y =0} =1 — ¢, we get
E[V(7)]. o

E[V(r)[Y(0) = 0]

I
+
+

As pointed out in Section 1.6, it is well-known that in “standard” processor-
sharing queues the conditional mean sojourn time, E[V(7)], is proportional to
the service requirement 7. From Expression (3.41) we conclude that this is not
the case with an unreliable server. If we replace the unreliable server by one
that works with constant capacity c, i.e. the average service capacity of the
unreliable server, E [V(7)] will be equal to ;7. This corresponds to the linear
term in Expression (3.41). Note that for fixed 7, p, and ¢, Expression (3.41) is

fully determined by 2Tn21 , the mean backward recurrence time of the off-periods.

E [V (7)] is minimal for deterministic off-periods, i.e. when my = (m1)?, and can
become arbitrarily large for increasing 5.2
We conclude this section with two remarks, discussing two cases in which

the conditional mean sojourn time is approximately linear in 7.

Remark 3.6.1 E[V(7)] is “almost linear” in 7 when the on- and off-periods
alternate rapidly. As in Section 2.6, to make this statement formal, we construct
a new sequence of on- and off-periods by dividing each on- and off-period by
a scalar € € (0,00). In the new sequence, the on-periods are exponentially
distributed with mean 1/(ev), and the distribution of the new off-periods, which

are generically denoted by Té;)f, has LST

_ o7
E e *Torr | = ¢(s/e).
In particular, the first two moments of T(f?f are mge) = m; /e and mge) =may/€.

Obviously, evm vm is independent of €, and so is the probability that
the server is on (with the new sequence of on- and off-periods). Therefore the

() _
=
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ergodicity condition remains unchanged. With the new on- and off-periods, let
V(©)(1) be the sojourn time of a customer with service requirement 7, then

-
c—p

lim E [V(E)(T)} =
€E—> 00
Recall that this limiting case (e — 00) corresponds to the case where the server
is always available and works at the constant speed c, see the discussion in
Section 2.6.

On the other hand, when the server alternates very slowly, the expected
sojourn time can become arbitrarily large (irrespective of the service requirement
of the customer):

leiﬁ)l ¢E [V(e)(r)] = (1- 6)2’%2 (1 + p(26—§2 (1 _ e H(L=p/c) r)) _

1 c—p

Remark 3.6.2 From Expression (3.41) we also conclude that E [V (7)] is ap-
proximately linear for large 7. This can intuitively be explained by noting that
if 7 is large, then also the sojourn time will be large. Over a long period of
time, the fluctuations in the server availability average out, and for large 7 an
additional amount of work A7 requires ﬁAT time units. The term ¢ — p can
be seen as the average speed at which the permanent customer receives service,
when the system with the permanent customer is in steady state: The average
service capacity is ¢ per time unit, and on average an amount of capacity p per
time unit is required to serve other customers (since the system with a per-
manent customer is ergodic, all non-permanent customers eventually leave the
system). In the next section we study the case with 7 — oo in greater detail.

3.7 Asymptotic analysis for 7 — oo.

We study the behaviour of g1(7;s) as 7 — oo. Then we use these asymptotics

to show the convergence of @ for 7 — oo. Our starting point is Relation
(3.18). By partial fraction expansion,

1 k’](s)

= ko (z; .42
p—(s+A+p+v)z+ 2 +ved(s+ X — Ax) x—r1(s)+ 2(2;5), (3.42)

where

lim z = r1(s)
o) p— (8+ A+ pu+v)r+ Az2 +vzod(s+ A — Az)’

kl (S) = (343)

exists and the function ks (z; s) is analytic in z, for |z| < 1 and Re(s) > 0. Using
Equation (3.42) in Relation (3.18) we get, for s > 0,

91(738)
k1(s)In(gi(m;8) —r1(s)) + / ko(z; s)dz = ki(s) In(1 — ri(s)) + 7. (3.44)

z=1
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If we let 7 — oo in Equation (3.44), we may conclude that

ILm g1(7;8) = r1(s), s> 0. (3.45)
This is an immediate consequence of the analyticity of ko2(z;s) in = and the
boundedness of g1 (7; s), which imply that the second term on the left-hand side
of Equation (3.44) is bounded. In Remark 3.7.1 we discuss how this limiting
property can be obtained probabilistically in our model.

Remark 3.7.1 If we concentrate on a non-permanent element of the population
model of Section 3.2 and his offspring (we call this a family), then under the
ergodicity condition p < ¢, this family dies out with probability 1. Consider the
reward that this family generates until its extinction. This reward is equal to
the sum of the life times of all the members of this family plus the reward of
all nests in this family. By assigning the reward of a nest to the individual that
generated it, and concatenating the life times of all family members, it can be
seen that the total reward of this family is distributed as a clearing period of
the model of Section 3.1:
lim Cy(r) £ CP.

T—00

This corresponds to Equation (3.45).

Further exploiting Equation (3.44), we can carry our asymptotic analysis
one step further: For s > 0,

: gims) —re)\_\__ Y,
Tll)ngo {kl(s) In ( T Ty = - ka(z; s)dz. (3.46)
Using Equation (3.46) we can prove the following Lemma:

Lemma 3.7.1 For s > 0,

T

. 8 S p—
Tlgxolo - (gl(u, ;) - rl(;)> du =0,
and consequently,
. T s s s s B
‘rlg{olo o ((Iﬁ(; + A= )\gl(u, ;)) - ¢(; + A= )\7‘1(;))) du = 0.
Proof See Appendix 3.D. m]

Theorem 3.7.2 For s > 0,

S

lim go(r; 2) =e 7,
T—00 T

and hence,
C()(T) P 1
_ H _
T c—p

)

P , .
as T — 0. Here — denotes convergence in probability.
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Proof Using the first part of Lemma 3.7.1 we can write, for s > 0,

lim u;) (1 — g1(vy; ;)) du = lim 7 (1 —7'1(;)) = i

e rro0 u(c—p)

S
’

where we use that lim, g krTl(s) = E[CP]. We can find E[CP] = iﬁ—’; from
Relation (3.17). Similarly, using the second part of Lemma 3.7.1 we have, again

for s > 0,

T

- s s _ hm o (1— 65 A an(C
Jim | (1-0C+A=raw2))du = lim 7 (1-6(C+A-2n(2)
_ smic
- e

Using this in Relation (3.16), gives the convergence in distribution by the con-
tinuity theorem for LSTs of probability distributions, see Feller [30, Theorem 2,
p. 408]. The convergence in probability then follows immediately, because the
limit is a constant. O

Using Formulas (3.10) and (3.11), Theorem 3.7.2 immediately gives the fol-
lowing corollary. The result is in agreement with Remark 3.6.2.

Corollary 3.7.3 The sojourn time V(1) of a customer with service requirement
T, salisfies
V(ir) p. 1
—_ H [
T c—p

)

as T — 00.

Remark 3.7.2 Using the Renewal Reward Theorem, see for instance Tijms
[112, Theorem 1.3.1], it can be shown that the convergence of @, and C"T(T),
is in fact convergence with probability 1. To see this, note that N”(7), the
process counting the number of elements in the population P at time 7, is
regenerative. The regeneration points can be taken to be the times at which the
permanent element becomes the only element of the population. It can then be
shown that the lengths of the regeneration cycles have a finite expectation.

Remark 3.7.3 In addition to Theorem 3.7.2 and Corollary 3.7.3, it can be

shown that
V(r) = Co(r)

T

P
— 0, 7 —=o00.

This is a consequence of Theorem 3.2.5, Corollary 3.2.6, and Remark 3.7.1.

3.8 Heavy traffic

In Section 3.3 we have seen that the distributions of Cy(7) and Ci(7) are not
easy to compute. Hence, the same holds for the distribution of V(7). We now
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study the sojourn time of a customer conditional on the service requirement in
heavy traffic, that is for p 1 ¢. It turns out that V(7) scaled by a factor 1 — p/c
has a proper limiting distribution as p 1 ¢. This limiting distribution provides
a natural approximation of the distribution of V(7) when p is close to ¢. The
investigation of the quality of this approximation is a topic for further research.
Before stating the main result of this section, we establish the following limits:

Lemma 3.8.1 For Re(s) >0,
(1) limpye g1 (75 (1 — p/c)s) =1 and limype go(75 (1 — p/c)s) =1,
1-g1(mi(1—p/c)s) _

(ZZ) limpTc 1_—‘)/6 (1 + le)ST.
Proof See Appendix 3.E. O
Note that statement (ii) in the lemma can be rewritten in terms of the LST
of the distribution of the backward (or forward) recurrence time of Cy(7):

fn L= (L= p/d)s)
e BIC(](1—p/e)s

see Formula (3.22).
With Lemma 3.8.1 we can prove the main result of this section which is
stated in the next theorem.

Theorem 3.8.2 Provided that the second moment of the off-periods, ms, is
finite,

limE [e_(l - p/C)SV(T)} = ! : , Re(s) > 0.
pte 1+ (14 vmy + gvimy)st

Proof Using Lemma 3.8.1, the theorem can be proved by substituting (1 —
p/c)s for s in Expressions (3.39) and (3.40), and letting p 1 c. |

As p 1 ¢, the distribution of (1 — p/c)V(7) converges to the exponential dis-
tribution with mean (1 + vm; + JvAms) 7. For the ordinary M/G /1 processor-
sharing queue (without service interruptions) it is already known that the heavy-
traffic limit is an exponential distribution, see Sengupta [104] and Yashkov [124].

Remark 3.8.1 In Remarks 3.6.1 and 3.6.2 we observed that the conditional
mean sojourn time in steady state is “approximately linear” when the on- and
off-periods alternate rapidly and when 7 is large. From Theorem 3.8.2 we con-
clude that (1 — p/c)E[V(7)] is also approximately linear in 7 for p close to c.
This can also be derived from Expression (3.41).
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3.9 Concluding remarks

We studied the sojourn times of customers in the M/M/1 queue with processor-
sharing service discipline, and the server alternating between exponentially dis-
tributed on-periods and generally distributed off-periods. By using a time-scale
transformation, we formulated the problem in terms of a branching process
with a reward structure associated with it. The sojourn time V(7) of a cus-
tomer, conditional on his service requirement 7, was decomposed into a sum
of independent “fundamental” random variables. We indicated how the same
transformation can be applied to the case with generally distributed service re-
quirements which allows to generalise the decomposition result known for the
standard M/G/1 queue with processor sharing, see also Theorem 5.3.2. How-
ever, for generally distributed service requirements the steady-state distribution
of the queue length — and the attained or remaining service requirements of
the customers in the queue — is not known. Therefore in that case the analysis
of sojourn times in steady state is more complicated, see Chapter 5.

For exponentially distributed service requirements, the LSTs of the distri-
butions of the fundamental random variables were characterised through an
integral equation. We computed the first two moments of the fundamental ran-
dom variables, and identified the structure of higher moments. We used these to
find the moments of V/(7), conditional on the number of competing customers,
and generalised a result of Sengupta and Jagerman [105, Theorem 1]. We gave
a closed-form expression for the LST of the sojourn time distribution in steady
state, in terms of the LSTs of the distributions of the fundamental random vari-
ables. The mean of the steady-state sojourn times was found in terms of the
input parameters. We further studied asymptotics of the queueing model. First
we analysed the case for 7 — oo, proving that V(7)/7 converges (with probabil-
ity 1) to a constant. Then we proved that under heavy-traffic conditions, that
is for the traffic load p 1 ¢, the scaled sojourn time (1 — p/c)V(7) converges in
distribution to an exponential one, of which the mean is linear in 7.

A crucial observation is that E[V(7)] is not proportional to 7, unlike in
processor-sharing queues without service interruptions. We saw that E [V (7)]
is approximately (asymptotically) linear in three cases: (i) when the on- and
off-periods alternate rapidly, (ii) when 7 is large, and (iii) in heavy traffic. An
intuitive explanation for this linearity in all three cases is that the sojourn times
are large compared to the lengths of the on- and off-periods, so that fluctuations
in the service availability average out.

The obtained closed-form results are the basis for the analysis in the next
chapter, where we consider more general service rate fluctuations. In particular
we will be interested in extending the asymptotic (structural) properties of the
sojourn times obtained in this chapter. Special attention will also be devoted to
the fact that, when the service rate is not constant, there is no proportionality
between the conditional mean sojourn time and the service requirement.
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Appendix
3.A Proof of Lemma 3.3.1

Lemma For Re(s) > 0 and 1 > 0, go(7;s) and g1(7; s) are uniquely determined
by the following set of differential equations,

ea1(ri8) =~ (s At pt ) ga(r8) + Mar(ri o)) + s
+0g1 (73905 + M1 - 01(735)),
Srao(ris) = = (s A+ 0) go(rs ) + Ago(ri )gn(ri)

+vg0(73 8)6(s + A(1 = 91(739))),

and initial conditions,
90(0;8) = g1(0; ) = 1.

Proof By conditioning on the number of “single” children and the number
of nests that a non-permanent element in the population model generates in a
time interval of length A, as well as on the survival probability of the element
itself in that interval, we get,

A oo m 1 t
g(r+4;s) = / peHlemst 3™ oAD" (?/ g1(1T + 8)du>
t=0 u=0

m

m!
% Ze—yt% (% . d(s+ A1 —g1(7 + w3 s)))du> dt
> m A T4+ u;s "
b )
> _ A (A A s+ A1 —gi(r+us "
3o Al </u=0< (ol )))du)‘

Here we use the fact that “Poisson arrivals occur homogeneously in time’, see
for instance Tijms [112, Theorem 1.2.5]. Note that ¢(s + A(1 — g1(7; s))) is the
LST of the distribution of the reward of a nest plus the rewards of all children
in that nest and their offspring, until time 7. Equivalently we may write,

gi(t+ A;s) =

A t
/ uexp{—,ut—st—A(t—/ gl(T—i—u;s)du)
t=0 u=0

—v <t - t d(s+ A1 — g1 (7 + u; s)))du) } dt

u=0
A

+g1(7;8) exp {—uA —sA -\ (A - / g1(T + v s)du)
u=0
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—v (A - /:o d(s+ A1 — g1 (7 + u; s)))du) } .(3.47)

By similar arguments we also find,

go(T+ Ays) =
A
go(T; 8) exp {—SA -2 <A - / g1 (7 + u; s)du)

A
—v (A - /:o d(s+ A1 — g1 (7 + u; s)))du) } .(3.48)

From Equations (3.47) and (3.48) we can show that, for A | 0,

ga(t+458) = 1—(s+A+p+v)A)gi(r;s)+ )\A{gl(T;s)}2 + pA
+vAgi(7;8)p(s + A(1 — g1(735))) +0(A), (3.49)

go(T+455) = (L—(s+A+v)A)go(r;s) + AAgo(T;5)91(T; 5)
+vAgo(7;5)p(s + A(L — g1(755))) + o(A). (3.50)

With Equations (3.49) and (3.50) it is immediate that g1(7;s) and go(7; s) are
continuous from the right in 7. If we replace 7 in Equations (3.49) and (3.50)
by 7 — A, the continuity from the left in 7 also easily follows. Subsequently it
can be shown that, for ¢ € {0,1},

ljm T 258) ~gi(ri8) _ pp 9:(738) il — Ajs)
A0 A Ao A

)

so that 2g1(r;s) and Zgo(r;s) exist and satisfy the differential equations
stated in the lemma. The initial condition follows from Cy(0) = C1(0) =0. O

3.B Proof of Theorem 3.4.1

Theorem If the k'™ moment of the off-periods, my, exists, then so do the kP
moments of Co(7) and C1(T) exist.

Proof It is known for the M/G/1 queue that the k" moment of the busy
period distribution exists if and only if the k" moment of the service time
distribution exists, see De Meyer and Teugels [72, Lemma 3]. With Lemma
3.3.3, this implies that the k*" moment of the clearing period exists, if and only
if my < oo. Since Cy(7) is non-decreasing in 7 with probability 1, and C;(7)
converges to the clearing period CP, as 7 — 00, it must be that

E [Ci(r)*] <E[CP*],

(C1(7) is stochastically smaller than C'P), and hence the k** moment of C;(7)
exists when my < oo.
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To prove the result for Cy(7), we first write the following identity:

N () N Ny

Co(r)= Y, Clr =T+ 3 Di+ D Cinlr—T/).
i=1 j=1 n=1

Here, NV (1) is the number of “regular” children that the permanent element,
in the population P, generates (at rate A) over a time span of length . Tz-(’\) is
the time at which the i*® regular child is born, and C;(T — Ti()‘)) is the reward
of this child and his offspring until time 7. Similarly, N(*)(r) is the number of
batches of children of the permanent element (generated at rate v) until time
7. Dj is the direct reward of the j*® batch, NY)(D;) is the number of children
in the j** batch, Tj(") is the time at which the j'® batch is generated, and

Cin(r— Tj(”)) is the reward of the n*® child in the j*® batch and his offspring,
until time 7. The above identity was given in terms of LSTs in Relation (3.16).
If we replace each of the rewards until time 7 associated with a child of the
permanent customer and his offspring, by the reward of the family of that child
over a total time-span of length 7, we clearly have an upper bound for Cy(7):

N () NO() NI (D))
C()(T) < Co(T) = Z Cz(T)—i- Z D; + Z Cj,n(T)
i=1 j=1 n=1

For Re(s) > 0, the LST of the distribution of Cy() is given by,
E [e*SC_"("')] = exp{-T7(s+A(1-g1(7;9))
+v[1—¢(s+ A= Agi(7;9))])}- (3.51)

If my < 0o, and hence by the first part of the theorem E [Cl (T)k] < 00, we can
write, for s | 0,

¢(s)

7!

1+ Zmi (_,s)i + o(sk),
(=s)!

s
j!

k
gi(r;8) = 1+ Z E [Cl(T)j] + o(sk), (3.52)

see De Meyer and Teugels [72, Lemma 1]. Combining these, we get,
d(s+ A —Ag1(138)) =

k —s+AYE B [0y (r)] &L i
1—|—Zmi< AL z'![ 715 ) + o(s%). (3.53)

From Equation (3.51) it is now straightforward to see that the LST of the distri-
bution of Co(7) has a finite k™" derivative in s = 0. Therefore, the £ moment
of Cy(7), and hence the k*® moment of Cy(7), exists. O
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3.C Proof of Theorem 3.4.2

Theorem For k > 1, provided that my < oo, and thus E [C1(7)*] < oo and
E [C()(T)k] < 00,

k k—m
E[Ci(1)}] = o'+ e ™ =p/)T N o) 0 (3.54)
m=1 n=0
k —m
E [Co(r)}] = Z oM (L= ple)T 3™ gk) on (3.55)

where the aé ), aﬁ,’f)n and ,Bm n are coefficients that are independent of T.

Proof Let T,s¢ be as before and N(T,ss) be the number of Poisson arrivals
(with rate ) during the period T,¢s. If C1(7),Co(7),... is an ii.d. sequence
with LST of its distribution g;(7;s), then using Equations (3.52) and (3.53),

E [e—s (Tops + Co(7) +- .. CHN(TGH)(T))]

= g1(1;8)B(s + A — Agi(758))

k r 1
= (Z(—SV—E Gl +o<sk))

=0

k k AT\
x (Z % (S—AZ(—S)L [Cll!( ”) —i—o(sk))
n=0 =1

k k j i
(oo o) (oo )

y\%
>4\'—‘

i=1 j=1

+o(s"). (3.56)

We write out the terms in the summation as,

: =)
e

=1

_ 3 ( ZO . ) )io ﬁ ()\E (—js!)">”

do+i1+...Fip=i j=

- e v () Hfmeens)

n=0 (io,...,ik)esk,i,n =1

+o(s¥), (3.57)

=

[
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where,

) k+1
Sk,in =< (%0,%1,...,9k) € E tj =1,%0 + E Jjij=n

Note that there are combinations of k,i,n € IN, for which Sk ;, = 0.

We now prove the theorem by induction on k. From Equations (3.56) and
(3.57 ) it follows that if E [Cy(7)7] has the form of Expression (3.54) for j =
1,2,...,k—1, then:

E [(Toff +Ci(r)+...+ C1+N(Toff)(7—))ki|

= (1 + DE[Ci(n)*] +4 + Z e~ —p/o)T Z MORES

This can be verified by noting that the only contribution of E [C1(7)*] to the
coefficient of (—s)* in Equation (3.56), is through the term with i = 1. All other
contributions to the coefficient of (—s)* are either zero, or come from products
of the E [C1(7)7], for j = 1,2,...,k — 1. Apart from a constant in 7, they all

consist of terms of the form 77e—M#(1 — p/c)T ,withm >1,n>0and m+n <
k. Writing out the terms, it is seen that 'yik,z ; = 0. This is a consequence
of the fact that for I1,ly = 1,2,..., the product E [C1(7)"] x E [Cy(r)"] is
of the same form as E [C;(7)"**2] in Expression (3.54), except for the terms
containing rre—i(1 - p/c)T with n > max (I1,[2), which do not appear. The

other coefficients 'y( )n can be found from the a%)n for j < k, by use of Equations

(3.56) and (3.57).
As before, we can derive a differential equation for E [C1(7)*]:

TR = ~(tutB[G)] + kB[O (r) ]

or
+AE [(01(7) + 02(7))16}
+VE [( off +CUT) + ...+ CI+N(Toff)(T))k}

= —{p—-21+vm)}E [Cl(r)k] + KE [C1(r)* ]

k—1
NGB LICTEICR

k—2

+y7(()k) T ve— (1 —p/c)T Z ,y({chn
n=0
k k—m

+v Z o—mu(l = p/e)T (k7)n7_n-
m=2 n=0
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Note that in the right-hand side of this differential equation, no term with
e (1 —p/O)T k=1 appears. Solving for E [C1(7)*], indeed leads to the form
of Relation (3.54). The coefficients a((,k) and aﬁ,’f?n are recursively determined by
the a(()j ) and a%?n for j < k.

To prove the second part of the theorem we use the differential equation for

E [Co(T)k]:

a%E [Co(r)f] = —(A+)E [Co(r)*] + XE [(Co(r) + C1(r))"]

N(Toss)
+KE [Co(r)* ] + vE | | Toss + Co(r)+ > Ci(r)
=1

k—1
= KB [ +AY ( ; )E [Co(r)!] B [Cy (7)1

k—1
N(Toss)

k—1
+I/§( llc )E[C()(T)I]E Tofr + ; Ci(7)

By similar arguments as before, we find Relation (3.55). O

3.D Proof of Lemma 3.7.1

Lemma For s >0,

and consequently,

lim TO (2 +2=2g1(w 2) = 62 + A= wra(2))) du=o0.

T—00 u= T

Proof Using Relation (3.44) we may write:

[ (=) o

= (1-n(®) [L;Oexp{klzi) <u—/:l(u;%) kg(w;z)dw)}du.

It is clear from Definition (3.43) that ki(s) < 0, for s > 0: for z = 0 the
numerator on the right-hand side of (3.43) is negative and the denominator is
positive, and as = 1 ri(s) neither the numerator nor the denominator changes
sign.
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For s > 0, let M(s) € [r1(s),1] be such that fzﬂi(ls) k2(z; s)dz is maximal.
Then we may write,

T s s
[ ()= n)au
—1 M(%) .8 T
< (1 —r1(£)> a8 ot R f)dxkl(f) (e’ﬁ(%) - 1) . (3.58)

Now, if we take 7 — oo then r1(2) and M(£) go to 1, k2(x; £) remains bounded
for r1(£) <z <1, and

T

0

IN

Thus, if we let 7 — oo in Relation (3.58) then its upper bound goes to 0.

The second part of the lemma follows from the first part by noting that,
since it is a LST, ¢(s) is a decreasing and convex function for s > 0, and
4 8(s)|s=0 = —m1. Therefore it holds that ¢(s1) — ¢(s2) < m1(s2 — s1), when-
ever 0 < s1 < s9. O

3.E Proof of Lemma 3.8.1

Lemma For Re(s) >0,
(1) limyye g1(75 (1 — p/c)s) =1 and lim,pe go(75 (1 — p/c)s) =1,
(i) limpqe %})/—cp/c)s) = (14+vmy)sT.

Proof Part (i): Substitute (1 — p/c)s for s in Equations (3.47) and (3.48),
and let p 1 c¢. Assuming that hi(7;s) := limp g1 (75 (1 — p/c)s) and ho(T;s) :=
lim . go(7; (1—p/c)s) exist we find (using the Dominated Convergence Theorem
for the interchange of limit and integrals),

ha(r+Ass) = /:Ouexp{—ut—x(t—/;ohl(7+u;s)du>
v (t - /utzo SO — ha (7 + us s)))du) } dt

A
+hi(7;5) exp {—;LA —A (A - / hi (T + u; s)du)
u=0

v (A - /:o (A1 — h1 (T + u; s)))du) } ,

ho(t+4;s) = hO(T;s)eXp{—)\ (A—/A hl('r—i—u;s)du)

=0

—v (A - ./=o (A1 — hy (T + u; s)))du) } .
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From this we can derive the following set of differential equations (as in Section
3.3):

Soha(Tis) =t haris) (ha(rss) — (A v ) v a3 )},

%ho(’r; s) = ho(r;8){Ahi(158) — (A +v) +vd(A(1 — hi(T;9)))}-

Together with the boundary conditions h;(0;s5) = ho(0;s) = 1, these dif-
ferential equations uniquely determine hi(7;s) and ho(7;s). Part (i) is now
proved by noting that hi(7;s) = 1 and ho(7;s) = 1 satisfy these equations.
A comment should however be made about the assumption on the existence
of hi(r;s) and ho(7;s): Since, for any Re(s) > 0, |gi(7;8)] < 1, we can

find a sequence (p(k))k cw in the interval [0, c] such that limy_, p*) = ¢ and

hi(1;8) := limg_, o0 g1(7; (1 — p®) /c)s) exists. For hy(;s) we can formulate the
differential equations, leading to h;(7;s) = 1. Since the limit is the same for
all convergent sequences, h;(7;s) exists. In the same way it can be argued that
ho(T;s) exists.

Part (ii): The proof proceeds along the same lines as for Part (i). We assume

the existence of ) )
ll(T; S) .— lim _gl(T?( —p/C)S)
pte 1-— p/ 4
Again this existence can be shown by following the subsequent steps for the
limit of a convergent sequence

1-gi(r; (1= p®/c)s)
1—pk)/c ’
Such a sequence exists because |1 — g1 (7;w)| < |w|E [C1(7)] for any Re(w) > 0,
and E [C;(7)] is bounded in p/c € [0, 1], see Formula (3.22).
Substitute (1 — p/c)s for s in Equation (3.47), subtract both sides of this
equation from 1, and use,

T

. 1
Egm <1 —exp{—(l — p/c)sT — )\/uzo 1-gi(r+w(1—p/c)s))du

v [ =81 g/t N1 =+ 6 (1 p/)s)))u} )

=sz+ A l1(T+u;s)du+u/ my (s + A1 (T + u;8)) du,

u=0 u=0
(again with the Dominated Convergence Theorem to interchange limit and in-
tegrals), to find,

Ii(T+ A;s)
A
= / pe_:“t ((1 +Vm1)st+)\(1+1/m1)/
t

=0 u=0

t

L(r+ vy s)du) d¢

A

Lo HA (ll(T; )+ (1 +vmi)sA + A(1 +vmy) / L(r+y; s)du) :

=0
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For A | 0 we may now write:

Li(t+ A58 = Ili(r;8) — Aulyi(;8) + A1+ vmy)s + AX1 + vmq)li(758) + o(A)
li(7;8) + A(1 +vmi)s + o(A),

where for the last equality we have used that g = A(14+vm4) when p/c = 1. Us-
ing the boundary condition I (0; s) = 0 we readily find l;(7;s) = (14+vmq)sT. O



Chapter 4

Sojourn times in a Markovian random
environment

In the previous chapter we studied sojourn times in a processor-sharing queue
with an unreliable server. This chapter presents the analysis of Nunez Queija
[84] for a model with a more general structure for the service fluctuations. Here
the service rate of the processor-sharing queue depends on the state of an un-
derlying Markov chain. The model is more general than the on/off model of the
previous chapter in the sense that different positive service rates are possible,
and that the (total) service capacity may also depend on the number of cus-
tomers in the queue. To be more precise: As before, let X (¢) be the number of
customers in the system at time ¢ > 0. Also, Y (¢) denotes the state of some (yet
to be specified) random environment (of the queue), at time ¢ > 0. In Chapter
3 the random environment determined the state of the server which alternated
between an “on” and an “off” state, the on-periods being exponentially dis-
tributed and the off-periods having a general distribution. Now {Y(¢),t > 0}
is a general Markov process on a finite state space {1,2,...,N}. The (total)
service rate in the processor-sharing queue depends on the state of the random
environment, but may also depend on the number of customers in the queue.
If X(t) = k and Y (¢) = ¢ then the total service rate at which customers in the

processor-sharing queue are served, is cl(.k) > 0. Thus, if £ > 0, each of the

. . . . k
customers in the queue receives a service capacity %c( )

;. Under the assumption
of Poisson arrivals (the arrival rate at time ¢ possibly depending on X (¢) and
Y(t)) and exponentially distributed service requirements, the two-dimensional
process {(X(t),Y(t)),t > 0} is a non-homogeneous — or level-dependent —
QBD (Quasi Birth and Death) process, see Chapter 2 or Definition (4.2) below.
The QBD structure is not essential to the analysis, but has computationally
attractive properties. The analysis is presented under the above assumptions to
show how the QBD structure is preserved throughout the analysis and reflected
in the results. In Section 4.8 we show how the analysis can be extended to the
case when service requirements have a phase-type distribution. This destroys
the QBD structure, but qualitative properties of sojourn times are preserved.

91
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As pointed out in Section 1.6, it is well known for processor-sharing systems
with constant service rate that the mean sojourn time conditional on the amount
of service required is proportional to the service requirement. In Section 3.6 we
showed that this is not true for the on/off model. However, an asymptotic lin-
earity (for the amount of service required tending to infinity) was revealed. In
this chapter we show that this asymptotic result is also valid for the present
model, in which the service rate may assume different positive values. Using
a time-scale transformation which extends the branching-process approach of
Section 3.2, it is shown that the problem may be viewed in the context of a
Markov-Reward process.

The remainder of the chapter is organised as follows. The model under con-
sideration is presented in detail in Section 4.1. In Section 4.2 the sojourn times
of customers are studied. As in the previous chapter, we concentrate on sojourn
times conditional on the state upon arrival and on the service requirement. An
explicit expression for the LST (Laplace-Stieltjes Transform) of the conditional
sojourn-time distribution is derived. Particular attention is paid to the condi-
tional mean sojourn time as a function of the service requirement, and we prove
the existence of an asymptote, as the amount of required service tends to infin-
ity. In Section 4.3 we extend the method of random time change to the present
model. We used this method in Section 3.2 for the construction of a branching
process that enabled the analysis of sojourn times in the model with an un-
reliable server. By means of the random time-change method, we “translate”
sojourn times in the queueing system into rewards in a Markov-Reward process.
In Section 4.5 we explain the proportionality property between conditional mean
sojourn time and the service requirement in processor-sharing queues without
random environment. We show in Section 4.6 how the conditional mean sojourn
times may be computed. In view of the complexity in computing the exact con-
ditional mean sojourn time, we propose an approximation that only depends on
steady-state characteristics, and hence, can efficiently be computed. Section 4.7
presents the numerical results of Nifiez Queija et al. [85] for an application of
the analysis to a variant of the telecommunication system described in Section
1.5. The numerical results validate the proposed approximation. In Section 4.8
it is shown that phase-type services and discriminatory processor sharing essen-
tially fall within the framework of the model. We also discuss the extension to
infinite state spaces. Concluding remarks are made in Section 4.9.

4.1 The model

The model that we study in this chapter is more general than the one of Chapter
2, where the random environment (that is, the process regulating the available
service rate) evolved independent of the queue-length process. Here we do not
make that assumption and, furthermore, allow arrivals and departures of cus-
tomers to cause an instantaneous change in the random environment. Let us
first describe the model in detail.
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Figure 4.1: The queueing model

Consider a processor-sharing queue in a random environment as depicted in
Figure 4.1. In the queue at most L € IN customers can be present. We assume
that the random environment may be modelled as a Markov process with state
space {1,2,...,N}, with N € N. Changes in the random environment may
be dependent on the arrival and departure process of customers. The set of
possible states of the random environment when the number of customers is
equal to k € {0,1,2,...,L} is denoted by the subset E(*) C {1,2,...,N}. We
say that the queueing system of Figure 4.1 is in state (k,:) when there are
k €{0,1,...,L} customers present and the state of the random environment is
ie E® C {1,2,...,N}. The set of all possible system states is denoted by:

S = {(k,i) ck=0,1,...,L; ieE(k)}. (4.1)

The arrival rate of new customers and the service rate of customers in the
queue are determined by both the queue length and the state of the random
environment. For the time being (we come back to this in Section 4.8.1), it is
assumed that customers have an exponentially distributed service requirement
with mean 1/u (independent of other service requirements, the arrival process,
and the random environment). If the state of the system is (k,i), then new
customers arrive according to a Poisson process with rate )\Ek). Upon such an
arrival, the number of customers in the system is increased by one, and the
random environment changes (immediately) to state j € E(*+1) with probabil-

ity pl(-;-c), where ZjeE(k"'l) pg?) =1lfor0<k<L-1. If j = i then pg?) is
the probability that the random environment does not change state. In state
(k,7) with k& > 0, the server works at rate cz(.k) > 0. This service capacity is
equally divided among all customers present (processor sharing). Hence, each
customer leaves in an interval of length A with probability % ,ucgk)A +o0(A), for

A | 0. The total departure rate of customers is therefore ucgk) . Upon such a
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departure, the random environment changes to state j € E®*~1 with proba-

bility m{Y, where 3, pu— miy) =1 for 1 < k < L. Finally, in state (,1)
the random environment may change to state j € E®¥) — without changing the

number of customers — at rate qg.c), j # 1. For (k,i) € S it is convenient to define
P =0, j ¢ B®D, m =0, j¢ B¢V, and ¢{f) =0, j ¢ E®). Note that
ECYD and E(**Y) are not defined, therefore we further set A" := () := 0, for
alli e {1,2,...,N}

At time ¢ > 0, X(¢) is the number of customers in the system and Y (¢) is the
state of the random environment. The Markovian process {(X (¢),Y (¢)),t > 0}
is a non-homogeneous QBD process. Its infinitesimal generator can be written
as:

[ QP A@ 0 ]
MW le) A 0
Gg:= 0 ’ ’ .. . : (4.2)
_ L-1 _
: ) M(E-1) QE{ ) A(L(L)l)
|0 0 MEB Q]
The submatrices in this generator are given by:
k) (k
i€ E(k) je E(k+1)
*)  — [ (k) (’.f)}
M peg Ty, ieBW jemtk-1)

(k) _ [(’?)}
d 4 i, jeE®

where the q@

;i are such that (4.2) is a true generator (all rows sum to 0).

The state space of the process (X (t),Y(t)) is given by S in Definition (4.1).
The components k and 7 of the state (k,7) € S are called the level and the phase
of the QBD process, respectively. The level of the process corresponds to the
number of customers in the system, and the phase of the process corresponds
to the state of the random environment.

It will be assumed throughout this chapter that G is irreducible (all states
in the corresponding Markov process communicate). The process is called a
homogeneous QBD process if, as is the case in Chapter 2, for all k: M*) = M,

((119) = Qq and A®¥) = A. The state space is finite, since we assumed that L, the
maximum number of customers in the system, and IV, the number of states of
the random environment, are both finite. The submatrices Q((ik), A®) and M*)
are all of finite — but not necessarily the same — dimension. Generalisations
to infinite state spaces are possible, but require specific attention regarding
ergodicity issues. We briefly address these issues in Section 4.8.3.

We denote the steady-state probability vector by 7:

TG=0, ®l=1,
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with 0 being the vector with all entries equal to zero and 1 the vector with
all entries equal to one. Throughout this chapter, for any vector v its entries
Uk,; are ordered lexicographically, i.e. vy ; precedes v ; if kK <[, or if k =1 and
1 < j. Another notational convention we adopt, is that any vector multiplying
a matrix from the left (right) is a row (column) vector. Furthermore we use the
symbol I to denote the identity matrix. Whenever used, the vectors 1 and 0,
and the matrix I are of the appropriate dimension.

Usually the service discipline considered for queueing systems which can be
modelled as a QBD process is FCFS (First Come First Served). In the present
queueing system the service discipline is processor sharing. Because of the ex-
ponentially distributed service requirements, the queue length process obeys the
same probabilistic law for all work-conserving service disciplines that do not take
into account actual service requirements (including FCFS and processor shar-
ing). The queue length in non-homogeneous QBD-processes has been studied
extensively in the literature, see for instance De Nitto Personé and Grassi [24]
where an algorithm is described for the computation of the steady-state queue-
length distribution in non-homogeneous QBD processes with a finite state space.
Here we do not discuss the computation of the steady-state probability vector
.

For the sojourn times of customers, the service discipline does matter. So-
journ times in QBD processes under the FCFS discipline are discussed in Neuts
[81, Section 3.9]. For non-homogeneous QBD processes an analogous treat-
ment is possible. The distribution in terms of LSTs may be found in Li and
Sheng [65]. Here, our concern is with the sojourn time distribution under the
processor-sharing service discipline.

4.2 Sojourn times

In this section we study the sojourn time of a customer conditioned on the
number of customers and the state of the random environment upon his arrival.
Particular attention is paid to the case where we also condition on the amount of
work brought into the system. It will be useful to define the following generator:

T 0 0 0 0
MOT | QP A®
L@ | 1@ QP A®

P . o (1;)
%M(’“)l %M(k) Qy AR

(07 Ly, ()
10T LA™ QP |
(4.3)
The state space of a Markov process with generator 74 may be denoted by all
pairs (k,i), with k = 1,2,...,L and i € E®), and an absorbing state 0. Note
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that there are no states (k, 1) with k = 0, and that all states (k,i),k =1,2,...,L
are transient. The latter statement follows from the irreducibility of G given by
Definition (4.2). In the first column of # we find the transition (absorption)

rates from all other states into state 0. From any state (k,¢) the absorption rate
(k)

%

(into state 0) equals }puc

Theorem 4.2.1 The sojourn time of a customer who enters the system with
k — 1 other customers present and the random environment being in state i, is
distributed as the absorption time in a Markov process My, with generator H
defined by (4.8), starting from state (k,7).

Proof The proof can be given by comparing the evolution of the queueing
system of Figure 4.1, from the moment that the tagged customer arrives (and
finds k — 1 other customers and the random environment in state i), with the
evolution of the Markov process My, starting in state (k,7), until absorption
in state 0.

In particular, at any moment that the tagged customer is in service with
[ — 1 other customers and the random environment in state j, the rate at which
he is served is %cg-l), and his “departure rate” is therefore ,u%cg}). The departure
of the tagged customer from the queueing system corresponds to absorption in
state 0 in the Markov process My, (see the first column of 7). |

Remark 4.2.1 For the computation of the moments of the absorption time in
My (and hence of the sojourn time in the queueing system) from any initial
state we refer to Li and Sheng [65].

We further concentrate on the sojourn time of a customer with service re-
quirement 7 > 0. For k = 1,2,...,L and i € E®), let again Vj ;(7) be the
(remaining) sojourn time of a (tagged) customer, starting with k — 1 other cus-
tomers present, the random environment in state ¢, and the tagged customer
having a (remaining) service requirement of 7. Define the LST (Laplace-Stieltjes
Transform) of the distribution of V4 ;(7) by

Vk,i(s;7) == B [e_sv’“’i(")] , Re(s) >0,

and let U(s; 7) be the vector with the vy ;(s; 7) ordered lexicographically. In the
following we derive an explicit expression for v(s; 7).

Remark 4.2.2 In this section and in Section 4.3 we concentrate on the case

where the cgk) are all strictly positive. In Section 4.4 we extend the analysis to
(k)

the case where some of the ¢;"’ may be zero.

As in Section 3.2 we study the sojourn times conditional on the service re-
quirement using the model with one permanent customer. Suppose we consider
the queueing system of Figure 4.1, with the modification that there is one cus-
tomer that never leaves the system, but shares in the service rate as if he were an
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ordinary customer. With that modification, the number of customers k ranges
from 1 to L. Having placed a permanent customer in the system at time 0, we
denote the total number of customers in the system (including the permanent
customer) at time ¢ > 0 by X*(¢) and the state of the random environment by
Y*(t). Recall that in Section 3.2 we considered the number of non-permanent
customers Z(t) = X*(t) — 1 instead of X*(t), and that the evolution of the ran-
dom environment was unaffected by the presence of the permanent customer.
The process {(X*(¢),Y*(t)), t > 0} is again a non-homogeneous QBD process
with generator G* defined by:

[ @"{’1(1) A(l) 1

1) 0.2 A@

g*:

_ ~ (k)
SSVIONGY A®)

L=2 pf(L-1) o.F Y ac-n
_ (L)
EAM®) Qg

(4.4)
—~(k

The matrices Qd( ) differ from the matrices Qgc) only in their diagonal elements:

These are such that each row of G* sums to 0. The state space of the process

(X*(t), Y*(t)) will be denoted by:

S*:={(k,i) €S : k>0}.

Additionally, we define the diagonal matrix
1
R :=diag [—cgk)] .
B iest

The entries of R along the diagonal are ordered lexicographically in (k,?).

We follow a different approach than in Section 3.2. Here we first analyti-
cally derive an expression for the vector of LSTs ¥(s; T), exploiting that in the
present case the model is Markovian. In Section 4.3 we relate the solution to
the permanent-customer model using the method of random time change.

Theorem 4.2.2 If cz(-k) > 0 for all (k,i) € S*, then for 7 > 0 and Re(s) > 0,

—o(s;7) = R G — s I|(s;7T), (4.5)

and hence,
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Proof The proof can be given by marginal analysis: When the state of the
queueing system is (k,¢) € S*, the customer with a remaining amount of work

7 (as well as all other customers) is served at rate %cgk) . Consider a small time
interval of length £ (,c) and condition on the possible events occurring in this

interval:
vg,i(8;7 + A)
_o kA
= e ° ef® X
k) kA —1 k) kA
)\() (k)Zp” Vk41,5 (85 7) E) (k)Zm Vk—1,5(857)
k k kA
P (k)”lw s7)+ <1+~( ) (k)) Uki(557) 0 +0(A),
J#i G
with 651 ) = —/ka;lcgk) - )\Ek) =Dt qf]) This leads to the differential equation

(4.5). The initial conditions (4.6) follow from the fact that all cgk) are positive,
and hence E [V ;(04)] = 0. It can then be verified that (4.7) is a solution to
(4.5) and (4.6). Since the solution must be unique, we are done. O

In the proof of the following corollary we use standard results for Markov-
Reward processes. These processes fall within the framework of Markov decision
theory (with the restriction that here no decisions are to be made). The first
to present a systematic treatment of Markov-Reward processes on a finite state
space seems to have been Howard [45]. In particular the results on continuous-
time Markov-Reward processes (pp. 99-104) are of interest to us. The close
relationship between the continuous-time case and the discrete-time case is ex-
ploited by Tijms [112, Section 3.5]. In the proof of the following corollary we
further rely on Zijm [127].

We use the symbol 1; ; to denote the vector with the entry in position (k, 1)
equal to 1, and all other entries equal to 0.

Corollary 4.2.3 If cgk) > 0 for all (k,i) € S*, then for T >0,

T

E [Vi,i(r)] =

o T Lk [I—exp{rR™'G"}]7, (4.8)

where

¢t = Z sz(k),

(k,i)eS*

. « (1
p = Z ﬂ-k,i)‘z();,

(k,i)eS*



4.2 Sojourn times 99

with ™™ = (ﬂ'z’i)(k’i)es* the steady-state probability vector of the model with one
permanent customer:

The vector ¥ satisfies
_ 1 _
-G*y=1- —— RI, (4.9)
ct—p

and is unique up to translation by the vector 1. Expression (4.8) is, however,
invariant with respect to such a translation. We may normalise 7 such that
TRy = 0.

Proof The result can be obtained by differentiating (4.7) with respect to s,
and setting s = 0. However, we give a more direct proof. In the same way as we
derived (4.5) and (4.6), we may find the following set of differential equations
and initial conditions:

L BV = ROT+RTIG EVia(r)),so  (410)

dr
E[Vi:(0)] = 0, V(ki)eS" (4.11)

By (-);,; we mean the vector with the entries between brackets ordered lexico-
graphically in (k,7) € S*. It is left to the reader to verify that there is at most
one solution to this set of differential equations and initial conditions.

Suppose for the moment that a vector 7 exists, satisfying (4.9) and nor-
malised as required. By substitution of (4.8) into (4.10) and (4.11), we may
verify that these differential equations and initial conditions are satisfied, and
hence (4.8) is the unique solution. Note that G*1 = 0, since G* is the generator
of a Markov process.

From Equation (4.9) we note that if the vector 7 exists, it may be interpreted
as the “relative reward” vector in a Markov-Reward process. This vector con-
tains for each state of the process the long-run difference in accumulated rewards
when starting in that state relative to those when starting in steady state, see
Tijms [112, pp. 187-188] for a discussion. The generator of this Markov-Reward
process is G* and rewards are generated at rate 1 — %cgk) ﬁ
is in state (k,4) € S*.

In order for Equation (4.9) to have a solution, it is necessary that this
Markov-Reward process has average reward per time unit equal to 0, because
the left-hand side is equal to zero if we pre-multiply by 7*. Indeed,

when the process

« 1k . 1 L k=1
Z ﬂ-k:,iEc'g) = ¢ - — Z Th,i CE )M
(Kkyi)esS* “(k,i)es*
1
— C*__ Z Wz’z)\gk)
“(k,i)es*

= " —p' (4.12)



100 Chapter 4 Sojourn times in a Markovian random environment

where the one-but-last equality sign is due to the fact that the average number
of customers leaving the system per time unit equals the average number of
customers entering the system per time unit. Since the state space is finite, the
existence of a vector ¥, and its uniqueness up to translation along the vector 1,
is guaranteed by Zijm [127, Theorem 4.5].

Note that translation along the vector 1 of a vector 7 satisfying (4.9) does not
alter the solution for E [Vj ;(7)], since all rows of the matrix I —exp {TR™!G*}
in (4.8) sum to 0 (because all rows of G* do). Therefore, if 7 = 7 satisfies (4.9),
then so does

_ T*RU -
Fi=U-— - ” 1,
ct—p

which is normalised as required. O

Remark 4.2.3 The entities ¢* and p* have the following interpretation. In the
queueing system with one permanent customer, the service capacity not given
to other customers is assigned to the permanent customer. The average capacity
per unit of time available for all customers (including the permanent one) is c*.
Per unit of time, on average Z(k,i) cs* ,\ﬁ’“) customers enter the system, each
requiring an expected amount of work 1/u. Therefore p* is the average amount
of work entering the system per unit of time.

Corollary 4.2.4 If cgk) > 0 for all (k,i) € S*, then for T — 0o we have:

E[Vk,i(T)] — o — — Vk,is (k,’L) € S*.
Proof Note that R~1G* is the infinitesimal generator of an irreducible Markov
process on a finite state space. Its largest eigenvalue is therefore equal to 0 and of
multiplicity 1. The left and right eigenvectors corresponding to the eigenvalue
0 are ﬁﬁ*R and 1 (after proper scaling). As a consequence, the matrix
lim,_, ., exp {TR*IQ*} exists and has all rows equal to the probability vector

ﬁf*'f\’,. The corollary now follows from Expression (4.8). m]

Remark 4.2.4 For the special case of a constant service rate, cz(-k) =1,V (k,1),
and state independent arrivals (Poisson with rate A), the model reduces to the
M/M/1/L queue with processor sharing. It can be shown that for this case (the
second subscripts are omitted since there is no random environment):

k
1 1 .
— = —j)pi>0, k=1,2,...,L—1.
Vet =W = '21(1 o J)P

j
Here, p := A\/u, and
L-1, j_
* =1 lpl !

P= S P
Zl:ll pl—l
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Passing L — 0o, we find in case p < 1:
_r
A1 =p)’

which indeed corresponds to the M/M/1 queue with processor sharing. For that
model we may even explicitly find:

Ve+1 — Ve — L — oo

EV(] = 1= + #iA(k_ll )(1_e—r{u—A}),

cf. Coffman et al. [17, Formula (33)] (there the delay is studied instead of the

. . . \ o7 -
sojourn time, which gives a term i, instead of —l_p).

4.3 Random time change

In Section 3.2 we studied sojourn times in the on/off model by translating these
in terms of appropriately defined rewards in a branching process. That ap-
proach can also be applied to the analysis of sojourn times in the model of this
chapter. However, here it is less convenient to work with the branching-process
interpretation. In the previous chapter, the branches of the resulting branching
process evolved independently. We will see that this is not the case for the
present model. Exploiting that here the model is Markovian, we work towards
the branching process in a different way than we did in Section 3.2. The pre-
cise relation with the analysis in Section 3.2 is discussed in Section 4.4, where
we allow for periods of service unavailability. In the proof of Corollary 4.2.3
we mentioned the interpretation of the coeflicients v ; as relative rewards in a
Markov-Reward process. In this section we explore such an interpretation fur-
ther and link this to the method of random time change, which was introduced
for the analysis of processor-sharing systems by Yashkov [120, 121]. See Section
3.2 for more references on the application of the random time-change method.

Recall that we are still restricting ourself to the case where all the service
rates cgk) are strictly positive, see Remark 4.2.2. In Section 4.4 we extend the
analysis to the case where service rates may be equal to zero.

Our starting point is the Markov process (X*(t),Y*(t)), i.e. the queue length
and the state of the random environment in the queueing model of Figure 4.1,
when there is one permanent customer in the system. This permanent cus-
tomer shares in the service capacity as any other customer, but never leaves the
system. We already saw that G* is the infinitesimal generator of the process
(X*(t),Y*(t)). We make a random time change in the following way. When
(X*(t),Y*(t)) is in state (k, 1), all transitions out of this state are “sped up” by

a factor k/ cl(.k). For instance, the new arrival rate of customers in state (k,7) is

)\gk) x k/ cgk). More importantly, the new departure rate of customers is exactly
(k— 1)p in all states (k,7). Note that k& — 1 is the number of non-permanent
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Figure 4.2: Coupling of the jump-chains of (X*(¢),Y*(¢)) and (X(0),Y(0)).

customers in state (k,i) € S*. Apparently, in the new time scale, each cus-
tomer receives one unit of service per “time” unit. By {(X(0),Y(0)), o > 0}
we denote the process of queue length and state of the random environment
in the new time scale. The generator of the Markov process (X(c),Y (o)) is
R~1G*. The inverse of the matrix R exists since we assumed all service rates
cgk) to be non-zero. Note that the processes (X*(¢),Y*(t)) and (X (o), Y(0))
have the same jump-chain. By the jump-chain of a Markov process we mean
the embedded Markov chain at transition epochs.

We now explain how the process {(X*(t),Y*(¢)), t > 0} is related to the
process {(X(0),Y(0)), o > 0}, using a coupling argument on their jump-chains:
Suppose that at time ¢ = 0, the process (X*(¢),Y*(t)) is in state (ko,%p) and
observe the process as it evolves over time. For a given path of the process
(X*(t),Y*(t)), we may “perform” the random time change as indicated above:
For any period of time that (X*(t),Y*(t)) resides in a state (k, %), we “shrink”
the length of this period by a factor k/ cl(.k), i.e. we divide the length of the period
by this number. We may so construct a path for the process (X (o), Y(0)),
starting in (ko, i9) for o = 0. In Figure 4.2 such a construction is depicted. Two
horizontal axes are drawn. The upper axis corresponds to the “normal” time-
axis on which we observe the process (X*(t),Y*(t)) for ¢ > 0. The lower-axis
corresponds to the new “time” scale, after the random time change. On this
axis we observe the process (X (o), Y(0)), o > 0.

In the realisation depicted in Figure 4.2 the following events happen succes-
sively: The process starts in (ko,4o), then a customer arrives and the random
environment changes to state 71, another customer arrives and the random en-
vironment changes to state i3, a customer departs and the random environment
changes to state i3, and finally another customer arrives and the random en-
vironment moves to state ¢4. Of course, the random environment may change
without changing the number of customers, but for transparency of the pic-
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ture no such event is drawn. Note that since both processes (X*(¢),Y*(t)) and
(X¥(0),Y(0)) have the same jump-chain, any such realisation (indeed) occurs
with the same probability in both processes. Now concentrate on the indicated
time-interval of length (ko + 1)A/ cEfOH) on the upper axis. This interval lies
between the moment of the first departure and the moment of the third arrival.
At any point in this interval the number of customers X*(t) (including the per-
manent one) is ko + 1, and the random environment Y *(t) is in state i3. During
this interval of time, the amount of service received by the permanent customer
(and any other customer in the system), equals A. This argument can be used
for any time interval during which the state does not change. It is seen that the
amount of service received by the permanent customer between time ¢ = 0 and
the time point (on the upper axis) which corresponds to the point o = 7 (on the
lower axis), is exactly 7. Therefore, the point on the upper axis corresponding
to ¢ = 7 on the lower axis is exactly Vi, i, (7): It is the amount of time that a
customer must stay in the system before he has received an amount of service
T, starting at time ¢ = 0 with no service received, kg — 1 other customers, and
the random environment in state 7g.

We introduce the following reward structure in the process (X (o), Y(0)):
In state (k,i) reward is earned at rate k/ cz(-k). The accumulation of rewards in
this process can now be related to sojourn times in the processor-sharing queue
(with exclusively positive service rates). For the on/off model of the previous
chapter a similar result was obtained in Lemma 3.2.4. For the present model
with possible service interruptions, i.e., when not all service rates are positive,
the analogous result is derived in the next section.

Theorem 4.3.1 The sojourn time Vi ;(T) of a customer in the queueing system
of Figure 4.1, arriving when there are k — 1 other customers in the system, the
random environment being in state i, and bringing an amount of work T, is
distributed as the cumulative reward in the process (X (o), Y (o)) over the interval
o € (0,7), starting at o = 0 in state (k,1).

Proof From our construction of the coupled (jump-)processes above, it fol-
lows that the accumulated reward in the process (X (o), V(o)) over the interval
o € (0,7) on the lower axis, is equal to Vi, i,(7) on the upper axis (Figure 4.2).
As we already remarked, any such realisation has the same probability for both
processes (X*(¢),Y*(t)) and (X (o), Y(0)). O

From Theorem 4.3.1 we may obtain the result of Corollary 4.2.4, which is
restated in terms of the transformed process in the following corollary:

Corollary 4.3.2 With probability 1:

lim Vii(7) =g*=E
T—00 T

X
F‘| ) (4.13)
Y
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where the distribution of (X,Y) is the equilibrium distribution of (X (o), Y(0)).-
Furthermore, the limit
im E[Vii(r)] - g*r, (4.14)

T—00

exists and is finite.

Proof Relation (4.13) is standard for irreducible Markov-Reward processes
with a finite state space, see for instance Ross [98, Corollary 6.20] or Tijms
[112, Theorem 3.1.1]. We use Zijm [127, Theorem 4.5] to establish the conver-
gence in Relation (4.14). a0

Remark 4.3.1 Equation (4.13) holds under much more general assumptions.
In fact, with L < oo, N < oo, and all cgk) > 0, it can be proved using the
Renewal Reward theorem (e.g. Ross [98, Theorem 3.16] or Tijms [112, Theorem
1.3.1]) under the sole assumption that the original process (X (t),Y(t)) is re-
generative with finite expected regeneration time. However, the limit in (4.14)
may not exist under such general assumptions.

Remark 4.3.2 Corollaries 4.2.4 and 4.3.2 imply that ¢* = 2, or equiva-

c —p*)
lently:
* —1
X g cgﬁ )
X X* ’
Yy

where we use Equation (4.12). This can be verified by noting that the distribu-
tion of (X,)) is given by the vector ﬁﬁ*R, and that the reward vector in

E

that process is given by R~!1.

Remark 4.3.3 Similar to the discussion in Remark 3.6.2, we can argue that

(X*)
E Cy~ ] :c*_p*.

X*

As we saw in Remark 4.2.3, ¢* is the average capacity per unit of time available
for all customers, and p* is the average amount of work entering the system per
unit of time. Since all non-permanent customers eventually leave the system,
p* is also the average amount of service capacity assigned to non-permanent
customers (in the long run). Hence, ¢* — p* is the average capacity per unit of
time assigned to the permanent customer.

In the on/off model of the previous chapter, the arrival rate and the service
rate did not depend on the number of customers in the system. Moreover, the
random environment — there an alternating renewal process — evolved inde-
pendent of the queue length. Therefore in the on/off model, the average total
service capacity and the average amount of work entering the system per unit
of time are the same for the original model and the model with one permanent
customer, i.e., ¢* = c and p* = p.
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Remark 4.3.4 The process (X(0),)(0)) is closely related to the branching
process constructed in Section 3.2. The branching-process approach has been
successfully used in the literature to study sojourn times in traditional processor-
sharing systems with constant service capacity (i.e., cgk) = 1; there is no ran-
dom environment), constant arrival rate (), and infinite space for customers
(L = 00), see for instance Grishechkin [39, 40]. Let us briefly recall the essentials
of this approach. After the random time change, customers may be seen as indi-
viduals in a population, one of them having an infinite life time (corresponding
to the permanent customer), and all others having an exponentially distributed
life time with mean 1/p (independent of everything else). Thus, with £ > 1
individuals in the population (including the permanent one) the total “death”
rate is (k — 1)p. Each of the k individuals gives birth to new individuals at
rate A, the total birth rate is thus k. Clearly, the evolution of each individual
and all his descendants is independent of all other individuals, which makes this
branching process very suitable for analysis. In fact, the approach is applica-
ble to other service disciplines, including discriminatory processor sharing, see
Grishechkin [40] and Section 4.8.2.

In our case, the branching process is governed by a random environment.
The life time of non-permanent individuals is still exponentially distributed with
mean 1/p. If the state of the random environment is ¢ and the population size
is k (including the permanent one), then each of the k individuals gives birth to

new individuals with rate )\Ek) / cgk) . This birth rate depends both on the state
of the random environment, and on the number of individuals in the population.
The random environment also evolves dependent on the number of individuals.
With k living individuals, the random environment may change from state i to
state j with rate & x qg;) / cgk) . The mutual dependence of the branching process
and the random environment and the dependence among individuals make this
approach less suitable for the analysis of sojourn times in the present model.

4.4 Server unavailability

In this section we extend the analysis of Sections 4.2 and 4.3 to the case where
some of the cgk) may be equal to zero, i.e. there are periods during which no
service is provided to the customers. In the setting of our model, unavailabil-
ity periods are exponentially distributed or, more generally, have a phase-type
distribution (when two or more states of the random environment for which
the service rate is zero, communicate directly with each other). In the previous
chapter the unavailability periods were allowed to have a general distribution.
In Remark 4.4.1 we point out how this can also be allowed in the current model.
We define the subset of states

St = {(z,j)es* : el = }

In applications, the fact whether cgk) = 0 will typically only depend on ¢, but

for generality of the presentation we do not assume this. Partition the state
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space S* into Sg and its complement S% := S* — Sg, and “re-order” the rows
and the columns of the generator G* accordingly:

L[ g_’;o]
g [%+ga'

Some reflection shows that if the states within S} and those within S§ are
ordered lexicographically, then G% and G are the generators of (possibly re-
ducible) transient QBD processes. We also re-order the entries of 7 = (%j_ , fﬁ) ,
with 7} and 7 vectors with their entries ordered lexicographically. Starting
from any (I,5) € S§, let U, ; be the amount of time the process remains in the
set Sg, and W, ; € S* the first state that is visited after leaving S§. Note that
Uy; is the sojourn time (or time until exit) in a transient QBD process, for
which an efficient routine to compute moments of the distribution can be found
in Li and Sheng [65]. Furthermore, for Re(s) > 0, define the matrix U(s) of
dimension |S§| x |S% | with entries:

U gy kiy(s) =B e Uil —way], (,4) €Sg, (ki) € ST
Here 1y, is the indicator function. Note that, in particular, (0) is a probability
matrix, and that —L2(s)|s—ol = (E [Ulaj])(l,j)esg .
Lemma 4.4.1 The matriz U(s) is given by
Uls) =~[G5 —sI] " Gorr Re(s) 20,
and hence

(E [Ul,j])(z,j)esa = [_gg]_l 1.

Proof By conditioning on the possible transitions in an interval A when we
start from any state in S§j we find for A | 0:

Us) = e B (T+AGUs) +AGE) +o(A)
= ([ +A[Gs —sI) U(s) + AGg, +0(A),

where o(A) applies to each entry in the matrix equations. Canceling terms,
dividing by A, and taking A | 0 we have:

—[G5 —sI] U(s) =Gg,, Re(s) >0. (4.15)

Since G is a transient generator, G§ — sI is invertible for all Re(s) > 0, and
hence the first statement of the lemma follows.

Differentiating (4.15) with respect to s, setting s = 0, and using the fact
that U (0) is a probability matrix (so that #/(0)1 = 1), we may prove the second
statement of the lemma. O



4.4 Server unavailability 107

As before, denote by v ;(s;7) the LST of Vi ;(7), the (remaining) sojourn
time of a customer with a (remaining) amount of work 7, starting in state
(k,i) € S*. Construct the vectors

Uo(s;7) = (Ul,j(337))(z,j)esg and vy (s;7) = (Ulc,i(“;;7'))(k,i)€Sjr ,

according to the partitioning S* = S U 8% . The following lemma gives the
relation between the two vectors.

Lemma 4.4.2 For 7 >0 and Re(s) > 0:
o(s;7) = U(s)v4(s57), (4.16)
and in particular,

BV () jes; = E U jes; TUO)E Vi kpesy - (417)

Proof The proof of the first part is immediate by noting that (i) as long as the
system is in S§ no service is received, and (ii) the LST of the joint distribution
of the first state visited in S and the time until that moment is given by the
matrix U(s). The second part follows by differentiating with respect to s and
putting s = 0. O

With the aid of the two preceding lemmas we are able to prove the following
theorem, which generalises Theorem 4.2.2 to the case S{ # (. Before proceeding,
we define the matrix

1
R, :=diag [—cgk)]
k (k,i)es?,

)

with the entries along the diagonal ordered lexicographically in (k,i) € S7%.
Note that R;l is well defined.

Theorem 4.4.3 For 7 > 0 and Re(s) > 0,

0
E@.(s;r) = RI'[GL+Gho U(s) — sI]vi(s;7),

’l_]+(8; 0) = T,
and hence,
vi(s7) = exp{TRI"[GL + Gl U(s) — sI]} T

Proof The proof may proceed as that for Theorem 4.2.2: For any (k,i) € S%

derive the differential equation for v ;(s;7) by conditioning on the possible

events in a time interval %A, and then take A | 0. Substituting (4.16) for
C,;

To(s; T) readily leads to the desired result. O
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Consequently we have the following corollary, which generalises Corollaries
4.2.3 and 4.2.4:

Corollary 4.4.4 For T >0,

T

(E [Vk,i(T)])(k,i)GSjr = T+ [I —exp {TRT" [G} +G1U(0)] }] 7.

c* _ p*
The vector 7y satisfies

* * — 1 * 1
—[Gr +GLU0)] ¥=1+4G}y(E [Ul,j])(z,j)esg T

and is uniquely determined by normalising such that 7, R 5 = 0. Consequently
we have for (k,i) € 8% :

E [Vii(1)] - — V-

c* —_ p*
Proof Similar to (4.10) and (4.11) we may derive differential equations for
E [Vi,i(7)], (k,i) € S%. Using (4.17) we get:

d 1 [g L,
3 BlVeimDwpes, = Ry [1 + G0 (E [U’ﬂ'])(l,j)ess]

+RI G + GLU(0)] (E [Vk,i(T)])(k,i)eS; :

Of course, E[V4;(0)] = 0, for (k,i) € S%. To see that the solution given in
the corollary satisfies this set of differential equations and initial conditions,
note that the vector ¥ may be interpreted as the vector of relative rewards in
a Markov-Reward process with generator G} + G, (0), rewards being earned
according to the vector 1+ G%, (E [Ul’j])(l’j)ess - ﬁ R4 1. It remains to be
shown that the average rewards in this Markov-Reward process equal zero. The
steady-state probability vector of this process is given by %f:, and using (cf.
+

Lemma 4.4.1),
— * — * *x1—1 7 —%T
TG (B [Ul,j])(l,j)esg =74G10[-G]  1=Tmg1,

we indeed find that the reward per unit time in steady state equals 0. The limit
as T — oo can be obtained as in the proof of Corollary 4.2.4. O

Corollary 4.4.5 For 7 — oo,

BV ases; — T — BULD 0 jes; +UOT.

c*_p*

Proof By Lemma 4.4.2, Corollary 4.4.4, and using the fact that U/(0) is a
probability matrix. O
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The remainder of this section is devoted to the method of random time
change in the case that S} # (), unifying the approaches in Sections 3.2 and
4.3. We use the same arguments as in Section 4.3, with the following mod-
ifications: All transitions which occur when the process (X*(¢),Y*(t)) is in
the set Sj are “collapsed” into one single event when constructing the process
(X(0),Y(0)). More precisely: When the process (X*(¢), Y*(t)) is in some state
in 8% , we change the time scale as before, speeding up all transitions out of state
(k,i) € S by a factor k/cgk). The difference with the case S§ = 0 is that when
the state is (I,j) € S§ this time transformation can not be done since cg-l) =0.
Suppose that at some time ¢ > 0 the process (X*(t),Y™*(t)) changes from state
(k,i) € S% to some state in S§. Suppose further that the first state within S%
visited thereafter is (,j) € S%. If 0 > 0 is the point on the transformed time-
scale corresponding to time ¢, then the process (X(o), (o)) makes a (direct)
transition at the point o from (k,i) € 8% to (l,7) € S%. Thus (X(0),)(0)) is
not observed on the states in S§. When (X (0),Y(o)) makes such a transition
corresponding to a visit of (X*(¢),Y*(¢)) to the set S§, an immediate reward
is earned which is equal to the time that (X*(t), Y*(¢)) spends within the set S§.

In the process {(X(c),Y(0)),0 > 0} with state space S* and generator
R [G% + G%oU(0)] there are two types of transitions and two types of re-
wards. “Ordinary” transitions occur according to the transient generator GY,
and “ordinary” rewards are earned at rate —; in state (k,i) € S% . The other

C.

transitions and rewards are related as follows. The entry in row (k,4) € 8% and
column (I, j) € S§ of the matrix G}, gives the rate with which an (I, j)-event
occurs. An (I, j)-event has two consequences: (i) a transition is made, and (ii)
an instantaneous reward is earned. The instantaneous reward, and the state
after an (I, j)-event are jointly distributed as the pair (U; ;j, W; ;), and (the LST
of) their joint distribution is given by the matrix U(s) for Re(s) > 0. Note
that the state after the (I,7) event may be the same as the state before the
event. We emphasise that the jump-chains of the process (X (o), (c)) and the
process (X*(t),Y™(t)) restricted to the set S (often called a censored process)
are identical.

Theorem 4.3.1 remains true with the above modifications, and so does Corol-
lary 4.3.2 if we redefine the constant g* as

1
TERT

*

9" =

Remark 4.4.1 The discussion in Remark 4.3.1 also applies to this section. The
relation g* = C*i - discussed in Remark 4.3.2 is true for the redefined constant
g*. As in Remark 4.3.3, in the queueing system with one permanent customer,
c* — p* is the average capacity per unit of time assigned to the permanent
customer. Remark 4.3.4 only needs to be modified to account for the transitions
with instantaneous rewards. This can be done, as in Section 3.2, by “attaching”
the instantaneous rewards to the birth of a nest of children. This way, the
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analysis can proceed even if the periods of service unavailability are generally
distributed.

4.5 The proportionality result

We now discuss the proportionality between the conditional mean sojourn time
and the amount of work brought into the system, in processor-sharing systems
without random environment. This result is well known for the M/G/1 queue
with processor sharing, see for instance Sakata et al. [99, Formula (10)], Sakata
et al. [100, Formula (49)], or Kleinrock [55, Formula (4.17)]. Cohen [19, Formula
(7.27)] found the proportionality property for the M/G/1/L queue with proces-
sor sharing and queue-dependent total service capacity (there called generalised
processor sharing).

In this section we explain why this proportionality property holds, using the
results from the random time-change method of Section 4.3. Note that since
there is no random environment, this discussion only applies to the case with
Si = 0: If ¢*) = 0 for some k > 1, then the states with less than k customers are
transient. For the M/G/1 queue with queue-dependent service rates the same
arguments were used by Foley and Klutke [31]. We show that the arguments
also apply to the M/G/1/L processor-sharing system with queue-dependent to-
tal service rates. A related discussion for the M/G/1 queue is given in Van den
Berg [9, Remark 5.10, p. 115], and Van den Berg and Boxma [10, Remark 8.2].

In the absence of a random environment and with queue-independent arrivals
(at rate A), the queue length process {X(t), t > 0} is an ordinary birth-death
process. The queueing models of Remark 4.2.4 (M/M/1/L and M/M/1) possess
these properties. Note however, that (unlike the M/M/1/L and M/M/1 models)
the service rates may be queue-dependent, i.e. the ¢(*¥) may be different for
different £ = 1,2,..., L. The steady-state probabilities 7y, £k = 0,1,...,L of
the process X (t), and the steady-state probabilities 7, k = 1,2,...,L — not
including k = 0 — of the process X*(t), satisfy:

1
w;Ec(’“) ~Tee1, k=1,2,...,L,

where the symbol ~ means equality up to multiplication by a constant (indepen-

dent of k). We already saw in Remark 4.3.2 that the steady-state distribution

of the process (X(0),Y(0)) is given by the vector c,,ip* 7*R. For the present

case, in the absence of a random environment, we thus have for k =1,2,..., L,
(k)
that P{X =k} = ﬁﬂ'z%, and hence, P{X =k} = ff;i. This property

has an interesting consequence: Suppose the queueing system under consider-
ation is in steady state, and let the random variable X have this distribution:
P{X =k} = m. Since we assumed Poisson arrivals, from the PASTA (Pois-
son Arrivals See Time Averages) property, the number of customers seen by a
newly arrived customer is distributed as X. Condition on the fact that the new
customer is accepted, which occurs with probability P {X < L} =1 — 7. Let
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the amount of work of the new (tagged) customer be 7 > 0, and denote his
sojourn time by the random variable V(7). Theorem 4.3.1 tells us that V() is

distributed as
T X(o)
‘Lzodxw»d“

with Xy distributed as X + 1 given that X < L. However, this distribution
is the steady-state distribution of the process X(¢), and so P{X (o) =k} =
ﬁwk,l, k=1,2,...,L, for any o € [0,7]. Therefore, in steady state we find
for the mean of the sojourn time V(7) (of an accepted customer with service
requirement 7):

E[V(r)]=g"T.

So, for the model with exponentially distributed service requirements we have
explained why this proportionality occurs, namely because the stationary distri-
bution of X (o) is the same as that of X given that X < L. We can generalise our
arguments to the M/G/1/L queue with processor sharing and queue-dependent
service rates, cf. Cohen [19, Formula (7.27)] (for L = oo this was done in Foley
and Klutke [31]). We give a brief outline of the proof: If the service requirements
are distributed according to the distribution B(z), z > 0, then

Ae R
pr(@1,. s @k) =po——— | [ (1 = B(=;)), k=12,...,L,
H]‘:1 cl9) j=1

is the density function of there being k customers in the system with respective
remaining service requirements zy,..., Tk, see Cohen [19, Formula (5.9)]. For
this model we may apply the random time change to the system with one per-
manent customer, as described above: we “shrink” the time-scale by a factor
k/c®) when there are k customers in the system. Viewing the resulting pro-
cess as a branching process, then pi(z1,...,xx), for k < L, is also the density
function (up to normalisation) of there being k+ 1 living individuals, the k non-
permanent ones having respective remaining life times x4, ..., zs. It is beyond
our purposes to work out the details at this point.

Remark 4.5.1 If we allow the arrival rate to depend on the queue length then
the proportionality property is lost. The steady-state distribution seen upon
arrival, or at arbitrary time points, no longer equals the steady-state distribution
of the time-changed process. Under exponentiality assumptions this is easily
checked by comparing the balance equations.

Remark 4.5.2 A related result regarding the proportionality property was ob-
tained in Cohen [19, Theorem 5.3]. The model studied there is a closed queueing
model with L customers, who are served according to the processor-sharing dis-
cipline with queue-dependent service rates. After having completed his service,
a customer waits for a generally distributed time, and then enters the system
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again with a new (independently drawn) service requirement. It is shown that
if an exogenous customer with an amount of work 7 is brought into the system
in steady state, his mean sojourn time is proportional to 7. In this model, the
arrival process is obviously queue-dependent, and hence the proportionality re-
sult seems to contradict Remark 4.5.1. However, the considered model in Cohen
[19] is fundamentally different from the above models: The exogenous customer
may cause the number of customers in service to become L + 1. Moreover,
the arrival process is still determined by the ordinary customers, so that the
queue-dependent arrivals in the original process and the time-changed process
“cancel out”. Again, under exponentiality assumptions this is easily seen from
the balance equations.

4.6 Computation and approximation

We return to the general queueing model of Figure 4.1. Let V(1) be the sojourn
time of a customer with an amount of work 7, arriving to the system in steady
state. In this section we show how E [V (7)] can be computed accurately.

Remark 4.6.1 In our presentation we required A(X) = 0 so that no customers
are lost. In many applications the arrival process is a Poisson process, and
customers arriving when there are L other customers present are lost. Then it
must be explicitly stated that the sojourn time of a customer is conditional on
this customer not being rejected. As said before, this conditioning is inherent
to our formulation. Poisson arrivals are thus incorporated by defining A(") =0
and \*) = X\ k=0,1,...,L — 1.

For (k,i) € S*, denote by aj; the steady-state probability that the sys-
tem is in state (k,%7) immediately after the arrival of a customer. The ay; are
the steady-state probabilities of a discrete-time Markov chain with transition
probability matrix:

Tty 70 0 0
722 1)  7(20) 0

: .. T(L-12) p(L-1,1) p(L-1,0)
L LTy
Here, for k=1,...,L —1,
-1
(k,0) — [_Qg’v)] AR,

and for k=1,...,L;n=1,...,k,
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We now show how E [V (7)] can be computed after having determined the
steady-state probabilities immediately after the arrival of a customer. For an
alternative probabilistic algorithm to compute the distribution of V(1) we refer
to De Souza e Silva and Gail [108].

We only show how the computations can be done for the case S§ = 0, see
Remark 4.6.3 for the case S} # 0. Our starting point is the set of differential
equations and initial conditions given in (4.10) and (4.11). Obviously, for n > 1,

dr 1%\ 1 517
e BV lemo = (R7G7)" R, (4.18)

We use Jensen’s method to uniformise the generator R ~1G*, and define the

probability matrix

1
P*i=T1+ Enflg*,

with the scalar 7 > 0 being equal to minus the entry with largest absolute value
(along the diagonal) of R™!G*. Assuming the Taylor-series of E [Vi ;(7)] around
T = 0 exists (at the end we verify the result), and using (4.18) we may find:

k

oo l
3 <1 ey (’7]:!) ) (PRI (4.19)

Noting that k! > (I+ 1)!(k — 1 —1)!, when 0 < [+ 1 < k, we have:

(B [Va,i(m)])y; =

l k ZOO ('rrr)lc ( )l+1
0<1—e N7 (n7) A e S T nT
> e ];) k! en™ = (l ¥ 1)| )

and hence the infinite sum in (4.19) exists for every 7 > 0. Moreover, by
substitution it may be seen that it satisfies the differential equations and initial
conditions (4.10) and (4.11).

Expression (4.19) for the E [V} ;(7)] provides a numerically stable algorithm,
since it only involves multiplication and addition of positive terms. Within the

k
summation one needs to evaluate the “coefficients” e="17 Y 7, 11 %, which
can be done accurately by proper scaling of the terms (to avoid problems when
N is large).

Remark 4.6.2 Instead of starting from the differential equations (4.10), we
may start from the final Expression (4.8) in Corollary 4.2.3. Again we may use
Jensen’s uniformisation method to derive:

T — £ =
(B Vii()Dys = 5= it I exp {nTP*} 7. (4.20)

However, for this approach one first needs to compute the vector 7. More-
over, the vector 7 contains negative elements which may cause the evaluation
of e~ 1" exp {n7P*}% to be numerically unstable. However, no problems were
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encountered in the numerical experiments of Niifiez Queija et al. [85], where
both methods were used to compute the exact value of E [V; ;(7)]. In all cases
the relative difference between the outcomes was of the order 10~® or smaller
(with values of 7 up to 10 times the mean 1/u).

Remark 4.6.3 When S} # 0 we may proceed in a similar way. The starting
point is then the set of differential equations mentioned in the proof of Theorem
4.4.3. For (k,i) € S, the E [V, ;(7)] are found as before. However, first the
E [U,;], for (I, ) € S§, and the probability matrix ¢/(0), need to be computed.
Using Lemma 4.4.2, from the E [Vi;(7)], (k,i) € S%, also the E [V ;(7)], for
(1,4) € S§ can be computed. Note that E[V; ;(0+)] = E[U;] > 0, for (1,5) €
S§. As a consequence, E [V (0+)] > 0, unless pg._l) =0,V(l,5) € S§,i € E¢-1.

Although Expression (4.19) provides a numerically stable algorithm to com-
pute the E [V4 ;(7)], in general this task requires considerable computation time
and memory space. Therefore it would be convenient to have a good approxi-
mation which is less computationally demanding. From Corollary 4.2.4 we have
for the mean of V(7):

. T - L ) )
-rlggoE V(r)] - o = Z GkiVh,i-
(k,i)€S*

This asymptotic relation can be used for a first approximation, i.e., E [V (7)] =~
ﬁ + 7. Indeed, when the number of states of the random environment is
small (N < 5), the asymptotic result may serve as a useful approximation for
E[V(7)]. For this case, the exact value and the asymptote typically look as
shown in Figure 4.3. However, we shall see in the next section that for larger
values of N (> 30) the asymptote may give a very poor approximation, whereas
for those cases the tangent in the origin is often an excellent approximation of
E[V(7)], even for relatively large values of 7, see for instance Figure 4.7. The
slope ¢ of the tangent line is equal to the initial expected “delay per unit of
service” upon arrival of a customer in steady state:

k
(5 = Z ak,im. (421)
(k,i)eS* =

Remark 4.6.4 When the tangent line in the origin is close to the exact value,

the mean of V(7) is “almost” proportional to 7, the proportionality constant
being given by the slope ¢ of the tangent line.

In practice it is not clear beforehand which of the two approximations (the
asymptote or the tangent in the origin) is best, the more since the quality
of both approximations also depends on the transition rates of the random
environment. However, in Experiment 3 of the next section it is observed that
both approximations are an upper bound for E [V (7)], and that for practical
purposes the minimum of the two gives a useful approximation. Therefore
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RRRC] g

L —— asymptote

1/p T
Figure 4.3: Example with N =5

we propose to use the following refined approximation, by combining the two
previously mentioned ones (for the case that S§ = ().

E [V (r)] ~ min ( -

-+ (57’) . (4.22)
ct—p

This approximation can be improved by computing more than the first coeffi-
cient (d) of the Taylor-series. This may be done iteratively by using Expression
(4.18), until two subsequent approximations are considered to be close enough.
Note however that this procedure is not guaranteed to be numerically stable,
since positive and negative numbers are added in each step. Therefore the
roundoff errors may accumulate significantly in the iterative procedure.

Remark 4.6.5 The models evaluated in the next section form a special subclass
of the general framework depicted in Figure 4.1. In particular, the capacity
allocated to a single customer, cgk) /k, is a non-increasing function of k (the total
number of customers). For practical situations this seems to be a reasonable
assumption.

4.7 Performance evaluation of a communication system

In this section we use the model and results of the previous sections of this chap-
ter to evaluate the performance of a telecommunication system with elastic and
stream traffic. The system under consideration may be modelled as described
in Section 1.5. We briefly review the main features of that model. Two types
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of customers (traffic) are served by the system: elastic customers and stream
customers. These customers arrive according to two independent Poisson pro-
cesses with rates A(®) and A®), respectively. Stream customers require a fixed
amount of capacity (® during their holding times, which are assumed to be
exponentially distributed with mean A(®). The work offered to the system by
stream customers is denoted by p® := A®h). The service requirements of
elastic customers are exponentially distributed with mean f(®) = 1/u, and the
traffic load of elastic customers is given by p(® := p = X©) f(&) At all times,
the service rate of an individual elastic customer in the system must be between
a minimum value r(f) > 0 and a maximum value rf) > 0. The total service
capacity of the system is constantly equal to C. By X (t) = X(®)(t) we denote
the number of elastic customers in the system at time {. We note that these
are served according to the processor-sharing discipline. The number of stream
customers in the system at time ¢, X (5)(t), determines the state of the random
environment of the processor-sharing queue: Y (¢) := X®)(t)+1 € {1,2,...,N}.
Here it is more convenient to work with X (*)(¢) instead of Y (t). The state space
of the process (X (®)(t), X®)(t)) will be denoted by:

S’:{(k(e),k(s)) : (k(e),k(5)+1)es}.

We denote the numbers of customers in steady state by X(®) and X (), respec-
tively. The capacity left over by stream customers, C' —r(®) X (%) (t), is potentially

available to elastic customers. Thus if X(®)(t) = k() and X®)(t) = k) then
(k) . (k)
=c

at time ¢ the total capacity allocated to elastic customers r, ) (o)1 1S at

most

min {k(e)rf), C - k(s)r(s)} ,
and each of the k(®) elastic customers gets capacity r](cl(c:)e ))/ k(®). Occasionally
customers must be rejected from the system upon arrival — we say that these
customers are blocked — in order to ensure that at all times the capacity re-
quirements are satisfied:

rOxE(t) + & xE) (1) < C,

for all £ > 0. How the two different types of traffic are integrated in the system
is now determined by the acceptance/rejection policy. Here, we consider policies
that can be characterised by S, the state space of the process (X (©)(t), X ®)(t)),
in the following way. Suppose (X©)(t),X®)(t)) = (k®,k®)) € S'. Then,
if a new elastic customer arrives at time ¢, it is accepted if (k(e) + 1,k(s)) €
S’, and rejected otherwise. Similarly, a new stream customer is accepted if
(k(®), k() 4+ 1) € S'. For this reason we henceforth call 8’ the admissible region.

Three “integration” strategies will be considered: complete segregation, full
integration and a mixed strategy. Below, we describe these strategies and com-
pare their respective efficiency gains. The QoS (Quality of Service) offered
to stream customers is determined by the fraction of stream customers being
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blocked, which we denote by p(®). For elastic customers, there are two rele-
vant performance measures: (i) the sojourn time (either V' or V(7), for given
service requirement 7), and (ii) the blocking probability p(®). The steady-
state probabilities P {X () = k&), X6) = k(s)} determine the blocking prob-
abilities and, using Little’s formula, the (unconditional) mean sojourn time
E[V]=E[X©)] /((1-p)X).

Remark 4.7.1 In the model described in Section 4.1 there was no real block-
ing of (elastic) customers. If in state (k(®),k(®)) € S’ a newly arriving elas-
tic customer is blocked then the corresponding )\Ek) = 0, where k = k(©) and
i = k() 4 1. The blocking probabilities of elastic and stream customers in the
telecommunication model are obtained using the PASTA (Poisson Arrivals See

Time Averages) property,

p© = > P { X© = @ x = k(s)} ,
(k(®), k(=) eB(@)
p® = > P {X(e) — k@, x6) = k(s)},

(k(®) k() eB()
with the “blocking regions” B(®) and B(®) defined by:
BO = {(R“k)es : (K +1,50)¢s],

BE .= {(k<e>,k<5>)es' : (k<e>,k<s)+1)¢s'}.

4.7.1 Integration strategies
Complete segregation

In this first strategy there is no interaction between stream customers and elastic
customers. The link capacity C is split into two parts: C = C(® + C®). The
capacity C(® is permanently assigned to elastic customers, and C® to stream
customers. Virtually there are two separate service systems. This strategy may
be motivated by a need for low system complexity. However, it is to be expected
that the efficiency of this strategy in terms of resource usage is not favourable.
The admissible region in this case is given by:

S’ = §(e8) .= {(k<e), k) e N x N : k©r® < 0O 160 < C<S>} . (4.23)

For stream customers this results in Erlang’s loss model, see Tijms [112, Sec-
tion 4.8.1]. In particular,

o )" /10!
=1

o (p)* [kt (4.24)
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where L) := N —1 = c )/ r(S)J is the maximum number of stream customers
in the system. Recall that p(® = A®)A() is the amount of work arriving per
time unit due to stream customers.

For elastic customers, the resulting model is a processor-sharing queue with
queue-length dependent service rates: for 0 < k(®) < L(®),

) = min {k(e)r_(f), C(e)} ,

with L(®) .= [ = [C(e) /r@J the maximum number of elastic customers. For

this queueing model, the performance measures of interest have been derived in
closed form by Cohen [19]. Let,

-1

k
o= [ ] , k=1,2,.,L0,
j=1

and g := 1. Then

o (o2
g0 = Pro () (4.25)

e ()
L (e) n—1
E[V(r)] = 2 =L (())j . (4.26)
ijo i (p ¢ )

As discussed in Section 4.5, E [V(7)] is proportional to the service requirement
7. Furthermore, the above results are valid for general service requirement
distributions: E [V (7)] and p(®) depend only on the mean service requirement.
If we take r® = 0 (i.e., really “best-effort” customers) and r(f) > C(®), the
model for elastic customers reduces to the “standard” M/G/1 processor-sharing
queue. Note that, in this case, L(®) = co and ¢ = (1/C®)* k =1,2,..., hence,
Expression (4.26) reads:

r
E [V(T)] = Cle) — p(e) :

Full integration

Full integration is (in some sense) the “opposite” extreme strategy with respect
to complete segregation: both types of customers completely share the capacity
C. This strategy can potentially achieve a high system utilisation (compared
to complete segregation). A new customer (of any type) is accepted if the
guaranteed service rate is not violated for any customer in the system. Thus,
the admissible region is given by:

S = gint) .— {(k<e>, E®) € N x N : k©r® 4 (60 < o} .
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In this case the capacity left over by stream customers is completely available
to elastic customers:

P& _ i { O k<s)r<5>} _ (4.27)

Define the maximum number of stream customers when there are k(® elastic

customers, by
e),.(e)
L(S) — {C— k( )7‘7 J
k) ) ’

k© =0,1,...,L©. Obviously, L = L) = N — 1.

The generator of the process {(X(®)(t), X®)(¢)),t > 0} is given by Gint) :=
G, using Definition (4.2) with (LS) + 1)-dimensional (square) matrices ink),
k=0,1,...,L. Hence, A*~1) is an (L;:ll +1) x (L,(:) + 1) matrix and M*) is
an (L,(cs) +1) x (L;csll + 1) matrix, for k =1,2,..., L. For appropriate indices,
)\gk) =\, pg-c) and mg;) are equal to 1 if ¢ = j and equal to 0 otherwise, and
(except for the diagonal elements) the matrix Ql(ik) is equal to the generator of

the queue-length process of the M/M/L® /L) model. The diagonal elements
are such that each row of G0™) sums up to 0.

Mixed strategy

A possible draw-back of the full-integration strategy is that one type of traffic
may be “blocked” from the system, when the other type (temporarily) generates
a relatively large load. The idea behind the mixed strategy described below is
to have the benefit of efficiency gain (as with full integration), but at the same
time offering customers of both types a certain “protection” against the other.

As in the model with complete segregation, a fixed capacity C(®) > 0 is
exclusively reserved for elastic customers. The remaining capacity C®) > 0
is primarily dedicated to stream customers, but elastic customers may use the
spare capacity (if any). However, this capacity is immediately re-allocated to
stream customers, as soon as a new stream customer arrives. Therefore the
capacity C®) should always be sufficient to guarantee the minimum service rate
r(_e) to each elastic customer in the system. Hence, the admissible region is
the same as for the complete-segregation model: S’ = S(™x) .— S(se8) gee
Definition (4.23). The service capacity allocated to the elastic customers is, as
in the full-integration model, given by (4.27), with C = C(®) + C®),

Since elastic customers do not affect the acceptance/rejection nor the service
of stream customers, X (®) (t) evolves as the queue-length process of the standard
Erlang loss model, just as in the complete-segregation model. The process
(X©)(t), X®)(t)) is again a finite inhomogeneous QBD process. Its generator
G(mix) is given by G from Definition (4.2) with (L(*)+1) x (L(®)4-1) matrices A),
M®) and D), For appropriate indices, )\Ek) = A, pg?) and mg?) are equal to 1

if i = j and equal to 0 otherwise. Finally, for £ = 0,1,..., L, the matrix Q((ik) is
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Link C 155 Mbit/sec.
C© | 105-80-55-30-5 | Mbit/sec.
Elastic customers | f©) | 50 Mbit
9 1o Mbit/sec.
r& | 10-50-155 Mbit/sec.
Stream customers | (9 | 10 sec.
r® |5 Mbit /sec.

Table 4.1: Reference parameter values

c® 50 75 100 125 150
AG) | 0.446118 | 0.810804 | 1.203062 | 1.612456 | 2.033728

Table 4.2: Choice of A®) from Erlang’s loss formula; p® = 0.01

equal to the generator of the queue-length process of the M/M/L(®) /L(*) model,
except for the diagonal entries which are such that G(™™) is a true generator.

4.7.2 Experiments

It should be emphasised that quite a number of parameters play a role in the
model. This makes it impossible to draw general conclusions over the entire
parameter space. Therefore, we fix a number of parameters at a realistic value.
The reference parameter values that we used are listed in Table 4.1. We have
chosen the parameters such that the means of the service requirements coincide
for both customer types: f(®) = h(®r(), The “guaranteed rate” r® for elastic
customers is taken equal to zero, i.e., elastic customers are best-effort customers.
In the fourth experiment we also consider r(_e) > 0.

Experiment 1: Efficiency of the strategies

In our first experiment, we compare the efficiency of the three strategies (com-
plete segregation, full integration and the mixed strategy). The efficiency is
measured in terms of the maximum traffic load due to elastic customers (given
by )\(e)) under given performance restrictions. More precisely stated, for a given
effective load of stream customers (1 —p(®)) A(®) we determine the maximum
value for A\(¢) such that the mean sojourn time E [V] for elastic customers does
not exceed a pre-specified value. We choose the load of stream customers such
that under complete segregation (or the mixed strategy) the blocking probability
p®) equals 0.01. The corresponding value of A(®) for those two strategies is deter-
mined by Erlang’s loss formula. In Table 4.2 the resulting values of () are given
for several values of C(®). For example if C(®) = 50 then (1 —p®)) A\(®) ~ 0.442.
Under the full-integration strategy, the acceptance of stream customers does de-
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Figure 4.4: Efficiency of the three strategies (in terms of A(®))

pend on the number of elastic customers. Hence, the load of stream customers
can only be evaluated by computing the complete equilibrium distribution cor-
responding to G, We need to do this repeatedly (for different values of A
and A\®)) in order to achieve the same load of stream customers as under the
other two strategies. Hence, for the full-integration strategy we simultaneously
determine the appropriate A®®) and the maximum A(®). In all cases the block-
ing probability p(®) under full integration was smaller than 1%, hence the value
of A®) chosen for the full-integration strategy was always between the chosen
value from Table 4.2 and 0.99 times that value. Since these differences are
only marginal, we do not report the values of A(*) used for the full-integration
strategy.

For the parameter values given in Table 4.1 we evaluated the efficiency of
each of the three strategies. Note that we vary the parameters C®) = C' — C'(®)
and rf) . The target value for the mean sojourn time of elastic customers is set at
E [V] = h® = 10, i.e., on average both types of customers stay 10 seconds in the
system. The results of this first experiment are shown in Figure 4.4. For C(®) = 5
the allowed A(®) (for the three values of rff)) in case of complete segregation is
smaller than 1075. As expected, the mixed and full-integration strategies are
considerably more efficient than the complete-segregation strategy: apparently,
the elastic customers highly benefit from the fluctuating capacity that is left
over by the stream customers. The differences between the mixed strategy and
the full-integration strategy are very small. In all cases, the mixed strategy is
at least as efficient as the full-integration strategy. Finally it is noted that the
impact of rg_e) on the efficiency of the strategies is very small. This is possibly
due to the fact that the system is highly loaded: the number of elastic customers
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simultaneously present in the system is most of the time so large, that each of
them receives less than 10 Mbit/sec. of the total available capacity (hence, it

makes no difference whether rf) = 10,50 or 155 Mbit/sec.).

Remark 4.7.2 As mentioned above, the above procedure to determine the
appropriate A®) under full integration in all cases led to a marginally lower
value of A(®) than the value from Erlang’s loss formula (the relative difference
being less than 1%). Using the (higher) value of A(®) from Erlang’s loss formula
under full integration leads to a lower maximum value of A\(®). However, the
relative differences in the values of A(®) never exceeded 1%.

Experiment 2: Time-scale differences

In the previous experiment, stream and elastic customers arrive/depart at more
or less the same time scale. What if this is not the case, i.e., what if the number
of stream customers fluctuates much faster or much slower than the number of
elastic customers? To investigate this, we repeated Experiment 1 for the cases
h() = 1 (rapidly fluctuating stream traffic) and A(®) = 100 (slowly fluctuating
stream traffic). We refer to Section 2.8 for a similar experiment. All other
parameters in Table 4.1 remain unchanged. The values of A(®) in Table 4.2 are
multiplied by a factor 10 in case h(®) = 1, and by a factor 0.1 in case h(® = 100.
This way p® = A®A() is constant throughout the experiments and, hence,
p® is always equal to 0.01 in the mixed and complete-segregation strategies.
We observed that in all cases complete segregation is the least efficient, and
that the mixed strategy outperforms the full-integration strategy (particularly
when h(®) = 100). For the mixed strategy, being the most efficient in all cases,
the impact of the time-scale differences is illustrated in Figure 4.5. Based on
the analysis in Section 2.6, one expects that when stream traffic fluctuates very
fast (h(s) J 0), the performance of elastic traffic is the same as for complete
segregation with C'(®) equal to the mean available capacity C' — (1- p(s)) p®). In
Figure 4.5, also the values of A\(®) are given for that case. The numerical results
show that the maximum value of A(®) — our measure for efficiency — increases
when the number of stream customers fluctuates faster, that is when A®) is
smaller. Note that, as expected, the difference between the mixed strategy with
R =1 (i-e., the number of stream customers fluctuates relatively fast) and the
complete-segregation strategy with C(®) = C — (1 — p®)p®) is negligible. We
observe that, again, the impact of 'r'f) on the efficiency is very small.

Experiment 3: The conditional sojourn time

For the mixed strategy (the most efficient among the three), we consider the
conditional mean sojourn time of elastic customers E [V (7)] as a function of
the service requirement 7. In particular, we are interested in how fast E [V (7)]
converges to its linear asymptote (as 7 — 00). The parameters f (e), r@, h(®) and
7() are fixed at their respective values given in Table 4.1, and C(®) is set equal
to 80. The value of A(®) (0.81) is again chosen such that p(® = 0.01, and A(®)
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Figure 4.5: Impact of different time scales on the efficiency — *
is fixed at 2.17, which is the value computed in Experiment 1 with rf) = 0.

In Figure 4.6, E[V(7)] is given for the three values of rf). We observe that

(e)
+

E [V(7)] is considerably smaller for larger values of r’. The exact curve of

E [V(7)] and its asymptote for rg_e) =

(e)
+

10 are shown in Figure 4.7. For the other

two values of 7’ the results are reported in Figure 4.8. For comparison, in the

latter figure we have also plotted the results for rg'_a) = 10. We observe that the
distance between the actual curve and the asymptote increases with rff).

Keeping A(®) fixed, we repeated the above experiment for rapidly fluctuating
stream traffic (h(®) = 1) and for slowly varying stream traffic (h() = 100). As in
Experiment 2, the value of A®) when A(®) =1 and when A(®) = 100 is found by
multiplication by a factor 10 and by a factor 0.1, respectively, such that the load
of stream customers (in terms of p(*)) is the same in all cases. The outcomes
can be found in Figures 4.9 and 4.10. For “fast” stream traffic we observed
that the distance between E [V (7)] and its asymptote is considerably smaller.
For “slow” stream traffic this distance is extremely large: the asymptotes lie
outside the range of the vertical axis in Figure 4.10 (they intersect the vertical
axis above the value 200).

The results show that in general the asymptote does not give a useful ap-
proximation for E [V (7)]. An additional numerical study indicates that, as we
mentioned in Section 4.6, a good approximation is often provided by the tangent
of the curve in the origin. In Figure 4.7, for values of 7 smaller than five times
the mean service requirement f(®) = 50 Mbit (with exponential services this is
the case for 99.9% of the customers), the relative difference between E [V (7)]
and the tangent in zero is less than 2.5%. Recall that the slope of this tangent
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Figure 4.7: Asymptote and tangent line of E [V (7)]; for h(*) = 10 and rgf) =10
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Figure 4.11: Blocking probabilities

line can be computed from the steady-state distribution, see Expression (4.21).
The numerical results validate the proposed approximation of E [V (7)] given in
Expression (4.22).

Experiment 4: Blocking probabilities

In our last experiment we consider the situation that the elastic customers
(e)

are guaranteed a certain minimum capacity 7> ’. For the mixed strategy, we
study the impact of C®) on the blocking probabilities p(¢) and p(®) of the elas-
tic customers and the stream customers, respectively. As before, we choose
f(©) = 50 Mbit and r(® = 5 Mbit /sec. Furthermore, h®) = 10 seconds, r(_e) =5
Mbit/sec. (i.e., the sojourn time of a customer with service requirement 7 Mbit
is bounded by 7/5 seconds), and rf) = 155 Mbit/sec. We fix the customer
arrival intensities at A(®) = 1.90 and A\(®) = 1.15. These values are chosen such
that p(®) = p(®) = 0.05 in the mixed strategy with C(®) = 75 Mbit/sec. The
results are shown in Figure 4.11. It is seen that the blocking probability for
the stream customers decreases sharply when C® increases, while the blocking
probability for the elastic customers grows only moderately. Note that, as C®)
increases, the amount of bandwidth (C(®) = C' — C®)) reserved for elastic cus-
tomers decreases. A part of this re-assigned bandwidth is however not used by
the stream customers. This amount of bandwidth, C®) — (1 —p®)p(®) allocated
to, but not used by the stream customers, is apparently very well exploited by
the elastic customers. This is confirmed by the results for the blocking probabil-
ity of elastic customers in the corresponding complete-segregation case, which
are also shown in Figure 4.11.
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4.7.3 Conclusions from the experiments

We used the model of this chapter to study the integration of stream traffic
and elastic traffic in a multiservice communication system. Qur model en-
ables efficient computation of the relevant performance measures, in particular
the blocking probabilities of both traffic types and the mean transfer (sojourn)
times of elastic traffic (customers). Our numerical study validates the proposed
approximation of the conditional sojourn time of elastic customers E [V (7)]
given in Expression (4.22). This approximation only depends on steady-state
characteristics and can therefore be efficiently computed.

The numerical output was used for assessing and comparing the efficiency
gains achieved by the three integration strategies. We saw that “dynamic” in-
tegration (using full integration or the mixed strategy) of stream and elastic
customers in a multiservice network is much more efficient with respect to the
use of network resources, than having two dedicated networks for the two cus-
tomer types (i.e., complete segregation). The so-called mixed strategy is slightly
more efficient than full integration and has the additional advantage of offer-
ing both types of traffic a certain protection against the other, when the latter
(temporarily) generates a relatively large load. Other integration schemes — like
trunk reservation — also fall within the framework of our model. Comparison
of the efficiency of such strategies with those considered here is an interesting
topic for further research.

4.8 Generalisations

In Section 4.1 we made some assumptions which are not essential for the anal-
ysis, but facilitated the presentation and discussion. In this section we relax
some of the assumptions and show how the resulting models either fit into the
framework, or how they can be included in an analogous but generalised anal-
ysis.

4.8.1 Service requirements of phase-type

We may allow the service requirements of customers in the queueing system of
Figure 4.1 to be of phase-type. By phase-type distributions we mean the class
of distributions presented in Neuts [81, Chapter 2]. In order to preserve the
Markovian description of our model, some additional state-descriptors must be
added. For the analysis of the sojourn time conditioned on the amount of work,
in the queueing model with one permanent customer, a state is determined
by the number of customers (excluding the permanent one) in each service
phase together with the state of the random environment. Thus if the service
requirement distribution consists of P phases, then the state space is given by:

0<ki+ko+...+kp<L-1,
S* .= (kl,kg,...,kp;i) kjE{O,].,Q,...,L—]_},
i€{1,2,3,...,N}
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Note that we lose the QBD structure, which was convenient for computation of
various entities (the new process could be called a multi-dimensional QBD pro-
cess). Note also that, when studying the process with one permanent customer,
the role of the random environment and the service phases of non-permanent
customers is not fundamentally different. We may redefine the random environ-
ment such that it also contains the service phases of non-permanent customers,
and then view the resulting model as a special case of the earlier model with
L = 1. In particular we find that, also for phase-type services, the conditional
mean sojourn time as a function of the amount of work 7, has an asymptote for
T — 00.

For the representation of sojourn times (not conditioned on the amount of
work) as absorption times in an appropriate Markov process, we need to add yet
another descriptor to the state space, namely the phase of the tagged customer.
Then Theorem 4.2.1 again applies.

4.8.2 Other service disciplines

Our model of Section 4.1 also includes other service disciplines. For instance
discriminatory processor sharing (sometimes called weighted processor sharing)
which contains (ordinary) processor sharing as a special case. Discriminatory
processor sharing is of great interest for applications. For this service discipline
several classes of customers are identified, numbered as 1,2,...,J. With cus-
tomer class j a weight w; > 0 is associated. If there are k; customers of class
4,3 =1,2,...,J, then each of these gets a fraction Mig_km of the total
(available) capacity. In our model this capacity may be a function of the state of
a random environment and the numbers k;, j = 1,2,...,J. If we are interested
in the (conditional) sojourn time of customers of class 1, then we may view the
model in the framework of Section 4.1 by extending the random environment
with the tuples (k2,...,ks) containing the number of customers of all other
classes.

As in Section 4.8.1, we may allow for phase-type distributions for each of
the customer classes. In our state description we need to record the number of
customers of any class in each particular service-phase. The number of (other)
customers of the class under consideration in each possible service-phase also
needs to be incorporated in the random environment.

Similarly, other service disciplines — including FCFS and LCFS (Last Come
First Served) — may be incorporated by a proper definition of the random
environment. Again we emphasise that with these generalisations, the com-
putational complexity may be increased tremendously. These generalisations,
however, retain the qualitative properties such as the existence of an asymptote
for the conditional mean sojourn time.

4.8.3 Infinite state space

In Section 4.1 we assumed L < oo and N < oo. Here we discuss the case
where either of these, or both, are infinite. The results obtained in this chapter
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may be generalised to infinite state spaces, under recurrence conditions which
are stronger than requiring ergodicity. For instance, the existence of the vector
7 in Corollaries 4.2.3 and 4.4.4 is not ensured if we only assume ergodicity.
This issue is related to convergence of the value iteration algorithm for Markov-
Reward (decision) processes on countable state spaces, see for instance Sennott
[106].

In applications, it is usually the case that the cz(.k) are uniformly bounded
from above, so that the rewards in the Markov-Reward processes of the proofs
of Corollaries 4.2.3 and 4.4.4 are uniformly bounded. In that case the vector
7 exists under the assumption of ergodicity. To see this we may proceed as
in Tijms [112, p. 188] to construct a relative reward vector which satisfies the
conditions given for 7 in Corollaries 4.2.3 and 4.4.4. In the same way, we may
show that the mean of these constructed relative rewards exists and is finite, so
that we may normalise as required in Corollaries 4.2.3 and 4.4.4.

Moreover, in applications when L = co and N < oo, it is often the case that
the QBD process with generator G given by Definition (4.2) is homogeneous
beyond some level, i.e. there is a positive integer K such that M®*) = M,

[(ik) =Qqg, and A%) = A, for all k > K (see for instance Nufiez Queija et al.
[85]). The ergodicity condition is then pA1 < pM1, with p[M + Q4 + A] = 0,
where 0 is a vector of zeroes, see Neuts [81, Theorem 3.1.1].

We finally remark that for infinite generators, the exponential function as in

(4.7) may be defined by its Taylor-series representation.

4.9 Concluding remarks

In this chapter we studied sojourn times of customers in a Markovian queueing
system with processor sharing, in which arrival and service rates may depend
on the number of customers already in the system and on the state of a random
environment. The random environment itself may be dependent on the number
of customers in the system. For this model we first represented the sojourn time
as the absorption time in an appropriate Markov process. Particular attention
was paid to sojourn times conditioned on the amount of work. For these, we
found a closed-form solution for the LST, and in particular for its mean. We
showed that as a function of the service requirement, the conditional mean so-
journ time has a linear asymptote. By means of the method of random time
change, the conditional sojourn times were represented by rewards in a partic-
ular Markov-Reward process. The latter was shown to be closely related to the
branching process of the previous chapter, which previously has been used in
the literature to study processor-sharing systems with constant (available) ser-
vice capacity. For those systems it is known that the conditional mean sojourn
time is proportional to the amount of work. This property (which does not
hold for our model with fluctuating service capacity) was explained by compar-
ing the steady-state distributions of the original queueing model and the model
obtained by the random time change.

We discussed how the conditional mean of the sojourn times as a function
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of the service requirement may be computed. A numerically stable algorithm
was developed, but the computational complexity calls for reliable and efficient
approximations. We applied our results for the numerical evaluation of a par-
ticular telecommunication system with integration of stream and elastic traffic,
and compared different integration strategies. The numerical results also mo-
tivated an approximation of the conditional mean sojourn time, which in all
tested cases proved to be both conservative and useful for practical purposes.

The analysis was shown to include the case of service requirements with a
phase-type distribution (leading to a “multi-dimensional” QBD process). We
also saw that the more general discriminatory processor-sharing service disci-
pline fits into our framework. We discussed extensions to infinite state spaces,
and showed that for uniformly bounded service rates the analysis still applies.
In particular we found that, for these generalisations, the conditional mean so-
journ time as a function of the service requirement 7, has an asymptote for
T — OQ.
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Chapter 5

Asymptotics for heavy-tailed sojourn
time distributions

In Chapters 3 and 4 we studied sojourn times in processor-sharing queues with
varying service capacity. The focus was on the distribution and the moments
of the sojourn time of a customer conditional on the customer’s service require-
ment. Different from the previous chapters, we now assume that the service
requirements have a heavy-tailed distribution. We develop a new approach for
analysing tail distributions of sojourn times under this assumption. It is based
on an extension of our previous analysis of sojourn times conditional on the
service requirements.

The analysis of queueing models with heavy-tailed service requirement dis-
tributions is an important issue in performance evaluation. The class of heavy-
tailed distributions includes all distributions for which not all moments are
finite. The exponential distribution is not heavy-tailed. An important subclass
of heavy-tailed distributions consists of regularly varying distributions. A distri-
bution function H(z), > 0, is said to have a regularly varying tail (at infinity)
with index —( € R if, for arbitrary ¢ > 0,

lim i(tx) = <.

z—o0 1 — H(z)
It was already shown by Cohen [18] that in the G/G/1 queue with the FCFS
(First Come First Served) discipline, the waiting-time distribution is regularly
varying of index 1 — ( if and only if the distribution of the service requirements
is regularly varying of index —(, where ¢ > 1 (to ensure a finite mean service re-
quirement). Thus, the waiting-time distribution (and, hence, the sojourn time
distribution) is as heavy as the integrated-tail distribution of the service re-
quirement. Assuming Poisson arrivals and a regularly varying tail of the service
requirement distribution with 1 < ¢ < 2, Anantharam [6] has shown that the
mean of the sojourn time is infinite for any non-preemptive service discipline.
In contrast, Anantharam [6] also showed that, under the same assumptions on
the arrival process and the service requirements, there exist preemptive service
disciplines for which the mean sojourn time is finite. More specifically, Zwart

133
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and Boxma [128] proved that in the M/G/1 queue with processor sharing the
tail of the sojourn time distribution is exactly as heavy as that of the service
requirement distribution when the latter has a regularly varying tail. In this
chapter we extend Zwart and Boxma’s result to the model of Chapter 3 where
the server is subject to interruptions. Our approach is based on Markov’s in-
equality and it readily leads to a new and simpler proof of Zwart and Boxma’s
result (the original proof was based on transform techniques).

We also apply the method to the M/G/1 queue (with constant service ca-
pacity) for two other service disciplines: the FBPS (Foreground-Background
Processor Sharing) and the SRPT (Shortest Remaining Processing Time) dis-
cipline. Under the SRPT discipline, at all times the total capacity is used to
serve the customer in the system which has the smallest remaining service re-
quirement, see Schrage and Miller [102]. By analogy, the FBPS discipline could
alternatively be called the “least attained processing time” discipline: at all
times the service capacity is used to serve the customer(s) which so far have
received the least amount of service, see Kleinrock [55] or Yashkov [122]. For
the FBPS and the SRPT disciplines the result (that the sojourn time distri-
bution and the service distribution are equally heavy) is new. Moreover, it is
unlikely that for these disciplines this result is easy to obtain using transform
techniques, due to the complicated form of the LST (Laplace-Stieltjes Trans-
form) of the sojourn time distributions.

The chapter is organised as follows. In Section 5.1 we derive conditions un-
der which the tail of the sojourn time distribution is exactly as heavy as that of
the service requirement distribution. The conditions involve the distribution of
the service requirement and that of the sojourn time conditional on the service
requirement. In Section 5.2 we show that these conditions are satisfied in the
M/G/1 queue for three different service disciplines: processor sharing, FBPS
and SRPT. The main goal of the chapter is to show that the conditions are also
satisfied in the on/off processor-sharing model of Chapter 3 when the service re-
quirements have a heavy-tailed distribution. In Section 5.3 we review the model
and extend some of the results of Chapter 3 to the case of generally distributed
service requirements. This is done, in particular, for the decomposition of the
sojourn time into “fundamental random variables”. In Section 5.4 we study the
first and second moments of these random variables, specifically when the ser-
vice requirement is large. Then, in Section 5.5, we study the system in steady
state. Unfortunately, the distributions of the number of customers in the system
and/or their respective remaining service requirement are not known. However,
the distribution of the total amount of work in the system allows further analy-
sis. The desired tail equivalence is then proved in Section 5.6. Finally, Section
5.7 concludes the chapter.
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5.1 Sufficient conditions for tail equivalence

We state the main result in a general setting. Let B be a non-negative random
variable with distribution function B(z), z > 0. For every 7 > 0 let V(1) > 0 be
a non-negative random variable independent of B. The random variable V(B)
is well defined and its distribution function is given by

oo
P{V(B) <t} = / P{V(r) < t}dB(r).
=0
Remark 5.1.1 The choice of notation for the random variables V(7) and B is
consistent with our previous notation. The results derived in this section will be
applied in the next sections to service systems where the service requirements are
distributed as B, and the sojourn times of customers with service requirement
7 are distributed as V(7). Furthermore, the unconditional sojourn time of an
arbitrary customer is distributed as V(B).

Assumption 5.1.1 The tail of the service requirement distribution B(x) :=
1 — B(z) is of intermediate regular variation at infinity, i.e.,
B(z(1
lim inf lim inf M
el0  z—oo B(z)

When this assumption is satisfied, we write B(z) € ZRV. Observe that the
above definition of intermediate regular variation is equivalent with

B(z(1 -
lim sup lim sup M = 1,
el0 r—00 B(CL')

and that, in both characterisations, we may replace the first liminf and the
first lim sup, repectively, by the ordinary limit. In particular, all functions with
a regularly varying tail are of intermediate regular variation, see Cline [16] for
a discussion. Assumption 5.1.1 implies that there exist numbers ¢ € (0,00),
zo € (0,00), and n € (0,1) such that, for all zo > z1 > =,

B = " (z_>< (5:1)

see Appendix 5.A.

Assumption 5.1.2 For some g* > 0,

lim EV(r)] = g%, (5.2)

T—>00 T

and there ezist Kk > ¢ and 6 > 0 such that:

lim r~"*E [| V() - E[V(7)

T—>00
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.e.,

E[|vin-EV()

" 5
] = o(t"7%), T — o0,

where ¢ > 0 is as in Relation (5.1). Moreover, for all t > 0, the probability
P {V(r) > t} is non-decreasing in 7 > 0. Hence, all momentsE [V (7)"], n € N,
are non-decreasing in T.

In this section we suppose that Assumptions 5.1.1 and 5.1.2 are satisfied,
and g*, {, k and § will be as described above. First we formulate the main
result of this section in the next theorem. In the proof we use two lemmas,
which we prove subsequently.

Theorem 5.1.1 Suppose Assumptions 5.1.1 and 5.1.2 are satisfied. Then the
tail distributions of the random variables B and V(B) are equivalent in the sense
that:

P{V(B) > g*z}

li = 1.
sh00  P{B >z}

Proof The proof is given in two parts. First we write, for € > 0,
P{V(B)>g'z} < P{V(B)>g*'z;B<z(l—¢)}
+P{B>z(l-¢)}.

By Lemma 5.1.2 below and the fact that B(z) € TRV we may neglect the first
term in the right-hand side. Hence,

. P{V(B) > g*z} . P{B>z(1-¢)}
1 < 1 .
e TP B>z - NPT P{B> )

Letting € | 0, the right-hand side tends to 1.
For the second part of the proof we write, for € > 0,

P{V(B)>g*z} > P{V(B)>g*z;B>z(l+¢)}.
Combining this with Lemma 5.1.3 below, we have

.. .P{V(B) > g*z} . .. P{B>z(1+¢e)}
lim inf > liminf )
e P{B >z} = B P{B>au)

By Assumption 5.1.1 the right-hand side tends to 1 as € | 0. O

In the proof we used two lemmas which we prove next. The first one states
that “when B is small, V(B) can not be large”. To prove this we use the
following form of Markov’s inequality (see Williams [118, Section 6.4]) for the
tail distribution of V(7):

E[|V(r)—EV(r)] |"]
e ’

P{V(r)—E[V(r)] >t} < (5.4)
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for all 7 > 0 and ¢ > 0. When x = 2, which is the case in most of the examples
studied in the next sections, this reduces to Chebyshev’s inequality:

Var [V (7)] .

PV(r) -EV(N)]>th < —p (5.5)

Lemma 5.1.2 Suppose Assumptions 5.1.1 and 5.1.2 are satisfied. Then, for
fized € € (0,1),

lim P{V(B) > g*z;B<z(l-¢)} — 0
z—00 P{B > .T:(l—&‘)} )

Proof We prove the lemma using the following relations, which hold for =
“large enough”:

P{V(B)>g*z;B<z(l—¢)}

z(l—¢)
_ / P{V(r) > g*z} dB(r)

=0

z(l—e)
S /=0 P{V(r)—E[V(r)] > g*z — E[V(z(1l — ¢))]} dB(r)
LR [ V) R YE) |7 dB()

B (g*z —E[V(z(1 —¢))))" :

(5.6)

The first inequality is an immediate consequence of the monotonicity of E [V (7)]
in 7, see Assumption 5.1.2. For the second inequality we use Relation (5.4). Note
that, indeed, for z large enough it must be that g*z—E [V (z(1 — €))] is positive,
since by Assumption 5.1.2:

g*z 1

E[V(z(l—e))]_>1—6 > 1, z— oo.

Hence, for large z, the denominator of the right-hand side of Relation (5.6)
“behaves as” (g*ze)".

Next we study the numerator. First note that, without loss of generality, we
may assume that kK — & > (, since if this is not the case, we can choose § > 0
smaller, and Assumption 5.1.2 will still be satisfied. Let zy be as in Relation
(5.1), and 79 > zo such that, for all 7 > 7p:

E[|V(r)-EV()

n] < TRl
Such a 7y exists by Assumption 5.1.2. If z is such that z(1 —¢) > 79 then
Relation (5.6) leads to:

2(1—¢)
| E[[v-Eve)

=70

H} dB(r)
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z(l—¢) .
—/ 7 9dB(7)

=70

IN

B 5 9B(ro) — (¢(1 — )" Be(1 - ¢))

z(l—¢) o
+(k = 9) / 0 1B(r)dr

=Tp

< 757°B(ro)

(k- 6)B(z(1—¢)) /T:(:s) or—d1 (ﬁ) “
5

< T Blm) + g Bla(l =) (a1 )

where “p.i.” indicates the use of partial integration. In the second inequality
we used Relation (5.1) and the fact that

(z(1—¢))"°B(z(1—¢)) > 0.

Since

/T :’0 B[ V() - B []aBem)

is independent of x, and that x — § > (, the numerator of the right-hand side
of Relation (5.6) is bounded from above by a function that tends to infinity as

K—&
B(z(1—¢))(z(1—¢)"°.
Recall that the denominator “behaves as” (g*ze)"”. Therefore, dividing the

right-hand side of Relation (5.6) by B(z(1 — ¢)), and letting z — oo, proves
the lemma. a

The following lemma complements the statements of Lemma 5.1.2 for the
case that B is large.
Lemma 5.1.3 If Assumption 5.1.2 is satisfied then, for all € > 0,

lim P{V(B)>g*z;B > z(l+¢)}
00 P{B>z(1+¢)}

Proof Clearly, the limsup of the above expression can not be larger than 1.
Therefore it suffices to show that the liminf is at least 1. By Assumption 5.1.2
we have, for all 7 > z(1 + ¢),

P{V(r)>g'z} > P{V(z(1+e¢)) > gz}
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Hence,

P{V(B)>g*z;B>z(l+¢)} /°° P{V(r) > g*z}dB(7)

=z(1+¢)
> P{V(z(l+¢)) >g"z}P{B>z(l+¢)}.

From Relation (5.2) it follows that E [V (z(1 +¢€))] —g*z > 0, for z large enough.
Hence, by Markov’s inequality:

P{V(z(1+¢)) < gz}
P{E[V(z(1+¢))]-V(z(1+¢)) >E[V(z(1+¢))] —g*z}
E[|V(z(1+e)—E[V(z(1+e)] |"]
- (BE[V(z(1+e))] - g*z)" ’

and, by Relations (5.2) and (5.3), this vanishes as & — co. Therefore,
lim P{V(z(1+¢))>g'z} = 1,

and the proof is completed. O

5.2 The M/G/1 queue for three service disciplines

In the remainder of the chapter we show that, under certain conditions, the
on/off processor-sharing model of Chapter 3, with generally distributed service
requirements, satisfies Assumptions 5.1.1 and 5.1.2 and thus exhibits the tail
behaviour described in Theorem 5.1.1. As indicated in Remark 5.1.1, in the
sequel the random variables B, V(7) and V(B) are distributed as the service
requirement, the sojourn time conditional on the service requirement and the
unconditional sojourn time, respectively. Before turning to the on/off model,
however, we apply the theory of the previous section to the M/G/1 queue for
three different standard service disciplines. First we show that Theorem 5.1.1
provides a new and simpler proof of the result of Zwart and Boxma [128], whose
analysis relies on transform techniques. Then we establish the “tail equivalence”
for two other service disciplines under the assumption that the second moment
of the service requirement distribution is infinite. Besides the independent in-
terest of these results, this section serves to illustrate the use of Theorem 5.1.1
and clarify which steps must be made in order to prove the result for the on/off
model.

The remainder of this section is divided into five parts. In Section 5.2.0 we
present preliminary results which facilitate the subsequent analysis. We prove
the tail equivalence for the three above mentioned service disciplines in Sections
5.2.1 — 5.2.3. In Section 5.2.4 we discuss a common property of these three
models and, anticipating on the results in subsequent sections, of the on/off
processor-sharing model.
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5.2.0 Preliminaries

First we review some common notation. In all three models of this section
we consider an M/G/1 queue, the difference between the three cases being the
service discipline, that is the way in which service is allocated to the customers
in the system. Customers arrive according to a Poisson process with intensity
X and their service requirement distribution is B(x) with mean 8; < oo and k*®
moment S < 00, k =2,3,.... Service is rendered at rate 1 whenever the system
is not empty. The traffic load is denoted by p = AB; and we assume that the
system is stable: p < 1. When the second moment of the service requirement
distribution (32) is infinite, we often need to impose the following conditions:

Assumption 5.2.1 E[B?] < oo for some a € (1, 2).
Assumption 5.2.2 E [B¢] = oo for some ¢ € (1,2).

It is straightforward to see that when the second assumption is satisfied and
B(z) € IRV, then Relation (5.1) holds. Assumption 5.2.1 implies that the
tail of the service requirement distribution is dominated by a Pareto tail. We
formalise the latter statement in a more general context in the next lemma.

Lemma 5.2.1 If Z is a non-negative random variable with E [Ze] < o0, for
some 0 € R, then

P{Z>u} = o(u™),

for u — co. Hence, there exists a number ug > 0 such that P{Z > u} < u~?,
for all u > uyg.

The converse statement is not true, but if P {Z > u} has the above asymp-
totic property then, for all e € (0,0), E [ZQ*E] < 0.

Proof The first statement follows from the fact that
. 0
uli)nolo (u P{Z > u} )

= lim (0/u x"—lp{z>z}dx—/u zodP{Zg:c}>

U—0oo z=0 z=0

=E[Z°]-E[2°] =0

The existence of the number ug is trivial and the last statement follows from:

E[Z°¢] = (0-¢) /oo WP {Z > u}du < .

u=0
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In the sequel, the random variable W) g is distributed as the (steady-state)
waiting time in the M/G/1 FCFS queue with arrival rate A and service time
distribution B(z), i.e.,

[eS) 1 t nkx

Pip<t = (-3 0|y [ PiB>ata| . 61
n=0 '81 z

cf. Cohen [20, Part II, Expression (4.82)]. Here, the symbol * denotes the

convolution operator for probability distributions, i.e., for a distribution function
H(z), z > 0, we define H(z)o* :=1, for all z > 0, and for n € Ny and = > 0,

H(z)™* = / :H(z—u)"*dﬂ(u). (5.8)

In particular, H(z)"™ = H(z), > 0.

The next lemma states a direct implication of Assumption 5.2.1 for the
distribution of W)y g. This relation will be useful in the analysis of sojourn
times in the case that By = oco.

Lemma 5.2.2 IfE[B®] < cc then E [(WA,B)ail] < 0.

Proof See Asmussen [7, Theorem VIII.2.1], or Appendix 5.B for an alternative
proof. O

5.2.1 Processor sharing

In the M/G/1 processor-sharing queue, at any point in time all customers in
the system share equally in the service capacity. For more on processor-sharing
queues we refer to Section 1.6, where an overview of the literature on these
models is provided. Here we are interested in the tail of the sojourn time
distribution. Zwart and Boxma [128, Theorem 4.1] have shown that the tails
of the service requirement distribution and the sojourn time distribution are
equally heavy (in the sense of Theorem 5.1.1) when the service requirements
are regularly varying. We now show that Theorem 5.1.1 provides a new proof of
this fact (for intermediate regularly varying service requirement distributions).

Theorem 5.2.3 Consider the M/G/1 queue with processor sharing. If B(zx) €
IRV, and one of the following two conditions holds,

(i) B2 < o0, or,
(ii) E[B*] < oo and E [B¢| = oo, for some 1 < a < ( < 2,
then
P{v(B) >}

li = 1
sh0  P{B >}
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Remark 5.2.1 Note that we exclude the case that 83 = co and E [BC] < >
for all ¢ € (1,2). This case can be included by studying the fourth moment of
the sojourn time.

Proof We show that Assumption 5.1.2 is satisfied. First we note that the
monotonicity of P {V(7r) >t} in 7, the last condition in Assumption 5.1.2, is
easily seen using a sample-path argument: Comparing the sojourn times of two
customers, for the same sequences of inter-arrival times and service requirements
of other customers, it follows immediately that the one requiring the smaller
amount of service leaves before the one with the larger service requirement.

We now focus on Relations (5.2) and (5.3). It is well known that the mean
sojourn time is given by:

T

EVO)] = 1,
see Sakata et al. [99, Formula (10)], Sakata et al. [100, Formula (49)], or
Kleinrock [55, Formula (4.17)]. As a consequence, Relation (5.2) holds with
g =1/(1- p).

To show that Relation (5.3) holds as well, we first consider the case that
B2 < 00. We then have the following asymptotic result, with £k = 2,3,...,

E[V(r)*] = E V() + Zﬂ;llfplzl(k—_p;’z ™1 4 o(7*7Y), T = oo,

cf. Zwart and Boxma [128, Remark 3.3]. This implies the following strong
asymptotic result, for arbitrary € > 0 and £ = 2,3,.. .,

E[(V()-EV@O)] = ot 1), roo.

Thus, if B(z) € ZRV and ( is as in Relation (5.1), then let x be an even integer
which is larger than . Then Assumption 5.1.2 is satisfied for any ¢ € (0,1)
with g* =1/(1 — p), hence, Theorem 5.1.1 can be applied.

In the case that E[B] < oo and E [B¢] = oo, for some 1 < o < ¢ < 2,
we note that B(x) satisfies Relation (5.1). We use Zwart and Boxma [128,
Equations (3.5) and (3.10)] to write:

2 T
Var[V(r)] = —> / (r— WP {Wap > u}du,
(1 - P)2 u
where W) g is distributed as in Expression (5.7). Using Lemmas 5.2.1 and 5.2.2,
we have P {W, g > u} = o(u! %), hence, Var [V ()] = o(u3~*"¢) for all € > 0.
Thus, Assumption 5.1.2 is satisfied with Kk = 2 and 0 < 6 < a — 1. Now apply
Theorem 5.1.1. O
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5.2.2 Foreground-background processor sharing

With the FBPS discipline, at all times, the service capacity is used to serve the
customer(s) which so far have received the least amount of service, see Kleinrock
[65] or Yashkov [122]. Note that more than one customer can have the (same)
minimum amount of attained service. In that case the service capacity is shared
equally among these customers, hence the term processor sharing.

Assuming B(z) is absolutely continuous, the mean and variance of the so-
journ time are given by:

T Aho(T)
BV = T5mm T 2a = ) (59)
Var[v(n] = (0 . drha(n) . SARa() g

3(1 = Ahi(7))2 (1= Ahq(7))® 41 — A (7))

cf. Yashkov [122, Formulas (6.2) and (6.3)]. The functions h;(7), j = 1,2, 3, are
given by

hi(t) = j/ wjflg(.z)dw. (5.11)
z=0
Using these expressions we apply Theorem 5.1.1 to the case 82 = oo.

Theorem 5.2.4 Consider the M/G/1 queue with the FBPS service discipline.
If B(z) € IRV, E[B®] < 00 and E [B$| = o0, for some 1 < a < { < 2, then

_ Plve)> =}
S TP B> )

Proof First we remark that, as in the proof of Theorem 5.2.3, the monotonicity
of P{V(r) >t} in 7, follows from a sample-path argument. Hence, it remains
to be shown that Relations (5.2) and (5.3) hold.

Note that the h;(7) defined in Equation (5.11) are non-decreasing, positive
functions, and that

1.

lim hl(T) = B < 0.

T—>00

By Lemma 5.2.1 there is a number x¢ > 0 such that B(z) < 22, for all z > .
Using this in Equation (5.11) for j = 2,3, we have, for arbitrary £ > 0,

hi(t) = o(ri7**e), 71— oo
Hence, by Expressions (5.9) and (5.10),
i EVO 1
T—00 T 1—p
lim YA VOl _

T—00 73_‘3‘+€

Taking ¢ as specified above, Assumption 5.1.2 is satisfied with k = 2 and
0<d<a-1 O
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5.2.3 Shortest remaining processing time first

Now we consider an M/G/1 queue in which the total service capacity is always
allocated to the customer with the shortest remaining processing time. Note
that the service of a customer is pre-empted when a new customer arrives with
a service requirement smaller than the remaining service requirement of the
customer being served. The service of the customer that is pre-empted is re-
sumed as soon as there are no other customers with a smaller amount of work
in the system. By sample-path arguments, it can be shown that, among all
work-conserving service disciplines, the SRPT discipline minimises the number
of customers in the system at any point in time, see Schrage and Miller [102]. For
this model we show the tail equivalence of the service requirement distribution
and the sojourn time distribution for the case that 82 = co.

Remark 5.2.2 Note that if the service requirement distribution has disconti-
nuity points then it may occur (with positive probability) that two customers
have the same remaining service requirement, see Schrage and Miller [102]. Here
we assume this is not the case, thus, B(z) is a continuous function.

Following Schrage and Miller [102] we decompose the sojourn time into two
different periods: The waiting time (the time until the customer is first served)
and the residence time (the remainder of the sojourn time). For a customer with
service requirement 7, we denote the waiting time by W (7) and the residence
time by R(7). Thus, the sojourn time is given by V(1) = W(7) + R(7). We em-
phasise that the residence time may contain service pre-emption periods caused
by customers with a smaller service requirement. Schrage and Miller [102] ob-
tained the LST of W(7) and R(7). For our purposes we only need the first two
moments of these random variables. First we define p(7) as the traffic load of
customers with an amount of work less than or equal to 7,

p(7) = A / tdB(2). (5.12)
t=0
The first two moments of W (7) are given by:
[, t?dB(t) + 7>B(r)

E[W(r)] = A== 20 p(’l’))2_ , (5.13)
By = = dB_(t) il
3(1—p(7))
o [T 5 [i_, t*dB(t) + 2 B(r)
A dB , 14
+ /tot (t) =) (5.14)
and the mean and variance of R(7) by
E[R(r)] - /t TO %mdt, (5.15)
Var [R(7)] = / f" D 2dB(3 )dt. (5.16)



5.2 The M/G/1 queue for three service disciplines 145

These expressions enable us to apply Theorem 5.1.1, thus showing the tail
equivalence in the case that 82 = co. This result is stated in the next theorem.

Theorem 5.2.5 Consider the M/G/1 queue with the SRPT service discipline.
If B(z) € IRV, E[B*] < 00 and E [B¢] = 0o, for some 1 < a < { < 2, then

_ Plve)> =}
B Y ).

Proof The proof proceeds along the same lines as those of Theorems 5.2.3
and 5.2.4. The monotonicity of P {V(7) > t} in 7 follows from a sample-path
argument. Furthermore, note that p(7) defined by Equation (5.12) is a positive,
non-decreasing function with p(7) — p, as 7 — oo. Using that the Césaro limit
of a function is finite and equal to the ordinary limit when the latter exists, we
have:

E[R(7)] . 1 1

1' _— = 1 = .
oo T e 1— p(t) 1-p

Now consider Expression (5.16) and replace dB(u) by —dB(u). By Lemma 5.2.1
there is a number zo > 0 such that B(z) < z~¢, for all z > z,. Using partial
integration and the fact that p(t) < p for all t > 0, we have, for arbitrary ¢ > 0,

Var [R(r)] = /t Ofulo u*dB(u (S)dt

W /t ;0 (t2B(t) -2 /u t:(, uF(u)du> dt

= o(r*7 ), 7= 0.

IN

In the same way, by partial integration we have for E [W(7)], using Formula
(5.13),

iz tB(0)dE
(1= p(r))"

and similarly for E [W(7)?]. With the above bound for B(u), the following
relations follow for all € > 0:

)

E[W(7)]

o B EW()?]

=300 7—2 a+e =300 7—37a+6

= 0,
hence, since 3 —a > 2(2 — a),

Var [W(r)] = o(r*™*¢), 7 - 0.
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Using the fact that the random variables W (7) and R(7) are independent for
fixed 7 > 0, we have, for all € > 0,

BV _
oo T 1-p’
lim w = 0.

00 T3—oate

Thus, Assumptions 5.1.1 and 5.1.2 are satisfied (for k =2 and 0 < § < a — 1)
and we may apply Theorem 5.1.1. O

5.2.4 Intermediate discussion

We found in all three models of Sections 5.2.1 — 5.2.3 that, when applying The-
orem 5.1.1, the factor g* is equal to 1/(1 — p). In the remainder of this chapter
we shall see that this property is essentially shared by the unreliable processor-
sharing model, the factor g* being equal to 1/(c — p) where ¢ < 1 is the average
available service capacity. We now provide an intuitive interpretation of this
finding. Theorems 5.2.3, 5.2.4 and 5.2.5, as well as Theorem 5.3.1 below, state
that the probability that a customer’s sojourn time exceeds the value z/(c — p)
is asymptotically (for £ — 00) equal to the probability that a customer’s service
requirement exceeds a value x. This property can be understood partly by the
same arguments used in Chapters 3 and 4 to explain the asymptotic linearity
of E[V(r)], see Remarks 3.6.2 and 4.3.3. The above mentioned models share
the property that if a customer with an infinite service requirement is placed in
the queue, then the queue remains stable. Hence, after a very long time, the
average capacity per unit of time devoted to the service of “non-permanent”
customers is approximately p (all non-permanent customers eventually leave
the system). Since the mean total service capacity rendered by the system per
unit of time is ¢, the average service capacity received by the permanent cus-
tomer is approximately ¢ — p. Still, this is not sufficient for Theorem 5.1.1 to
apply. For example, it is known for the M/M/1 processor-sharing queue that
the result is not true. The reason for this is that with a “light-tailed” service
requirement distribution, Lemma 5.1.2 does not hold: A large sojourn time is
not necessarily caused by a large service requirement, but may be due to the
fact that many other customers are requesting service. For heavy-tailed service
requirement distributions, we showed by Lemma 5.1.2 that the probability of
this happening is negligible compared to that of a large sojourn time and a large
service requirement occurring simultaneously.

5.3 The on/off model with general service requirements

The remainder of this chapter is devoted to the M/G/1 processor-sharing queue
with random service interruptions. Our goal is to extend Theorem 5.2.3 to this
model for the case that B3 = 0o. In order to apply Theorem 5.1.1 we need
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to study the first and second moment of the conditional sojourn time V(7).
Different from the presentation in the previous section, for the “on/off” model
this turns out to be a complicated task. Our ultimate objective is stated in the
next theorem. As before, the random variable V' (B) is distributed as the steady-
state sojourn time of customers. The proof of the theorem will be provided by
Theorem 5.6.2 which states that Assumption 5.1.2 is satisfied. Hence, we may
apply Theorem 5.1.1. In the next theorem an additional condition (Assumption
5.5.1) is imposed. It postulates that if the random variable X is distributed as
the number of customers in the system in steady state, then E[X?] < oo, for
some 7 > 2. At this point we do not go into the rationale for this assumption,
but refer to Remark 5.5.3 below for a discussion.

Theorem 5.3.1 Consider an M/G/1 processor-sharing queue with random ser-
vice interruptions which satisfies Assumption 5.5.1 below. If B(z) € IRV,
E [B*] < 00 and E [B¢] = 0o, for some 1 < a < { < 2, then

_ P{vm)> 2}
S TP B )

Here c is the average service capacity and p is the traffic load.

Proof Assumption 5.1.2 is satisfied because of Theorem 5.6.2 and Remark
5.6.1 below. Hence, the result follows from Theorem 5.1.1. O

The model under consideration was studied in Chapter 3 assuming expo-
nentially distributed service requirements. Now the service requirements have
a general (heavy-tailed) distribution. We first review the model in this section.
Parts of the analysis of Chapter 3 are extended. This provides a basis for the
analysis of the tail of the sojourn time distribution, ultimately leading to The-
orem 5.6.2 and, hence, to Theorem 5.3.1 above. In the extensions of the results
of Chapter 3 to the present model, the key ideas are essentially the same as with
exponentially distributed service requirements. In the course of this section we
point out where, and how, the analysis needs to be modified to include the more
general case.

As before, customers arrive according to a Poisson process with rate A\. The
service requirement distribution is B(z), z > 0, with first and second moments
B1 < oo and By < 00, respectively. For Re(s) > 0 we define the LST of B(z)
by:

B(s):=E [e_SB} = /00 e “TdB(z).
=0
The service station alternates between “on-periods”, which have an exponential
distribution with mean 1/v, and “off-periods” with a general distribution F'(¢),
t > 0, and LST ¢(s), Re(s) > 0. The duration of an off-period will again be
generically denoted by the random variable Ty¢y, its first three moments —
m1, my and mg, respectively — are assumed to be finite. During an on-period,
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service is rendered at a constant rate 1, and all customers in the system share
equally in this capacity, according to the processor-sharing discipline. During
off-periods there is no service. Define the traffic load by p := AB; and the
average service capacity by ¢ = 1/(1+vm;). We assume that p < ¢, hence, the
system is stable.

Remark 5.3.1 Our objective in this chapter is to apply Theorem 5.1.1. For this
we need to verify that (under some conditions) Assumption 5.1.2 is satisfied.
In particular we will need Condition (5.3) with x = 2, and hence, we need
E [V (7)?] < co. To ensure this, we assumed above that m3 < co. In Chapter
3 we saw, for exponentially distributed service requirements, that if mo, = oo
then E [V (7)] = oo for all 7 > 0, see Expression (3.41). Here V(7) is distributed
as the sojourn time (in steady state) of a customer with service requirement
7. More generally it is true that if the k" moment of the off-periods is infinite
then E [V(7)F~1] = oo for all 7 > 0, regardless of the distribution of the service
requirements. To see this note that (assuming that the on/off process is in
steady state) a customer arrives during an off-period with probability equal to
vmi/(14+vm;) =1—c > 0. The remaining time until service is available again
is distributed as the forward recurrence time of T,s;. Note that during this
period no service is rendered, hence the sojourn time of the customer is at least
as large as this period, irrespective of the customer’s service requirement. It is
well known that the k — 15* moment of the forward recurrence time is finite if
and only if the k*" moment of T, is finite.

As we shall see later (in Assumption 5.5.1 and Remark 5.5.3) we need to
impose the condition that

E [(TOff)’H_l} < oo,
for some v > 2, which is slightly more restrictive than requiring that ms < cc.

In Remark 3.2.1 we outlined how the sojourn time, with generally distributed
service requirements, can be decomposed into independent contributions of
the customers in the system. We state this result in the next theorem. By
Va,1(T521,...,2,) we denote the conditional sojourn time of a customer with
service requirement 7 starting in an on-period with n € {0,1,2...} other cus-
tomers in the system with service requirements x1, 32, . .., Z,. Similarly we use
Van,o(T;21,...,2,) to represent the conditional sojourn time starting in an off-
period. In this case we further denote the remaining duration of this off-period
by Dy, with LST ¢o(s), Re(s) > 0, and the number of arrivals during Dy by
Ap. The joint distribution of the pair (Dy, Ag) is given by:

E [e_SDOzAO] = o(s+A(1—2)), (5.17)
with Re(s) > 0, and |z| < 1.

In the sequel we also use random variables Cp(7; By), for n € {-1,-2,...}.
These random variables are distributed as C1(7; B). The indices with negative
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values help to avoid confusion with different terms in the next theorem and in
the sequel. The theorem is the analogue of Theorem 3.2.5 and Corollary 3.2.6,
where we considered the case of exponentially distributed service requirements.

Theorem 5.3.2 The conditional sojourn time Vy, 1(7;1,...,%y,) can be decom-

posed as:
n

Vaa(rs 21, 20) £ Co(r) + > Ci(rs ).

=1
Similarly, for Vi o(T321,...,Zn):
4 n —Aog
Vo o731, .. @) = Do + Co(r) + Y Ci(mimi) + Y, Ci(r; By).
i=1 i=—1

Here 2 denotes equality in distribution. The random variables B; are distributed
according to B(:). All random variables in the right-hand sides are indepen-
dent except for the pair (Do, Ag) whose joint distribution is given by Expression

(5.17).

Proof Consider the population model described in Remark 3.2.1 with general
life time distribution B(z) and associated rewards. Similar to the exponential
case in Section 3.2, we can show — by means of a random time change — the
equivalence of the rewards in the population model, between times 0 and T,
and the sojourn time of a customer with service requirement 7 in the on/off
processor-sharing model. C;(7;x;) is the reward for a family, between times 0
and 7, starting with one individual with a remaining life time z;. Cy(7) is the
reward for the family of the permanent individual between times 0 and 7. The
independence of the Cy(7) and C;(7;z;), i = 1,2,..., is a direct consequence of
the construction of the population model. O

Similar to Chapter 3, we interpret Cy(7) as the part of the sojourn time
due to the service requirement 7 of the customer under consideration itself,
and C;(1;z;) as the delay due to the service requirement z; of a competing
customer. As in the formulation of the previous theorem, the delay due to an
“average” competing customer — that is a customer with service requirement
B drawn from the distribution B(z) — will be denoted by C1(7; B). For ¢t > 0
its distribution is given by:

P{Ci(rB) <t} = [ P{Ci(ria) <8} dB(a).
z=0
For Re(s) > 0, we define the LSTs of Cy(7) and C;i(7;z), i € {1,2,...}, by:
go(r;8) = E [6_300(7)] :

qi(ryzys) = E[e_sci(ﬂfﬂ)]-
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Obviously,

oo

g1(7;B;s) == E I:e—SCi(T)j| = / Ogl(r; z; s)dB(z).

r=

The following lemma identifies a useful relation between the distributions of
the random variables Cy(7) and C(7;z). For the ordinary M/G/1 processor-
sharing queue the result was obtained by Yashkov [120].

Lemma 5.3.3 Forall 7>z >0,
Co(r) £ Cy(r32) + Co(r — ),

where the two random variables on the right-hand side are independent of each
other. If z > 7 > 0 then Ci(7;z) 4 Co(T). Hence, for all Re(s) > 0 and
T>x >0,

9o(7; 5)
go(T —x;8)’

and when x > 7 > 0, g1(7;x;8) = go(735).

g1(r52;8) =

Proof A formal technical proof in terms of LSTs can be given in the same way
as in Yashkov [120]. Here we give a constructive proof. Consider the following
accumulation of rewards in the population model. Start at time 0 with an
individual with remaining life time x > 0. The reward earned until time 7 > z
by this individual and his descendants is distributed as Ci(7;z). At time x the
original individual dies. At this time introduce a permanent individual. The
reward earned until time 7 by this individual and his descendants is distributed
as Cp(t — z) and is independent of the reward for the other family. Using
the fact that the “inter-birth” time intervals are exponentially distributed, i.e.,
they are memoryless, it is clear that the total reward of the two families is
equally distributed as that earned by a single permanent individual over a time
span of length 7. Thus, the individual with life time = and the permanent one
introduced at time x can be replaced by a permanent individual starting at time
0, without affecting the total reward.

Finally, if an individual in the population model at time 0 has remaining life
time x > 7, then until time 7 the individual acts as a permanent one. O

Similar to Lemma 3.3.1 (for exponentially distributed service requirements)
we characterise the distribution of Cy(7) — and, by the previous lemma, that
of C1(1;z) — by means of a differential equation.

Lemma 5.3.4 For Re(s) >0 and 7 > 0,

(758) = go(7; ) {=(s + A +v) + Agi(7; B; 5)
+vd(s+ A1 —g1(73B;9)))},
and go(0;8) = 1, for all Re(s) > 0.

Ego
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Proof Using the same technique as in the proof of Lemma 3.3.1 we find, for

A L0,

go(T+ Ajs) = e_SAgo(T; $){l— AM\+v)+ Algi(1; B; s)
+Av¢(s + A1 — g1 (73 B; 5))) } + o(A).

After re-arranging terms, dividing by A and passing A to zero, we find the
desired differential equations. The initial conditions are evident from the inter-
pretation of sojourn times in the queueing model as rewards in the population
model: Cy(0) = 0. O

5.4 Moments of the fundamental random variables

Our analysis of sojourn times builds upon the decompositions of Theorem 5.3.2.
Our goal is to show that the variance of V(7) satisfies Assumption 5.1.2 (with
k = 2) when B2 = oo. Therefore, we are particularly interested in the first
and second moments of the (conditional) sojourn time. We analyse these via
the first and second moments of the “fundamental” random variables Cy(7),
Ci(7;z) and Ci(7; B), which appear in the decompositions of Theorem 5.3.2.
We also derive results for the case that 82 < 0o, which serve as a guide for the
analysis of the more complicated case that S = oco.

We study the moments of the random variables Cy(7), C1(7; ) and C1(7; B),
by means of LTs (Laplace Transforms). We define, for s > 0, w > 0, z > 0 and
k=1,2,

fuls) = / e~5TE [Co(r)*] dr,
ﬁc(s;w) = / e_STE[Cl(T;z)k]dT,

=0
ﬁc(s;B) = /0_00 e STE [Cl(T;B)k] dr,

~

fe(s;w) = /0_00 /0_00 e 5T T WTE [Cy(r; m)k} dz dr.

These functions are well defined if we allow them to take values in [0, 00) U{oo}.
Note that the second argument of ﬁ can have different meanings. This does
not lead to confusion if we keep in mind that, as arguments of f, the variable x
always stands for a remaining service requirement (or life time), B stands for a
service requirement drawn from the distribution B(z) and w is a transformation
variable (in the frequency domain). Using Lemma 5.3.3 it can be verified — by
substituting E [Co(7)] — E[Co(7 — z)] for E [C1(7;z)] in the above definitions
— that, for s >0, w >0 and z > 0,

~

Fils;z) = (1—e—5$)f1(s), (5.18)
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1(s), (5.19)
fi(s;w) = —————fi(s), (5.20)

in the sense that in all three equalities both sides are infinite if one of them is.

As before, we denote the convolution operator for probability distributions
by the symbol *, see Relation (5.8). In the next lemma we give a closed-form
expression for E [Cy(7)]. The proof is based on the derivation and solution of
a differential equation that is satisfied by E [Co(7)], similar to that given in
Lemma 5.3.4. Combined with Lemma 5.3.3 we also have, as a corollary, closed-
form expressions for E [Cy(7;z)] and E[C;(7; B)]. A prominent role is played
by the (steady-state) waiting time distribution in the M/G/1 FCFS queue with
arrival rate A\/c and service time distribution B(z). Let the random variable
W /c,p have this distribution:

nkx

Py ~= o\ [1 [
< = _—— -_— —_ .
P{Wyep <t} ( c) ;} (c) [ﬂl /FOP{B >z}de| , (5.21)
see also Expression (5.7).
Lemma 5.4.1 For s > 0,
~ 372
fils) = 1=6(s) "
¢ p spB1
Hence, for 7 >0,
1 T
BCo(n)] = - [ P{Wyen<t}a
C—pPJi=o
T 1 T
= - P{W,/. t}dt.
c—p c—p/tzo Waven >}
Proof See Appendix 5.C. m]

Corollary 5.4.2 For71>0and0<z <,

1 T
E[Ci(r;7)] = cfp_c_p/t, P (Wyen > t)dt,

1 .
- pE [min {7, B}]

1 T
— / P{W)\/C7B>t}P{B>T—t}dt.
C—p Ji=0

E[Ci(7; B)]

Proof Directly from Lemmas 5.3.3 and 5.4.1. O
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Recall that our aim is to provide conditions under which Assumption 5.1.2
is satisfied. The assumption is concerned with the asymptotic behaviour of the
moments of V(7), for 7 — co. With this in mind, we establish a limiting result
for E [Cy(7)] when 7 — oo. Here, a distinction must be made between the cases
where (5 is finite or infinite.

Lemma 5.4.3 If B2 < oo then

. T o ]. o )\ﬂz

i (E Golnl == p) = e B Wven] =

and the limit equals —oo if B2 = 0o. In the latter case, if E[B%] < oo, for some
€ (1,2), then, for all e > 0,

E[Co(r)] - -~ o= o), T
Proof For B3 < oo the result is immediate from Lemma 5.4.1 and Expression
(5.21) for the distribution of Wy, 5. When 33 = oo and E[B®] < oo, for
some a € (1,2), we have by Lemmas 5.2.1 and 5.2.2 that, for ¢ large enough,
P {W)\ Je,B > t} is bounded from above by ¢!~*. Using this in the expression
for E[Cy(7)] given in Lemma 5.4.1 we have, for arbitrary € > 0,

B~ _

T—00 T2-ate

which was to be proved. O

The next lemma is concerned with the asymptotic behaviour of E [C1(7; z)]
and E [C1(7; B)]. It states that these expectations have a finite limit as 7 — oo,
irrespective of B3 being finite or infinite. However, later in our analysis of sojourn
times we need more refined asymptotic results for E [C(7; z)] and E [C4(7; B)].
To be more precise, we need to know the rate at which these quantities converge
to their respective limits. For this second-order analysis we again need to make
a distinction between the cases 2 < oo and 82 = co. The results are combined
in the following lemma.

Lemma 5.4.4 If B3 < oo then

E[C1(T;x)]—cfp = o(t™Y), T o0,
E[C’1(T;B)]—cﬂ_1p = o(t7Y), T o0

If E[B%] < oo, for some a € (1,2), then

B(Ci(ria) - ;2 = o), T,
E[C’l(T;B)]—c'B_lp = o(r'™®), T 0.
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Proof We give the proof for the case 82 = 0o, which is the more difficult one.
When B3 < oo we follow essentially the same steps, replacing a — 1 by 1. So we
assume B2 = oo and E[B®] < co. To prove the result for E[C;(7;z)] we use
the expression given in Corollary 5.4.2 together with the inequality

/ P{WA/C,B>t}dt < $P{WA/C’B>T—.’L‘}.
t=7—x
By Lemmas 5.2.1 and 5.2.2 we have
. a—1 _
tll%lot P{Wy.p >t} = 0,
which leads to the required result for E [C:(7; z)].

The derivation of the result for E [C;(7; B)] is somewhat more delicate. Us-
ing the expression for E [C(7; B)] given in Corollary 5.4.2, we write:

T—00

lim T"—l/ P{Wy/ep >t} P{B>7—t}dt
t=0

oo
= lim T“—l/ 1<y P {Wijep > 7 —t} P{B > t}dt
t

T—>00 =0

/ lim l{tST}TOHIP {W)\/c,B >T— t} P{B>t}dt
t

=0 T—>00

:0,

where 1 is the indicator function. The interchange of limit and integral is
justified by the Dominated Convergence Theorem, because

sup {Li<ry 7P {Wiyep > 7 — 1}

A

T>1 T>1

(max {1,¢})* " sup {A+7-t)""P{Wy)ep >7—t}}.
>t

Now use that (1 +7 — ) 1P {W)\/QB > 7 —t} is bounded from above by a
constant (we use 1+ 7 — ¢ instead of 7 — ¢ to avoid difficulties with 7 — ¢t = 0)
and that

/jo (max {1,t})* 'P{B > t}dt < oo,

which is true by assumption. a

This concludes the analysis of the expectations of the fundamental random
variables. We now turn to their second moments. A key result is stated in
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the next lemma where E [Co(7)?] is expressed in terms of the function Ro(7)
defined by:

Ro(1) = vmy (1+)\E [C1(7; B)] )2

+2(1+ vma)E [Co(r)] (1+ AE[C:(; B)] )
=22 (1+vmq) / E[Co(r — 2)| E[C1(r;z)]dB(z). (5.22)
z=0
Note that Ry(7) is completely determined by expectations of the fundamental
random variables, which we studied previously.

Lemma 5.4.5 For T >0,
c

E[Co(r)?] = — 5 /u ;ORo(T—u)P{WA/C,B <u}du.  (5.23)

Proof As in the proof of Lemma 5.4.1, let Co(7) be the reward in the time
interval [0, 7] of a family of permanent individuals, starting with one individual.
We can show (see the proof of Lemma 5.4.1 for more details) that

/ e STE [Co(1)?] dr
7=0

is finite for s > 2\/c and, hence, so is fg(s) For E [Co(7)?] the following
differential equation may be derived:

('%E [Co(r)?] = A(1+vmi)E[Ci(r; B)*] + vms (1 + AE [C4(T; B)] )

2

+2(1+ vm1)E [Co(r)] (1+ AE[C1 (s B)] ).
By Lemma 5.3.3 we may write, for 0 <z < 7,
E [01(7';:6)2] = E [CO(T)Q} —-E [C()(T - .CL')2]
—2E [Cy(7;2)] E [Co(T — 2)], (5.24)
and, E [C1(7;2)%] = E [Co(7)?] when > 7 > 0. Hence,

E [Ci(;B)?] = E[Cy(1)’] - /T E [Co(r — 2)*] dB(x)

z=0

2 / 10 E [Co(r — 2)] E[C1(r; )] dB(2).

The differential equation for E [Cy(7)?] reduces to

%E [Co(r)?] = A(1+vmy) (E [Co(r)?] — /T:OE [Co(r — z)?] dB(z))

+RO(T)7
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where Ry(7) is given by Expression (5.22). Taking LTs, we have, for s > 2/,

sha(s) = A(L+vma) fa(s) (1 B(s)) + Fo(s),
where 7 (s) is the LT of Ro(7). Hence,

~ cro(s)/s
By - -l
c=p sP1

By inverting this transform (as in the proof of Lemma 5.4.1) the proof is com-
pleted. O

As with the expectations of the fundamental random variables, we need to
study the second moments for 7 — 00. The next lemma provides the basis for
that.

Lemma 5.4.6 If 83 < o then

When B2 = oo and E [B®] < 00, for some o € (1,2), then, for any e > 0,

2
Ro(1) — ﬁ = o(r*7*"¢), 1 = oo

Proof See Appendix 5.D. O

For the asymptotic analysis of the second moments of the fundamental ran-
dom variables we consider the cases 82 < 0o and B3 = oo separately. In the
case B2 < oo we are able to get much sharper results. The condition 82 < oo
is inherited from Lemma 5.4.6, but surprisingly enough, in the final result for
E [Co(7)?], B2 does not show up.

Lemma 5.4.7 If B3 < o then

E[Co(r)?] = ( T >2+Tvm2 (ﬁ)sm(ﬂ, (5.25)

c—p

where the function h(T) is such that, for all z > 0,

lim (h(T) — h(r - m)) = 0.

T—>00

In particular,

T—00 T
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Proof See Appendix 5.E. m]

Corollary 5.4.8 If 32 < oo then, for x > 0,

2 3
. CNer T z(umgc —i—)\ﬂz)
Tll)rgo E [Ci(r;2)%] = c—p)? + (c— o) )
. 21 B+ PBivmy
Tll)n(:OE [01(7', B) ] = —(c — )5

Proof Using Expression (5.24) and Lemmas 5.4.3 and 5.4.4 we have that

mn<EKhUwHEK%U—$”__jZ_>

700 (c—p)?

= Tli_)n(lo ((E [C1(T;2)] — cfp) E[Co(r — )]
(Bl —a) - T
- _cfp (c f P * 2(0)\—/82P)2> ' (526)

Now use Relations (5.25) and (5.26) in Expression (5.24) and the result for
E [Ci(r;2)?] is proved. Then write,

. . 2 _ . e . 2
TIEEOE [Ci(r;B)?] = Tli)n;o . E [Ci(7;z)°] dB(x).
Since E [Cl (T;.’B)Q] is non-decreasing in 7 we may interchange the limit and
integral. O

The previous lemma and corollary characterised the asymptotic behaviour of
E [Co(7)?], E [C1(r;2)?] and E [C1(7; B)?] for large 7, in the case that 82 < oco.
We now turn to the case 2 = oco. In the result of Lemma 5.4.7, 82 does not
show up. However, the condition 82 < oo is crucial for the proof of Lemma 5.4.7
to apply. Nevertheless, for the case that 82 = 0o the somewhat weaker result
stated in the next lemma suffices for our purposes. The asymptotic properties of
E [Cy(7)?] reveal the asymptotic behaviour of E [Cy(7; z)?] and E [Cy(1; B)?].

Lemma 5.4.9 If E[B®] < oo, for some a € (1,2), then, for alle > 0,

E[co(f)ﬂ—(cipf = o(r¥ ), 1 0.



158 Chapter 5 Asymptotics for heavy-tailed sojourn time distributions

Proof We treat the two terms in the right-hand side of Expression (5.40) in
the proof of Lemma 5.4.7 (see Appendix 5.E) separately. For the first we have

. 2
¢ / RO(T—u)du—( T >
C—pP Ju=0 c—p

T c 2u
< lim—/ 14 wu)2"27¢ Rou—i‘
T—00 T u=0 c_p( ) ( ) C(C—p)
L c o9& _ 2u _
= ull}n;oc_p(l—i—u) Ro(u) 70(0_'0) ‘ = 0.

Here we used Lemma 5.4.6 and the fact that if the limit of a function is finite,
then so is the Césaro limit and the two limits are equal. Note that we used a
factor (7 + 1)272%¢ instead of 72~*%¢ to avoid problems with u = 0 inside the
integral. For the second part we use the fact that

‘Ro(T—u) < K

1+7—u

for some constant K > 0 (this follows from Lemma 5.4.6). Hence,

i !
oo (1 + 7)3—o+e

/ Ro(t —u)P {WA/C,B >u} du
u=0

< lm K(1+71)"° /u:o(l +u)* P {Wy,ep > u}du
where we used that, by Lemmas 5.2.1 and 5.2.2,
P{WA/C’B > u} < ul™e,

for u large enough. O

Corollary 5.4.10 If E[B?*] < oo, for some a € (1,2), then, for all e > 0 there
exists a constant K. > 0 such that, for all 0 <z < T,

2xT
E jz)?] < —— + K. (1+71)te
[C1(T,.’B) ] = (c—p)2 + ( +T)
Hence, for all e > 0,
E [Ci(1;B)?] = o(r**%), 71— o0.

Proof By Lemma 5.4.9 there exists a constant K > 0 such that, for all 7 > 0,

E[co(r)?}—(czip)2 < K!(1+7)ere
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Using this result and Expression (5.24) we now write:

E [Cl(T;$)2] < E [00(7)2] —E [Co(’r — w)2]

2

B T _(7’—:5)2 2] 72
= o et (B - )

(etor—er1- )

5+ KL(14+ 7)ot

2Tx z?

(c=p)? (c—p)
+K!(147—g)3 ot
2Tx
2K (1 4 7)3 e,
(c—p)? (1+7)
Set K. := 3 K. and the result for E [C1(7;z)?] is proved. Using the definition
of E [C1(7; B)?| we write, for arbitrary € > 0,

B[Gi(rsB?) = [ B[Ci(riof] dB(a) + B [Cotr)?) Blr)
27 T 3—a+ie T
< W/E:Ode(x)—i—K%E(l+T) T2¢B(r)
+E [Co(7)?] B(r)
: (c2€71;)2 + K3.(1+7)*72¢ + B [Co(r)?] B(r)

= o(r3 T,

In the last step we use Lemmas 5.2.1 and 5.4.9 and the fact that 3—a > 1. O

5.5 Work load and queue length in steady state

The analysis of sojourn times in steady state will be based on the decompositions
of the sojourn time given in Theorem 5.3.2. The fundamental random variables
Co(1), Ci(m;2) and C1(7; B) were studied in detail in the previous section.
The yet unknown element in the above mentioned decomposition is the state
of the system upon arrival, that is the number of customers in the system,
their individual remaining service requirements and whether or not service is
available. In this section we give a (partial) characterisation of their steady-state
distributions.

As in the case with exponentially distributed service requirements, we de-
note the number of customers at time ¢ > 0 by X(¢) and the state of the
server by Y (¢), i.e., Y(¢) equals 1 if the server is available and 0 otherwise. If
X (t) > 0 then W,(t) is the remaining service requirement of the n'® customer,
n=1,2,...,X(t). IfY(t) =0 then Dy(t) is the remaining duration of the un-
availability period and, similarly, Fy(t) equals the length of the elapsed part of
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the unavailability period. When Y (¢) = 1 then by definition Dy(t) = Eo(t) = 0.
We assume that the joint probability distribution and the moments of the above
random variables converge as t — 0o, and denote their steady-state equivalents
by X, Y, W,, Dy and Ey, respectively, i.e., as t — oo,

P{X(t) = Wi(t) < @1y, Wa(t) < 2 Y () = i Do(t) < was Bo(t) < ua }
— P{X:n;Wl <z1...,Wp < z,;Y =1;Dg gul;Eoqu},
where n € {1,2,...}, 1,...,2, > 0,7 € {0,1}, and uy, ug > 0. Similarly,
P {X(t) = 0;Y(t) = 45 Do(t) < u; Eo(t) < ua }
N P{X:O;Y:i;Dogul;Eogug}.

Remark 5.5.1 In the ordinary M/G/1 processor-sharing queue (with no ser-
vice interruptions), it is known that

P{XZH;W1S$1a"-7WnSz"} = H/ ﬂ1
u=0

see for instance Cohen [19, Theorem 3.1] or Yashkov [120, Theorem 3]. Thus,
the number of customers in the system has a geometric distribution (which
only depends on the service requirement distribution through its mean 3;) and
each of the customers in the system has a residual service requirement which
is distributed as the forward recurrence time of the services, independent of
the number of other customers in the system and of their individual service
requirements. When service is subject to interruptions the situation changes
completely, and even the mean number of customers in the system is hard to
obtain. This is even true for the model in this chapter with hyper-exponentially
distributed service requirements and exponentially distributed off-periods. We
will not go into details here. For exponentially distributed service requirements
the steady-state distributions of interest were obtained in Section 3.1.

As before, let V(1) be the sojourn time of a customer with service require-
ment 7, arriving to the system in steady state. From Theorem 5.3.2 we know
that, for 7 > 0,

V(1) £ Co(r)+ Y Cul(r;Wa) + Do + _Zo Cn(7; Bn), (5.27)

with the random variables in the right-hand side being distributed as above.
Recall that Ag is the number of arrivals during Dy (when Y=0). Their joint
distribution is given in Equation (5.17) with ¢(s) being the LST of the forward
recurrence time of the off-periods:

1 9(s)

mi18s

po(s) =
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When Y = 1 and (by definition) Dy = 0 we also set Ay equal to 0. Given
that Y = 0, the marginal distribution of Ey is the same as that of Dy, namely
that of the backward (and forward) recurrence time of the off-periods with LST
¢o(s) defined above. We emphasise that (if we condition on ¥ = 0) the random
variables Dy and Ey — and, hence, X and Dy — are not independent. We come
back to this later in this section.

The analysis of sojourn times is complicated by the fact that the (joint) dis-
tribution of the number of customers and their service requirements, as needed
in Relation (5.27), is unknown. However, using that the total amount of work
in the system is the same for all work-conserving service disciplines, we do know
the joint distribution of Y and the total amount of work in the system, which
we denote by:

X
W= ) W, (5.28)
n=1

(the empty sum being equal to 0 by definition). A work-conserving service
discipline is one under which the server works at rate 1 whenever the system is
not empty and the server is available. We know that P{Y =1} = ¢, and (see
Remark 5.5.2 below), for Re(s) > 0,

Ee_SWY:]. — 1_p/c/\ R 5.29
=) 1— (A +v) =3 o
=] = S sey Bl =] e

where, for Re(s) > 0,

~ A v

B(s) = m5(3)+)\+y

(A1 - B(s))). (5.31)

In particular, we find from Expressions (5.29) and (5.30) that, if 32 < oo,

EWly =1] = cfp(z%ﬂl—c)pﬂ),

ma
Y = = E Y=1 —
E[W[Y = 0] WY =1]+p5 2,

hence, using that P{Y =1} =,

E[W] = cfp(%—l—c(l—c)%). (5.32)

If B2 = oo then the above expressions for the (conditional) expectation of W
are also equal to +o00.

Remark 5.5.2 Expressions (5.29) and (5.30) may be found using the same
approach by which we derived the steady-state distribution of the number of
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customers for the case of exponentially distributed service requirements, see
Section 3.1. The key idea is to consider the system only during availability
periods. All customers that arrive during one particular off-period in the original
model are seen as one “large” customer whose service requirement is distributed
as the total amount of work that arrives during one off-period. The LST of this
distribution is given by ¢(A(1 — S(s))). In the new model the arrival rate is
A+ v, the LST of the service requirement distribution of an arbitrary customer
is 8(s) and the mean service requirement is

/\)\ﬁﬂl + )\—j_yml)\ﬂla

hence, the traffic load is Ay + vmiAB1 = p/c. Formula (5.29) now follows
from the Pollaczek-Khintchine formula for the new model, see also Expression
(5.7). Since the on-periods have an exponential distribution, the state of the
system when an off-period starts is distributed the same as the state at any
arbitrary availability epoch. Formula (5.30) is then found by multiplying the
LST of the amount of work at the time that the off-period started with the
LST of the amount of work that arrives during the backward recurrence time of
the off-periods (Ey). For a discussion on the amount of work at arbitrary time
instants, see for instance Gaver [37, Section 8] or Fuhrmann and Cooper [32,
Proposition 4]. A transient analysis by means of LTs is provided by Li et al.
[66].

Using Expressions (5.29) and (5.30) we are able to prove the next lemma,
which is an analogue of Lemma 5.2.2.

Lemma 5.5.1 If E[B®] < oo, for some a € (1,2), then E [W* '] < oo.
Hence,

P{W >z} = o(z'™®),
for x — 0.

Proof See Appendix 5.F. a

The steady-state distribution of the amount of work in the system is de-
termined by Expressions (5.29) and (5.30). Still, nothing is said about the
distribution of X, the number of customers in the system. In the analysis of
sojourn times in steady state presented in the next section we will need to make
the following assumption. In Remark 5.5.3 below we give arguments to motivate
this assumption.

Assumption 5.5.1 There exists a y > 2 for which E[X"] < oo.

This assumption has the following implication for the joint distribution of
the pair (X, W) which will prove to be useful in the next section.
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Lemma 5.5.2 IfE[B%] < oo and E[X"] < 00, for some a € (1,2) and v > 2,
then, for § < (a—1) (1 — %),

E[X*w>u] = ou™),
for u — .

Proof Note that from Jensen’s inequality we have, since v > 2,

210

E[X*W>u] < (E[X"|W>u))".

After multiplying both sides of the inequality by P {W > u} we have by Lemma
5.5.1 that, for arbitrary ¢ > 0,

(E[X7 W > u])” P{W > u}
= (B[X"gwsn))  P{W > u}' ™3
(BIX7)Y P{W > u}' ™3

= o(u(l_a+6)(1_%)), U — 00,

E [X*Liwsuy] <

because E [X7] < oo. |

Above we mentioned that if we condition on Y = 0 then the random variables
X and Dy are notindependent. The reason for this is that, during an off-period,
the number of customers in the system (X) depends on Ej, the elapsed part of
the current off-period. It is well known that in general Dy and Ey are dependent,
see Expression (5.35) below. By similar arguments as used in the derivation of
Expression (5.30) above, we find, for |z| < 1,

E [ZX Y =0, E = y} - E [ZX Y = 1] e~ —2) (5.33)
and, hence,
E[zX |Y=o] = E [ZX Y = 1] do(A(1 - 2)). (5.34)

The latter formula is an analogue of Expression (5.30). For z > 0 and y > 0,
the joint distribution of Dy and Ej is given by:

1 oo
P{Dy>z,Ey>ylY =0} = — / (1—F(u))du, (5.35)
my u=z+y
cf. Cohen [20, Expression (1.6.23)]. Recall that F(u) is the distribution function
of the off-periods. From the above or, more easily, from the second moment of
the distribution of Dy + Fy, we have

E[DoE,|Y = 0] = 67%31 < oo,
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hence, using Expression (5.33) above,
mo ms3
E[DyX|Y = = —EX|Y =1+ )2\— . 5.36
DX Y =0] = JEBIX|Y =1]4+ 2™ < oo (5.36)

Here we also used that Dy is independent of the number of customers present at
the beginning of the off-period, and that E [X] < co and, hence, E[X |Y =1] <
00. We need Relation (5.36) in the next section.

Remark 5.5.3 In Remark 5.3.1 we motivated the assumption that
ms = E [(Toff)3] < oo.

Now we use similar arguments to motivate Assumption 5.5.1. If E [X?] = oo
then, from the decomposition in Relation (5.27), E [V(7)?] = oo for all 7 > 0.
Since our interest is in the analysis of the first and second moment of V (1), it is
reasonable to assume that these moments are finite, and hence that E [X?] < oco.
Assumption 5.5.1 is only slightly more restrictive. We note that the assumption
can not be satisfied unless

E [(Tor)"™] < oo (5.37)

This follows from Expression (5.34). Conversely, if Relation (5.37) holds, then
Assumption 5.5.1 is satisfied. We give a sketch of the proof of this fact for the
case that v is integer. First note (using sample-path arguments) that the number
of customers in the system with one permanent customer is stochastically larger
than the number of customers in the system without permanent customers. The
finiteness of “integer” moments of the queue-length distribution of the system
with one permanent customer can be shown by considering the time-changed
process. For the latter we can derive a differential equation for the (moments of
the) distribution of the population size, as we did for the cumulative rewards in
Lemma 5.3.4. Then let the time parameter (7) tend to infinity and use that the
k — 15 moment of the steady-state queue-length distribution in the system with
one permanent customer is finite if and only if the £** moment of the limiting
population-size distribution is finite.

5.6 Sojourn times in steady state

In this section we show by means of the auxiliary Theorem 5.6.2 below, that if
Assumptions 5.2.1 and 5.5.1 are satisfied then the sojourn times of customers in
the on/off processor-sharing model satisfy Assumption 5.1.2 and, hence, Theo-
rem 5.3.1 applies. We start, however, with the following theorem for the case
that B2 < oo. In that case, the analysis is quite straightforward and, as before,
it serves as a guide for the analysis of the case that 8 = oo, which is our ulti-
mate goal. The theorem states that the conditional mean sojourn time E [V (7)]
converges to a linear function for 7 — oo, just as in the case with exponentially
distributed service requirements (see Chapter 3). Remarkably enough, 82 does
not appear in the final result, still the assumption is needed in the proof.
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Theorem 5.6.1 If B2 < oo then the steady-state conditional mean sojourn time
satisfies

2
. T mao C
1 E - = (1—¢)— .
tm (Bvel-5) = a-oge (5
Proof We use Relation (5.27) term by term. From Lemma 5.4.3 we have
. T _ B2
s (Bt - 1) = g
Obviously,
ma
EDy|Y =0] = —
Dol =0 = 2,

and using Wald’s identity (see Feller [30, Relation (XII1.2.7)]), we have

—Ag

Z Ci(m;Bn) Y =0

n=-—1

E = E[A]E[Ca(r B)] = A5 ZB(C1(r3 B)].

By Lemma 5.4.4 we then have:

—Ap
> Cu(r;Bn)[Y =0

n=—1

pm2

lim E —2
2my (¢ = p)

T—00

For the remaining term we can not use Wald’s identity, since it is not clear
whether X is a stopping time. However, after conditioning on X = k,W; =
T1,..., Wi = zg, we have

E Z Cn(T; W)

X:k;lexl,...,Wk:mk]

3
Il
-

|
M=

k
Tn
E[Cn(m52,)] — Z c—p’
n=1

3
Il
—

as 7 — oo. For fixed z, E[Cy(7;z)] is obviously non-decreasing in 7 (this is
also apparent from Corollary 5.4.2). Then using the Monotone Convergence
Theorem for the interchange of limit and integral we have:

ZCn(T;Wn)] = E

Now use Expression (5.32) for E [W]. |

lim E

T—>00

= iWn] - L ew.

c—p c—p
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In the proof of the theorem the two terms containing 85 cancel out. There-
fore, when 82 = oo we can not use the same arguments. However, under the
Assumptions 5.2.1 and 5.5.1 we are able to prove weaker results which are suffi-
cient for V(7) to satisfy Assumption 5.1.2. The condition in Assumption 5.2.1 is
inherited from the analysis of the moments of the fundamental random variables
in Section 5.4 for the case that 82 = co. We need Assumption 5.5.1 in order to
apply Lemma 5.5.2. Before proving the next theorem, we explain (in Remark
5.6.1 below) how it leads to the result aimed for in Theorem 5.3.1.

Theorem 5.6.2 If E[B%] < oo and E[X"] < oo, for some a € (1,2) and
v > 2, then:

E[V(r) - =
O T =0
E [V(7)?] - P
(i) lim | 7]2_5( ) = 0,

for all § < (a—1) (1 - %)
Remark 5.6.1 The previous theorem ensures that Relations (5.2) and (5.3)
in Assumption 5.1.2 are satisfied. To prove Theorem 5.3.1, it remains to be
shown that the last condition in Assumption 5.1.2 is satisfied as well, that is
the monotonicity of P{V(7) >t} in 7. As in the proofs of Theorems 5.2.3,
5.2.4 and 5.2.5 this can be done using a sample-path argument. However, here
the monotonicity of P {V(7) > t} follows directly from the decomposition of the
sojourn times given in Relation (5.27), and the interpretation of the components
as rewards in the time-changed population model (see the proof of Theorem
5.3.2).

Proof of Theorem 5.6.2
Part (i). As in the proof of Theorem 5.6.1 we use Relation (5.27), together
with

m
E[Doly =0] = 5,
—Ap M
E|) Cu(nBy)|y =0| = )\%E[C’l(T;B)],
n=—1

and Lemma 5.4.4. The above terms vanish after dividing by 7!~¢ and letting
T — 00, because § < a — 1 < 1. For the term E [Cy(7)] we use Lemma 5.4.3 to
conclude:

E|[Cy(1)] — =
lim 00— &5 0(1)]5 c<p _ |,
T—00 T

because 1 — 6 > 2 — a.
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For the remaining term we conditionon X = kand W,, = z,,n=1,2,...,k,
and write for 7 > 0,

X

E | Co(r;Wo) | X =k, Wi =a1,..., Wi = z)
n=1
k L

= ZE[Cn(T;xn)] < c_pZmin{T,wn},
n=1 n=1

where we used Lemma 5.4.1 and Corollary 5.4.2 for the inequalities:

E[Ci(r;2)] = E[Cy()] < , >T12>0,

E[Ci(r;2)] < , 0<z<rT

From the above we may conclude that

E

c—

X 1
> Culr; Wn)] < E
n=1 P

Z min {7, Wn}] .

We now treat the cases W = Wy + ...+ Wx < 7 and W > 7 separately. For
the first we write

E

X
Zmin{T,Wn}|W§T] < EW|W<T],

n=1

and use that, because of Lemma 5.5.1, for all £ > 0 there exists a k. such that,
for all u > 0,

P{W >u} < ko(l+u)l=ote
Now take € € (0, — 1 — §) and write:

limsup 7 E[W |W < 7|P{W < 7}

T—00

= limsup 7~ !*° (/ P{W>u}du—TP{W>T}>

T—00 =0

T—r00

= 0.

< limsupT_1+5/ k(14 w)'~2Tedu
u=0

For the second case we write

X
Zmin{'r,WnHW >T] < 7E[X|W >rT],

n=1

E
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and use that, by Lemma 5.5.2,

limsup 7°E [X |W > 7] P {W > 7}

T—00

< limsupE [X?|W > 7| P{W > 1} =

T—00

which completes the proof of Part (i).
Part (ii). Using Relation (5.27) for the second moment of V(7), we may
write:

E[V(r)’)] = E|[Co(r) (f:cnr W )2

X —Ag
+2E [Cy(7)| E ZC” Wn)+ Do+ Y Cu(r;Bn)
n=-1
—Ap
+2E (Z Ch (7 Wn)> <D0+ > C’n(r;Bn)>
n=1 n=-—1

2

+E (Do + _ZO Cn(T;Bn)> . (5.38)

n=-1

We study each of the terms on the right-hand side separately. For the first term,
E [Cy(7)?], we use Lemma 5.4.9:

Tim 70~ <E [Co(r)?] — (;,;)2) = 0,

because § — 2 < a — 3. We now study the second term,

(Z Cn("’? Wn)) ,

for two cases, namely, when W = W; + ...+ Wx < 7 and when W > 7. First
conditionon X =k and W,, =z,,n=1,...,k, with z; + ... + 2 < 7. Recall
that, after conditioning, the random variables Cy,(7; z,,) are independent of each
other. Choose an arbitrary € > 0 and let K 1 be as in Corollary 5.4.10. Then,
using Corollaries 5.4.2 and 5.4.10,

(Zc (73 W) ) | X = kWi =1, Wi = o
k 2
(S0
n=1
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k
= ZE [C T .'L'n +2 Z Z Chn, T .’Enl)]E[an(T;Zan)]

n=1 ni=1ns=n1+1
k
21T T 1
I S D
n:l ni=1ng= n1+1

IN
—~
o
| | o
> =
N—r
N
M- %
3
+
—
(e}
X
N—r
S
7~ N
'M»
8
3
N———
N
+
ol
™
—~
[y
_l’_
3
N—r
i
Q
+
[N]
™

X
2T
= (c_p)2E S Wo| X =kWi =, ..,Wk—xk]
n=1
1 X ’
+(c_p)2 (ZW) ‘X_kWI—-Tla y Wi =z,
n=1

+Ky (1+7)30t EE[X‘X Wi =1, Wi =24

Hence, summing over all k£ and integrating over all z,,, n = 1,...,k for which
1+ ...+ zx < 7, we have

(Z Cr(1; Wy ) ‘ w<r
2T 1
(c—p)? (c—p)?
+Ky (147 B X ‘ w<r|.

E[W‘Wﬁr}%— E[W2‘W§7-]

Note that
E[X|W§T]P{W§T} < E[X] < .
Now use that, for all e > 0, P{W > 7} = o(7'~**¢), when 7 — o0, to conclude
(using partial integration) that, for any € > 0,
E[W‘WST]P{WST} - / =dP {W < z}
z=0

= 0(7—27a+€)’

E[WZ‘WST]P{WST} - / 22dP {W < 2}
z=0

3—

= o(r3 *te),

for 7 — oco. Therefore,

X
rli—>II<>loT6_2E (ZC’ (73

n=1

Wn)> ‘ng P{W<r} = 0
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This settles the case W < 7 for the term under consideration. Next condition
on X =kand W, =x,,n=1,...,k, with 1 +... 4+ xx > 7. For this case

[(Zc (5 W ) | X =kWi=a1,.. . W=

k=1 &k
= ZE (T52n) ]-1—22 Z E[Cpn,(T;Zn, )| E [Ch, (T; 20, )]

ni=1lng=ni+1

k—1 k
ZE [Ca(ms)?] 423 Y E[Cu(137)]E[Cuy(r37)]

n=1 ni=1ngs=ni1+1

= kB [Co(r)?] +k(k — 1) (B[Co(n)] ).

IN

Hence,
(ZC (s W) ) ‘W>T < E[CO(T)2]E[X|W>T]

2
+(ElGo(n)] ) B[X(X-1) ‘ w>r|.
Now use that, from Lemmas 5.4.3 and 5.4.9,

i B0 _ o BIGE]) 1
T—00 T2 T—00 72 (c — p)2’

and that, by Lemma 5.5.2,
E[X|W>T]P{W>T} < E[X2‘W>T]P{W>T} = o(r ),

as T — oo. Hence,

71L%752E[(Zc (3 Wi ) ‘W>T

P{W>r} = 0.

For the third term in Expression (5.38) we use that, by Lemma 5.4.3,

lim ~B(Cy(r)] = Cip,
and that, as shown in the proof of Part (i),
X — Ao
lim 7B | Y Cu(r;Wa) + Do+ Y Ca(r;Ba)| = 0.

n=1 n=-—1
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For the fourth term in Expression (5.38), condition on Y = 0. Although the
two factors inside the expectation are dependent, both can be handled similarly
as before:

b'e —Ap
E (Z Cn(T;Wn)) <D0+ > C’n(T;Bn)) Y =0
n=1 n=—1
< E[ ! X(D0+ b A0>|Y_0]
c—p c—p
) [LX (Do + LDO) Y = 0]
c—p c—p
< 00,

where the finiteness follows from Relation (5.36). Finally, the last term in Ex-
pression (5.38) can be written out, and then use Lemma 5.4.4 and Corollary
5.4.10, and the fact that E [(Dg)?] < oo, because m3 < oco. O

5.7 Concluding remarks

We presented a new approach for the analysis of the tail of the sojourn time
distribution when the service requirement distribution has a heavy tail. The
approach relies on the analysis of the moments of the distribution of the sojourn
time conditional on the service requirement. We provided a new proof for the
result of Zwart and Boxma [128], which states that, in the M/G/1 processor-
sharing queue, the sojourn time distribution is exactly as heavy as the service
requirement distribution, when the latter is regularly varying. Our method
allows the extension of this result to distributions with an intermediate regularly
varying tail. We also established the above tail equivalence in the M/G/1 queue
with (i) the FBPS service discipline, (ii) the SRPT discipline, and (iii) processor
sharing and random service interruptions. Different from the ordinary M/G/1
processor-sharing queue, we assumed an infinite second moment of the service
requirement distribution in the three latter models.

In all four models, Theorem 5.1.1 holds with the same factor g* = 1/(c— p),
where c is the average service capacity and p is the traffic load. Thus, the proba-
bility of a customer’s sojourn time exceeding a value z/(c— p) is asymptotically,
for large x, equal to the probability that a customer’s service requirement ex-
ceeds the value z. This property can be explained as follows. We showed in
Lemmas 5.1.2 and 5.1.3 that, with a heavy-tailed service requirement distribu-
tion, a large service requirement leads to a large sojourn time, and, conversely,
a large sojourn time must be caused by a large service requirement. The above
mentioned models share the property that if a permanent customer (that is a
customer with an infinite service requirement) is placed in the queue, then the
queue is still stable. Hence, after a very long period, say t time units with
t — oo, the average capacity per unit of time devoted to the service of non-
permanent customers is approximately equal to the average traffic load p. This
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is true because the system is stable and, hence, all non-permanent customers
eventually leave the system (see also Remarks 3.6.2 and 4.3.3). The average to-
tal service capacity rendered by the system (per unit of time) is approximately
c. Thus, the average service capacity devoted to the permanent customer is ap-
proximately ¢ — p. If the amount of service received by the permanent customer
at time ¢ is denoted by S(t), we have that

hence, the factor g* above.

The above reasoning for the ratio t/S(¢) also holds when the service require-
ment distribution is not heavy tailed. In the latter case, however, Lemma 5.1.2
— which we need in the proof of Theorem 5.1.1 — does not hold, since a large
sojourn time is not necessarily caused by a large service requirement. A large
sojourn time may then also be caused by the fact that many other customers
are requesting service. With heavy-tailed service requirements, the probability
of this happening is negligible compared to the probability that a large sojourn
time and a large service requirement occur simultaneously.

A large part of this chapter was devoted to the analysis of the M/G/1
processor-sharing queue with random service interruptions. Extension of the
tail equivalence result from the ordinary M/G/1 processor-sharing queue to
this on/off model is of interest for the performance evaluation of multi-service
telecommunication networks. The result indicates that the processor-sharing
service discipline preserves this desirable property, even when the service capac-
ity varies over time.

Appendix
5.A Proof of Relation (5.1)

First we repeat the relation in the next lemma.

Lemma Let B(z) € TRV. Then there exist numbers ( € (0,00), zo € (0,00),
and n € (0,1) such that, for all zo > x1 > zo,

w2 (5

Proof Let ¢ > 0. Because B(z) € TRV, there exists a K = K () € (0,1) and
an zg = zg(e, K) such that, for all z > =y,

B(z(1+¢))
B(z)
Let z; and z3 be such that z3 > 27 > xo, and let

- [

K.
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where [y] is the smallest integer which is larger than or equal to y € R. Obvi-
ously, n > 0 and z2 < z1(1 + €)". We may write:

B K'B(z:(1+¢)) < ...

B(.’El) S
< K"B(ai(1+¢)") < K "B(za).

Now the lemma is proved by setting

_ —In(K)
¢ = In(1+¢) > 0,

and n = (1+¢)~¢. ]

5.B Proof of Lemma 5.2.2
Lemma IfE[B%] < oo then E [(WA’B)O‘_I} < 00.

Proof We define the probability distribution of the backward recurrence time
of the service requirement by

Y L —

H(t) = — B(z)dz.

ﬂl =0
From this, it is straightforward to see that if the random variable H has distri-
bution H(t) then

1

abi
Let N be a discrete random variable with P{N =n} = (1 —p)p", for n €
{0,1,2,...}, and let Hy, Hs,..., be a sequence of i.i.d. random variables (inde-
pendent of V) with distribution function H(t). From the Pollaczek-Khintchine
formula for Wy g, given by Expression (5.7), we know that W p is distributed
as Hy + Hy + ...+ Hy, where the empty sum is set equal to 0. Therefore,

E|Wy5)""] = E (ﬁ}[n) _

N
Nma.x{O,a—2} Z (Hn)afl

n=1

E[H*'] = E[X?] < oo.

<= - e e o o

< 00.

In the first inequality we use the fact that, for any numbers k¥ € N and z; >
0, ey Tk > 0,

E?:l ("L'j)g, 1f£ < 1:

sk (z;)f, ife>1.

The latter is essentially Jensen’s inequality. O

\g/
?~?§'
fa
8
<
~
mn
A\

(5.39)
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5.C Proof of Lemma 5.4.1

Lemma For s > 0,

fi(s) = .
1(s) L0
Hence, for 7 > 0,
1 T
E(Co(r)] = / P {W/on <t} dt
C—pPJi=0
T 1 T
= — P{W t}dt.
c—p c—p/tzo {Wajen > 1}

Proof First we prove that for s > A/c the function fl(s) is finite. For this
purpose we construct a new random variable Cp(7) which is (stochastically)
larger than Cy(7), see the related approach in the proof of Theorem 3.4.1 given
in Appendix 3.B. In the population model let Cy(7) be the reward in the time
interval [0, 7] of a family of permanent individuals, starting with one individual.
Thus births occur as before, but all new individuals are permanent themselves.
Since no individual dies, the number of individuals is at all times (stochastically)
larger than if the new individuals had life times distributed as B. Permanent
individuals generate children and rewards exactly as living non-permanent ones,
hence, the stochastic inequality also holds for the total rewards until time 7.

For E [C_O(T)] we derive the following differential equation, in the same way
as we did for the LST of Cy(7) in Lemma 5.3.4,

DR[O = (1 +vm) (1+AB[G)]).

and E [Co(0)] = 0. This gives:

E[C(r)] =

Hence, for s > A/c,

ﬁ(s) < /:ooe—er [ﬁO(T)] dr = m < oo.

Now, E [Cy(7)] satisfies the following differential equation (which can be derived
as above),

TB(Co(r)] = (1+vm) (14 XE[Ci(r; B))

(1+vmy) (1 + AE[Co(r)] - A/;O E [Co(r — 2)] dB(a:)) ,
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and E[Cp(0)] = 0. For s > A/c we may “take Laplace transforms” on both
sides leading to:

sFi) = (tvm) (5 43R0 - M)

which is equivalent to the expression for ﬁ(s) given in the lemma. Then, using
that the LST of W) /. p is given by the (distributional version of the) Pollaczek-
Khintchine formula (cf. Cohen [20, Part II, Expression (4.81)]),

E[e—swg/QB} _ 1—p/c

1—(p/c) 2L

We can derive the second part of the lemma by inverting this transform and
then integrating twice with respect to 7. O

5.D Proof of Lemma 5.4.6

Lemma If 85 < o then

tin (ron - 775) = o (5)

When B2 = 0o and E [B%] < oo, for some a € (1,2), then, for any e > 0,

Ro(1) — 76(021 P = o(r*7%%¢), 1= oo
Proof The proofs for the cases 82 < 0o and B3 = oo proceed along the same
lines. When (2 = 00, the constants a and € are as stated above. We study the
three terms in the right-hand side of Expression (5.22) separately. By Lemma
5.4.4, the first term converges to a constant as 7 — 00. For the second term we
have, by Lemmas 5.4.3 and 5.4.4,

(c—p)’

= (Bl . 5) (14 .2, 2 (Biommn - 2 )
<2 (Blamm) - )

E [Co(r)] (1+AE[Ci(r; B)] ) -

c—p c—p
Ac
— —ﬁ, T — 00, Whenﬂ2<oo,
= o(r?7ate), T — 00, when By = co.

We now turn to the third and last term of Expression (5.22). First note that

T/T E[C)(r;2)]dB(z) — 22T

=0 c—p
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7 (B[Cy(r; B)] - E[Co(r)| B(r)) — 2T

E[Ci(r; B)] — 1 )—T(E[CO(T)]— T )B(T)

Cc—p
7- —
s B(7)
{ = o(1), T — 00, when (33 < oo,

= o(1?7%), 7 — oo, when 35 = oc0.

To obtain the limiting behaviour we combined Lemmas 5.4.3 and 5.4.4. For
the case B2 < oo we further used the fact that 72B(7) vanishes as 7 tends to
infinity, see also Lemma 5.2.1. We now may write

/T E[Co(r — 2)| E[Cy(7;2)]dB(z) — BT ;
z=0 (C— p)
= ‘/mzo (E[CO(T—CC)]_ c_p>E[Cl(T;$)]dB(x)

_/TOC_ E[Ci(r; )] dB(z)

+cip (L;OE[ol(T;x)]dB(x) - c'filp)

Ba p
(c—p) 2(c—p)+1 , T — 00, when B3 < o0,
= o(r?=ote), T — 00, when (2 = co.

Here we used that the order of limit and the first two integrals may be inter-
changed. For the case 82 < oo this is justified by the Monotone Convergence
Theorem, the monotonicity being clear from Lemmas 5.4.3 and 5.4.4. For the
case B2 = 0o we need the Dominated Convergence Theorem, using (for the first

integral) that
=2 (14+7—z\> "
< K,
+ 7 —x)2-ote 1+71 -

E[Ci(r;2)] < P

and that 8; < co. The existence of the constant K follows from Lemma 5.4.3.
Furthermore, (for the second integral) we need that

/ z?dB(z) = o(r* *te),
=0

which follows easily by partial integration. Combining the above results in
Expression (5.22) we have, for 82 < oo,

E[Co(r— )] —
Lio<e<ny fl

. cT BiT
lim | Ro(7) — 2(1 +vm1)— +2X\(1 +vmy 5
H°<>< )R A0 )<c—p>>
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2
= vmy (cjp> —2(1+Vm1)%

m B2 p
+2/\(1+ 1)(c—p)2 (2(C—p)+1)’

and, for By = oo,

177

Ro(1) — 2(1 4+ vmy) ( i )2 +22(1 +vmy) Pt — o(r2ate),
c—p

(c—p)?

which completes the proof.

5.E Proof of Lemma 5.4.7

Lemma If 82 < 0o then

E[Co(7)?] = ( T )2+Tvm2 (ﬁ>3+h(7),

c—p

where the function h(T) is such that, for all x > 0,

lim (h(T) — h(r - :v)) _—

T—00

In particular,

. E [Co(7)?] - (%,,)2 s (c c )3‘

T—00 T
Proof First we rewrite Expression (5.23) as

E[G()] = - ¢ ; ;0 Ro( — w)du

c

C—pP Ju=0

T

Hence,
E [Co(r)’] —E [Co(r — 2)*]
= ¢ (/uT RO(T—u)du—/T_ERO(T—x—u)du

=0 u=0

Ro(T - U)P {W)\/c,B > u} du.

(5.40)

_/T—m (RO(T—U) —Ro(tr—z—u) ) P {Wy/e,p > u}du

u=0

_/ Ro(t —w)P {W/c5 > u} du) .

(5.41)
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Taking the first two integrals together, we have

cjp (/uTzoRO(T_u)du_/uT:oz RO(T—x—u)du)

C

_ /u T Re(w)du

c—p =T—x

2T — &2 c /T ( 2u )
= + Ro(u) — —— | du,
= Temp o, oW = i)

and by Lemma 5.4.6 we have

) 4 2u oz (vmac® + A\B2)
i U=T—T (RO(u) - C(C - P)) du = C(C - p)2

T—00
Now focus on the third integral in the right-hand side of Expression (5.41).
From Lemma 5.4.6 we can derive that, for fixed z > 0,
2z
c(c—p)’

T—00

lim (RO(T) — Ro(r — ) ) -
and hence,

lio<u<r—o} | Ro(T —u) = Ro(7 —z — u) ‘ < K(z),

for some constant K (z) that is independent of u and 7. Since 82 < oo and,
hence, E [W)‘ /e, B] < 0o, we may interchange the order of limit and integral in:

Tli_)n;o - lio<u<r—a} (Ro(T —u) — Ro(t —z —u) ) P {W)‘/C’B > u} du
2z TAB2
= E\W = —.
de—p)" sl = o

For the last integral in the right-hand side of Expression (5.41) we write

‘ / Ro(T —U)P {WA/c,B > u} du

r
S /
U=T—0T

SP{W)\/C,B >T—:E}/

Ro(T —u) ‘P{W)‘/C’B > u}du

Ro(T —w) ‘du

x
SP{W)\/C,B>T—$} ‘Ro(u)‘du
u=0
— 0, 7T —o00.

Combining the above results for the integrals in the right-hand side of Expression
(5.41), we have:

lim (E [Co(r)?] — E [Co(r — 2)?] — 2T 2>

700 (c—p)
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C 3 .'1:2
= xVYms — .
<c—p> (c—p)?

Hence, the function

satisfies, for all z > 0,
Tli_)n;o (h(T) —h(r —z) ) = 0.

The first statement is now proved. To prove the second part, note that for all
z > 0 and € > 0 there exists a 7, such that, for all 7 > 7, ,

‘h(T)—h(T—x)‘SE,

which implies that

Now let € | 0. O

5.F Proof of Lemma 5.5.1

Lemma If E[B*] < oo, for some a € (1,2), then E [W*™!| < co. Hence,
P{W >z} = o(z'™®),

for x — .

Proof Let the random variable B be distributed as the amount of work that
arrives during an off-period:

E [e—sﬁ] — B - B(s))).

Obviously,

B £ > B,
n=1

where the B, form an i.i.d. sequence with distribution B(z), and A is indepen-
dent from the B,, and distributed as the number of customers that arrive during
an off-period:

E[zA] = (A1 - 2)).
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Note that, because a > 1,

(5]

The first inequality is a consequence of Relations (5.39) with £ = a > 1. For
last inequality we used that ms < oo and, hence, E [43 < co|. Thus, we may

conclude that E [Ea} < oo. Clearly, if the random variable B has LST E(s),

E <E = E[A%]E[(B,)"] < .

A
Aol Z (B,)"
n=1

given by Expression (5.31), then E [E"‘] < 00, because the distribution of Bis

a weighted combination of those of B and B. Note that W given that Y =1 is

distributed as W, Je B the waiting time in the M/G/1 FCFS queue with arrival

rate A/c and service requirements distributed as B. Hence, by Lemma 5.2.2,
E[Welly =1] < oo.

By similar arguments we may conclude that if the random variable B is dis-
tributed as the amount of work that arrives during Fy, the backward recurrence
time of an off-period, then E [ga] < 0. Note that it suffices that the second

moment of the distribution of Fj is finite to use the above arguments. Then
use that W given that Y = 0 is distributed as the sum of B’ and W given that
Y =1, to conclude that also E[W*~!|Y =0] < co. Hence, E [W*™!| < o0
and the final statement follows by Lemma 5.2.1. O
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Summary

In this thesis we study queueing models which can be used in the performance
analysis of integrated-services telecommunication networks. Chapter 1 gives an
overview of the evolution of these networks and describes the most relevant fea-
tures. Modern telecommunication systems offer a wide range of services (data,
voice, video) which are carried simultaneously in the network on an integrated
basis. We can roughly divide the traffic into two broad classes: stream traf-
fic and elastic traffic. Stream traffic mainly consists of “real-time” connections
(such as telephony and interactive video applications) which are extremely sen-
sitive to transmission delays. Stream connections therefore require a certain
guaranteed capacity. Elastic traffic (data transmission, e-mail) on the other
hand allows for fluctuations in the transmission rate, as long as the total delay
is “acceptable”. The transmission capacity available to elastic traffic varies as
stream traffic connections are set up or terminated. Each elastic traffic connec-
tion gets an equal share of the capacity left over by stream traffic. In the thesis
we focus on the performance analysis of elastic traffic, using so-called processor-
sharing models with varying service capacity. An elastic traffic connection is
represented by a customer in a queueing model. Hence, the service requirement
of a customer in the model corresponds to the size of, for instance, a data file.
The service capacity, which fluctuates according to some stochastic process, is
shared among the customers in the queue according to the processor-sharing
discipline, i.e., each customer gets an equal share. Processor-sharing models
with constant service capacity are well-studied in the literature. Fluctuations
in the service capacity, however, turn out to make the analysis considerably
more complicated. This thesis presents the first analytic results concerning so-
journ times in processor-sharing queues with varying service capacity (which
correspond to the transmission times of elastic services).

In Chapter 2 we first derive the queue-length distribution in an M/M/1
(processor-sharing) queue of which the service capacity (and arrival intensity)
varies depending on the state of a birth-death process. The queue-length distri-
bution is obtained by combining the theory of matrix-geometric solutions with
the method of spectral expansion. The theory of matrix-geometric solutions
enables a transparent analysis using probabilistic arguments, while the spectral
expansion allows for a more detailed analysis. We also show how the alterna-
tive method of generating functions can be applied, and we discuss the intimate
relation between the three approaches. Special attention is devoted to the in-
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fluence of the (capacity) fluctuations when these occur either very fast or very
slow (relative to the service times of customers). We show that approximating
the system by one with constant service capacity, equal to the average service
capacity in the model with fluctuations, is only justified when the fluctuations
occur very fast (so that they average out). The formal analysis is illustrated by
numerical experiments for a specific telecommunication system.

In the remainder of the thesis we concentrate on the sojourn times of cus-
tomers, in particular conditional on the service requirement. In Chapter 3
we study a processor-sharing model of which the service capacity is constant
during so-called on-periods and no service is rendered during off-periods. We
again assume that the service requirements have an exponential distribution.
The sojourn time distribution is given in terms of its LST (Laplace-Stieltjes
Transform). The analysis is based on a random time-scale transformation, via
which sojourn times in the original model are represented by transient rewards
in a branching process with a specific reward structure. We further show that
the decomposition of the sojourn time into independent components, which is
known for processor-sharing models with constant service capacity, also applies
to the on/off model. Another well-known property of standard processor-sharing
models is that the expected conditional sojourn time is a linear function of the
service requirement. In the on/off model it turns out that this is only true
asymptotically, that is, for large service requirements.

In Chapter 4 we study sojourn times in the case that the service capacity
depends on the state of a general Markov process. In contrast to the on/off
model, service can be rendered at different positive rates. This generalisation
prohibits an analysis as detailed as the one presented for the on/off model. In
particular, the above mentioned decomposition of sojourn times no longer ap-
plies. However, the asymptotic linearity of the expected conditional sojourn
time as a function of the service requirement is preserved. This is shown us-
ing the LST of the conditional sojourn time, which is again derived using the
method of time-scale transformation. We also discuss why the above mentioned
linearity is lost when the service capacity fluctuates. The results of the analy-
sis are then used in numerical experiments for the performance evaluation of a
communication system. The analytic and numerical results lead to a good and
simple approximation of the expected conditional sojourn time. The analysis
can be extended to the case that the service requirements have a phase-type
distribution. Furthermore, the analysis also applies to the more general service
discipline discriminatory processor sharing. Both generalisations, however, are
at the expense of a higher computational complexity.

In Chapter 5 we study the tail of the sojourn time distribution in the case
that the service requirement distribution has a so-called heavy tail. It is well-
known that when the latter is the case and customers are served in the order
of arrival (the so-called First Come First Served discipline), then the tail of the
sojourn time distribution is “one degree” heavier: it is as heavy as the inte-
grated tail of the service requirement distribution. As a consequence, the mean
sojourn time is infinite when the variance of the service requirements is infinite.
It is also known that with the processor-sharing discipline (and constant service
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capacity) the tails of the sojourn time and the service requirement distributions
are exactly as heavy. This is generally seen as a desirable property. We gener-
alise this result to the on/off model assuming a heavy-tailed service requirement
distribution (this was not the case in Chapter 3). We do so by generalising the
decomposition property of the sojourn times in the on/off model to the case of
generally distributed service requirements. The approach also leads to a new
and simpler proof of the result in the standard processor-sharing model. Fur-
thermore, we establish the “tail equivalence” of the sojourn time and service
requirement distributions for two other disciplines: foreground-background pro-
cessor sharing (only the customers that have received the least amount of service
are served in processor-sharing fashion), and shortest remaining processing time
first (in which the customers with the smallest remaining service requirement
are served).
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Samenvatting

In dit proefschrift worden wachtrijmodellen bestudeerd, die gebruikt kunnen
worden in de prestatie-analyse van telecommunicatiesystemen met geintegreerde
diensten. Hoofdstuk 1 geeft achtergrondinformatie over de historische ontwikke-
ling van telecommunicatiesystemen met geintegreerde diensten en beschrijft de
meest relevante eigenschappen. Moderne communicatiesystemen bieden de mo-
gelijkheid om simultaan zeer verschillende typen verkeer (data, geluid, video) in
geintegreerde vorm over hetzelfde netwerk te versturen. We kunnen de verschil-
lende soorten verkeer ruwweg indelen in twee klassen: stroom verkeer en elastisch
verkeer. Stroom verkeer bestaat voornamelijk uit “real-time” verbindingen (o.a.
telefonie en interactieve video-applicaties) die nauwelijks vertragingen in de
transmissie tolereren; derhalve is voor die diensten een zekere capaciteitsgarantie
vereist. Elastisch verkeer (0.a. datatransmissie, e-mail) daarentegen laat fluctu-
aties in de transmissiesnelheid toe, zolang de totale transmissieduur “accepta-
bel” is. Als gevolg van het opzetten en afbreken van connecties van stroom ver-
keer, varieert de transmissiecapaciteit die beschikbaar is voor elastisch verkeer.
Elke connectie van elastisch verkeer deelt in gelijke mate in de capaciteit die
overgelaten wordt door het stroom verkeer. In het proefschrift gaat de aandacht
uit naar de prestatie-analyse van elastisch verkeer door middel van zogenaamde
processor-sharing modellen met variérende capaciteit. Een connectie van een
elastische dienst wordt gerepresenteerd door een klant in een wachtrijmodel. De
bedieningsvraag van de klant in het wachtrijmodel correspondeert dus bijvoor-
beeld met de omvang van een data bestand in het oorspronkelijke communi-
catiesysteem. De bedieningscapaciteit, die fluctueert volgens een stochastisch
proces, wordt op elk moment gelijk verdeeld (“processor sharing”) onder de
aanwezige klanten. Processor-sharing modellen met constante bedieningscapa-
citeit zijn reeds uitvoerig bestudeerd. De fluctuerende capaciteit blijkt echter
een belangrijke complicerende factor te zijn in de analyse. In dit proefschrift
worden voor het eerst analytische resultaten verkregen voor de verdeling van
verblijftijden van klanten in zo’n systeem.

In Hoofdstuk 2 wordt allereerst de verdeling van het aantal klanten in een
M/M/1 (processor-sharing) wachtrij bepaald, waarbij de bedieningscapaciteit
(en de aankomstintensiteit) varieert volgens een geboorte-sterfte proces. De
rijlengte verdeling wordt verkregen door middel van resultaten van de theorie
van matrix-geometrische oplossingen in combinatie met de techniek van spec-
trale ontwikkeling. De theorie van matrix-geometrische oplossingen maakt de
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afleiding inzichtelijk door het gebruik van probabilistische argumenten, terwijl
de spectrale ontwikkeling een gedetailleerdere analyse mogelijk maakt. Tevens
wordt aangegeven hoe, als alternatief, de methode van genererende functies ge-
bruikt kan worden en wordt de relatie tussen de drie verschillende methoden
besproken. Speciale aandacht wordt geschonken aan het effect van de fluctu-
aties wanneer deze zeer snel of juist zeer traag plaats vinden (ten opzichte van
de verblijftijd van klanten). Aangetoond wordt dat de benadering door mid-
del van een systeem met constante bedieningscapaciteit en aankomstintensiteit
gelijk aan de overeenkomstige gemiddelde waarden in het model met fluctuaties,
alleen gerechtvaardigd is wanneer de fluctuaties zeer snel plaats vinden (waar-
door uitmiddeling optreedt). De formele analyse wordt geillustreerd met behulp
van numerieke experimenten voor een specifiek telecommunicatiesysteem.

In de rest van het proefschrift concentreren we ons op de verblijftijd van
klanten (dit correspondeert met de transmissieduur van elastische diensten),
in het bijzonder geconditioneerd op de bedieningsvraag. In Hoofdstuk 3 be-
studeren we een processor-sharing model waarbij de bedieningscapaciteit con-
stant is gedurende zogenaamde aan-periodes van de bediende en er geen be-
diening is gedurende uit-periodes. We nemen wederom aan dat de bedienings-
vraag exponentieel verdeeld is. De kansverdeling van de conditionele verblijftijd
wordt gegeven in termen van de LST (Laplace-Stieltjes Transformatie). Hier-
voor wordt, door middel van een (stochastische) tijdschaal-transformatie, het
verblijftijden-probleem geformuleerd in termen van een vertakkingsproces met
een specifiecke opbrengsten-structuur. We tonen verder aan dat de — voor
processor-sharing modellen met constante capaciteit — bekende decomposi-
tie van de verblijftijd in onafhankelijke componenten, behouden blijft in het
aan/uit-model. Een andere eigenschap van standaard processor-sharing model-
len (met constante capaciteit) is dat de verwachte conditionele verblijftijd een
lineaire functie is van de bedieningsvraag. Voor het aan/uit-model blijkt deze
eigenschap echter alleen asymptotisch (voor grote bedieningsvraag) te gelden.

In Hoofdstuk 4 bestuderen we de verblijftijden in een model waarbij de
bedieningscapaciteit afhangt van de toestand van een algemeen Markov pro-
ces. Anders dan in het aan/uit-model kan de bedieningscapaciteit verschillende
positieve waarden aannemen. Deze generalisatie staat een gedetailleerde ana-
lyse zoals in het aan/uit-model in de weg. In het bijzonder blijkt de bovenge-
noemde decompositie van de verblijftijd in onafhankelijke componenten niet
langer te gelden. De asymptotische lineariteit van de verwachte conditionele
verblijftijd blijft echter wel behouden. Dit wordt aangetoond met behulp van
de LST van de conditionele verblijftijd-verdeling, die wederom gevonden wordt
door middel van een tijdschaal-transformatie. Ook wordt verklaard waarom de
lineariteit verstoord wordt, wanneer de bedieningscapaciteit fluctueert. Door
middel van numerieke experimenten worden de verkregen resultaten toegepast
in de prestatie-analyse van een specifiek communicatiesysteem met stroom en
elastisch verkeer. De analytische en numerieke resultaten leiden tot een goede
en eenvoudige benadering van de verwachte conditionele verblijftijd. De ana-
lyse kan gegeneraliseerd worden naar het geval dat de bedieningsvraag een
fase-type verdeling heeft. Ook geldt de analyse voor hetzelfde model met de
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algemenere bedieningsdiscipline discriminatory processor-sharing. Beide gene-
ralisaties brengen echter een hogere numerieke complexiteit met zich mee.

In Hoofdstuk 5 bestuderen we de staart van de verblijftijd-verdeling in het
geval dat de bedieningsvraag-verdeling een zogenaamde zware staart heeft. Het
is bekend dat als dit laatste het geval is en klanten in volgorde van aankomst
bediend worden (de zogenaamde First Come First Served discipline), dan is
de staart van de verblijftijd-verdeling “één graad” zwaarder dan die van de
bedieningsvraag-verdeling (namelijk even zwaar als de geintegreerde staart van
de laatst genoemde). Hierdoor is bijvoorbeeld de verwachte verblijftijd oneindig
wanneer de variantie van de bedieningsvraag oneindig is. Ook is bekend dat
onder de processor-sharing discipline geldt dat de staarten precies even zwaar
zijn, wat in het algemeen gezien wordt als een wenselijke eigenschap. Dit laatste
resultaat generaliseren we voor het aan/uit-model waarbij de bedieningsvraag-
verdeling een zware staart heeft (in Hoofdstuk 3 was dat niet het geval). Hier-
voor generaliseren we onder meer de decompositie eigenschap van de verblijftijd
voor het geval dat de bedieningsvraag in het aan/uit-model een algemene ver-
deling heeft. De gekozen aanpak leidt tevens tot een eenvoudiger bewijs van het
reeds bekende resultaat in het gewone processor-sharing model (met constante
capaciteit). Met behulp van dezelfde bewijstechniek wordt de eigenschap ook
bewezen voor twee andere bedieningsdisciplines: foreground-background proces-
sor sharing (waarbij de klanten met de minste reeds verkregen bediening volgens
processor sharing worden bediend) en shortest remaining processing time first
(waarbij de klanten met de minste resterende hoeveelheid werk eerst worden
bediend).
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