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ABSTRACT

This paper deals with the integration of ‘stream’ traffic and ‘elastic’ traffic in one single network, e.g. an ATM-

based or an IP-based network. Here stream traffic refers to traffic with a certain bandwidth guarantee, whereas

elastic traffic flows can adapt their rates to the link bandwidth left over by the stream flows. First, models are

developed that describe different strategies for sharing link capacities between the stream and elastic flows. Then

we give mathematical methods for obtaining performance measures, in particular call blocking probabilities and

file transfer delays. Finally, these methods are used for assessing and comparing the efficiency gains achieved

by the integration strategies.
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1. Introduction
Two major network concepts have been proposed to support large-scale multiservice networks: ATM
(Asynchronous Transfer Mode) and IP (Internet Protocol).
Originally, IP networks (particularly the Internet) were built for data transfer purposes. Consequently,
they were not appropriate for supporting real-time services; all traffic was handled on a best effort
basis. For that reason, within the Internet society, notably the Internet Engineering Task Force
(IETF), considerable effort is put into concepts for introducing Quality of Service (QoS) guarantees
for prioritised streams, see for instance Van der Wal et al. [22] and White and Crowcroft [23]. Several
proposals have been made, the merits of which are currently investigated, particularly within the
IETF working groups intserv and diffserv.
In the ‘telecommunications world’, however, there is a strong impetus towards a multiservice network
based on ATM, as standardised by ITU and ATM Forum. ATM networks have been designed from
the point of view that applications require a strict QoS level. For that reason, ATM is particularly
suited for supporting real-time services (having stringent delay requirements). In ATM’s original form,
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there was no specific facility for handling traffic with relatively low QoS requirements (for instance
data transfer), leading to an inefficient use of network resources. In order to cope with this problem,
the development of transfer capabilities such as ABR (Available Bit Rate) and UBR (Unspecified
Bit Rate) started. As the bandwidth allocated to ABR and UBR strongly depends on the network
congestion, there is a strong similarity with IP’s best effort class.

From the above description, we see that both network concepts aim at integrating traffic with a
certain bandwidth guarantee (or stream traffic, cf. Roberts [18, 19]), and elastic traffic, that can cope
with a non guaranteed, variable, bandwidth. Stream traffic must maintain a so-called time integrity;
it is generated by interactive applications, like telephony and interactive video. In ATM, this stream
mode is supported by the transfer capabilities DBR (Deterministic Bit Rate) or SBR (Statistical Bit
Rate), in IP by the guaranteed QoS class, possibly in conjunction with RSVP (ReSerVation Protocol),
e.g. White and Crowcroft [23]. Elastic traffic does not exist on its own, in that the rates at which the
sources are allowed to send traffic into the network are determined by the level of network congestion.
For these elastic flows particularly semantic integrity should be preserved. In ABR this integrity
is achieved by a feedback loop (reporting the sources on the level of congestion in the network) in
conjunction with a large buffer; in IP by the TCP feedback loop together with retransmissions.
This paper aims at shedding light on the merits of the integration of stream traffic and elastic traffic.
From the point of view of operational complexity, it is probably preferable to have two (or even more)
dedicated networks; but regarding efficient use of resources, integration may be beneficial. It is this
efficiency gain (in terms of bandwidth) achieved by integration that we assess.

To get insight into the above issues, network performance analysis is required. Performance studies
on networks with elastic traffic can be roughly categorised into two groups:

(1) Detailed studies, mainly at cell/packet level, of the performance of ABR and TCP/IP feedback
mechanisms. See e.g Bonomi et al. [5], Ritter [17], and Blondia and Casals [4], who study the
performance of various ABR feedback policies. The performance of several variants of TCP/IP
is studied in e.g. Lakshman and Madhow [11]. Studies in this category typically investigate
buffer requirements (in a bottleneck node), throughputs and the impact of round trip delays on
these performance measures. Analytical results are mostly only available for the case of a single
elastic traffic source feeding into the network. Most papers do not consider the integration with
stream traffic.

(2) Performance studies at call level, in order to study the impact of the interaction between elastic
traffic flows and stream traffic flows on throughputs, transfer delays and blocking probabilities.
In these call level models, the feedback mechanism is assumed to be ‘ideal’ (i.e. instantaneous
feedback). With this assumption, a network link carrying only elastic traffic flows can be mod-
elled by a processor sharing queue. The application of processor sharing queues to study the
performance of elastic traffic was identified by e.g. Roberts [18, 19] and Núñez Queija and
Boxma [15]. The performance of processor sharing queues has been extensively studied and
many results (particularly on the queue length and transfer delay distribution) are available, see
e.g. Coffman et al. [6], Ott [16], Schassberger [20], and Yashkov [24], and the survey papers of
Yashkov [25, 26]. However, we are particularly interested in the behaviour of integrated stream
and elastic traffic. In the integrated case, the classical processor sharing queue has to be ex-
tended in order to model the impact of the presence of a varying number of stream traffic calls.
First rough estimates for the performance of integrated stream and elastic traffic were provided
by Lindberger [10]. A more advanced modelling is proposed in Núñez Queija and Boxma [15],
Blaabjerg et al. [3], and Altman et al. [1]. These studies underly the methodology applied in
the present paper.

The contribution of this paper is twofold. In the first place, we present a mathematical modelling
and performance analysis of the integration policies. Secondly, using this method, we present an
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extensive numerical study in order to get insight into the amount of network resources that can be
saved by different integration policies.

We organised this paper as follows. Section 2 further specifies the scope of the paper. In Section 3,
the model is described and preliminary results on the relevant performance measures are provided. In
Section 4 we analyse the elastic traffic transfer delay in greater detail. Section 5 provides numerical
results. We draw conclusions in Section 6.

2. Problem description
We consider a single network link with a certain capacity (bandwidth), that carries both stream traffic
and elastic traffic. Stream traffic consists of calls requiring a given bandwidth, to be guaranteed by
the network (in fact, in case of a variable bit rate stream traffic call, this bandwidth is the effective
bandwidth). These calls arrive according to some stochastic process, and are cleared after some
random time. We assume that an elastic traffic call is a file to be transferred; the files (having a
random size) arrive according to a stochastic process. The elastic traffic calls share the link bandwidth
that is not used by the stream traffic calls.

The (call-level) performance of the stream calls is determined by the fraction of calls being blocked.
For elastic traffic, there are two relevant performance measures: (1) The time it takes to transfer a
file; we particularly concentrate on the mean transfer time of a file of given size. (2) The call blocking
probability, in case the elastic calls are guaranteed a minimum bandwidth. For example, in the ATM
context the ABR service category provides a Minimum Cell Rate (MCR); in IP networks, minimum
throughputs for elastic traffic may be realised by the introduction of packet scheduling mechanisms
like weighted fair queueing (WFQ), in conjunction with certain flow admission control schemes, see
e.g. Roberts [18].

In this paper we analyse and compare the performance of three different policies/scenarios for
handling stream and elastic traffic calls.

• Segregated scenario. In the first place, we consider the scenario where stream and elastic traffic
are handled by separated resources. One part of the link rate is exclusively dedicated to stream
traffic, the other part is exclusively dedicated to elastic traffic (i.e., virtually, two dedicated links
are used).

• Integrated scenario. In the ‘opposite’ scenario both traffic types completely share the network
resources. The rationale for this scenario is the possibility of achieving a high utilisation. The
elastic flows allowed on the link can fully exploit the bandwidth that is not used by the stream
flows.

• Mixed scenario. In this scenario the link bandwidth is split up into two parts. One part can
only be used by elastic traffic flows. The other part of the link bandwidth is to be occupied by
the bandwidth requirements of the stream traffic flows. An elastic (respectively stream) flow is
blocked when the sum of the guaranteed bandwidths becomes larger than the part of the link
bandwidth assigned to elastic (respectively stream) traffic. Note, that in this mixed scenario
the bandwidth of the ‘stream traffic part’ of the link that is not actually used by stream traffic
flows can be exploited as excess bandwidth by the elastic flows. The rationale for this scenario
is to have the benefit of efficiency gain (as in the integration scenario), but at the same time
offering calls of both types a certain ‘protection’ (at call level) against each other, when calls of
one type generate (temporarily) a relatively large load.

3. Model description and preliminary analysis
In this section we present the model that we have developed to describe the three scenarios of Section
2. First, in Section 3.1 we discuss the assumptions that we make in our model. Then, in Sections 3.2,
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3.3 and 3.4, we separately treat the three different policies, mentioned in Section 2.

3.1 Modelling assumptions
Throughout this paper, we assume that requests for elastic traffic connections and stream traffic
connections occur according to two mutually independent Poisson processes, with intensities λe and
λs calls per second, respectively.
A call of elastic traffic consists of a single file to be transmitted. The mean file length is denoted
by fe. Except in the segregated model of Section 3.2, we assume that the lengths of these files
are exponentially distributed (in Section 6 we come back to this assumption). Each file transfer
requires a minimum guaranteed transfer rate r−e ≥ 0, during the complete transfer time. Also, the
actual transfer rate of an individual file can never exceed the maximum attainable transfer rate r+

e .
Obviously, r+

e ≥ r−e . For example, in the context of the ABR service in ATM networks, r+
e is called

the Peak Cell Rate (PCR) and r−e is the Minimum Cell Rate (MCR).
Calls of stream traffic require a fixed transfer rate rs > 0 over the complete duration of their holding
times. Again with the exception of Section 3.2, we assume that these holding times are exponentially
distributed. We denote the mean holding time by hs.

The fractions of blocked calls of elastic and stream traffic are denoted by pe and ps, respectively.
In addition, for elastic traffic, we consider E[Te], the mean file transfer time, and E[Te(x)], the mean
file transfer time of a file of length x. Obviously, for exponentially distributed file lengths,

E[Te] =
∫ ∞
x=0

E[Te(x)]
1
fe

e−x/fedx.

Before proceeding, we first introduce some further notation. We use the random variable Xe(t), resp.
Xs(t), to denote the numbers of elastic, resp. stream, traffic connections at time t ≥ 0. In steady
state we simply use Xe and Xs. The state space S of the process (Xe(t), Xs(t)) depends on the
model considered. The call admission policy can be formulated as follows: Suppose (Xe(t), Xs(t)) =
(ne, ns) ∈ S. Then, if a new elastic traffic call arrives at time t, it is accepted if (ne + 1, ns) ∈ S,
and rejected otherwise. Similarly, a new stream traffic call is accepted iff (ne, ns + 1) ∈ S. For
notational convenience, we introduce the blocking regions Be := {(ne, ns) ∈ S : (ne + 1, ns) /∈ S} and
Bs := {(ne, ns) ∈ S : (ne, ns + 1) /∈ S}. We define the steady-state probabilities, for all possible states
(ne, ns) ∈ S,

πne,ns := P {Xe = ne, Xs = ns} = lim
t→∞

P {Xe(t) = ne, Xs(t) = ns} . (3.1)

It will be convenient to order the states (ne, ns) lexicographically, i.e. (ne, ns) is preceded by all
states in the set {(n′e, n′s) ∈ S : n′e < ne} ∪ {(ne, n′s) ∈ S : n′s < ns}. Throughout this paper we use
this ordering for the elements of vectors defined on the state space. For example, using this ordering
on the corresponding steady-state probabilities πne,ns , we define the steady-state probability vector
π := (πne,ns)(ne,ns)∈S .

In Sections 3.2, 3.3 and 3.4, the differences between the three proposed policies are discussed in
detail. We do not go into the issue of how to compute the steady-state probabilities efficiently for the
integrated and mixed scenario. We only remark that, in both cases, the block tri-diagonal structure
of the generator allows for an efficient solution. The steady-state probabilities can for instance be
computed using the method of De Nitto Personè and Grassi [8] for generalised Quasi Birth-Death
processes (with some minor modifications).

Performance measures

Once the steady-state probabilities πne,ns have been determined, we can compute the blocking prob-
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abilities ps and pe, and the mean number of elastic traffic connections E[Xe]:

ps =
∑

(ne,ns)∈Bs

πne,ns ,

pe =
∑

(ne,ns)∈Be

πne,ns , (3.2)

E[Xe] =
∑

(ne,ns)∈S
neπne,ns .

By Little’s formula we also have E[Te] = E[Xe]/ (λe(1− pe)).
The last performance measure we consider, is E[Te(x)]. In the segregated model, E[Te(x)] is propor-
tional to x, see Section 3.2. We present the analysis of E[Te(x)] for both the completely integrated
model and the mixed model in Section 4.

3.2 Segregated scenario
In this section, we consider the special case with no interaction between stream traffic and elastic
traffic. For this case, the only assumption we make on the distributions of the holding times of stream
traffic calls and the lengths of elastic traffic files, is that their first moments exist.
The link capacity C is split into two parts: C = Ce + Cs. The capacity Ce is permanently assigned
to elastic traffic, and Cs to stream traffic. The state space is therefore given by

S(seg) :=
{
(ne, ns) ∈ IN0 × IN0 : ner−e ≤ Ce, nsrs ≤ Cs

}
. (3.3)

For stream traffic this results in the Erlang loss model. In particular,

ps =
(λshs)

Ks /Ks!∑Ks
k=0 (λshs)

k /k!
. (3.4)

Here, Ks = bCs/rsc is the maximum number of stream traffic connections.
For elastic traffic, the resulting model is an M/G/1/K queue with so called generalised processor
sharing (GPS) service discipline. The elastic traffic connections are served simultaneously, each with
speed rne , where rne depends on the total number of elastic traffic connections ne. In our case we
have for 0 ≤ ne ≤ Ke,

rne = min
(
r+
e ,
Ce
ne

)
,

with Ke := bCe/r−e c the maximum number of elastic traffic connections.
For this queueing model, explicit performance results are available in Cohen [7]. In particular, we
obtain the mean file transfer time E[Te(x)] for a file of given size x, and the probability pe that a
newly arriving file (elastic traffic flow) is blocked. Let,

φn :=
n∏
j=1

1
rj
, n = 1, 2, ...,Ke,

and φ0 := 1. Then

pe =
(λefe)

Ke

Ke!
φKe∑Ke

j=0
(λefe)

j

j! φj
, E[Te(x)] = (x/Ce)

∑Ke−1
n=0

(λefe)
n

n! φn+1∑Ke
j=0

(λefe)
j

j! φj
. (3.5)
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Formula (3.5) shows that, in the present case without interfering stream traffic, the mean file transfer
delay E[Te(x)] is proportional to the file size x. Furthermore, the above results for the mean file transfer
delay E[Te(x)], and the blocking probability pe depend on the file size distribution only through its
mean value: The results are insensitive to higher moments of the distribution.
When we take r−e = 0 (i.e. really ‘best effort’ traffic) and r+

e ≥ Ce, our model for elastic traffic
becomes the ‘standard’ M/G/1 processor sharing queue. In that case, the above formula for the
mean file transfer delay reduces to the well known M/G/1 processor sharing result (see for instance
Kleinrock [9, Formula 4.17]):

E[Te(x)] = (x/Ce)
λefe

1− λefe
.

For the M/G/1 processor sharing queue, expressions have been found for the Laplace Stieltjes Trans-
form of the distribution of the conditional transfer time Te(x), see for instance Yashkov [24], Ott [16],
Schassberger [20], and Van den Berg and Boxma [2].

3.3 Integrated scenario
In the model with complete integration of the two traffic types, a new call (of any type) is accepted
if the guaranteed performance is not violated for any connection. Thus, the state space is given by

S = S(int) :=
{
(ne, ns) ∈ IN0 × IN0 : ner−e + nsrs ≤ C

}
.

When ne > 0, the transfer rate of each elastic traffic connection is

rne,ns := min
(
r+
e ,
C − nsrs

ne

)
. (3.6)

i.e. the capacity available to elastic traffic is divided equally among all elastic traffic connections, but
never exceeding the maximum rate r+

e per connection.
Our assumptions on Poisson arrivals and exponentially distributed file lengths (for elastic traffic) and
holding times (for stream traffic), ensure that the pair (Xe(t), Xs(t)) is a Markov process.
Denote the maximum number of elastic traffic connections and stream traffic connections, by Ke and
Ks, respectively. Furthermore, define the maximum number of stream traffic connections when there
are ne elastic traffic connections, by

K(ne)
s :=

⌊
C − ner−e

rs

⌋
, ne = 0, 1, . . . ,Ke.

Obviously, Ks = K
(0)
s .

With the pairs (ne, ns) ordered lexicographically, the generator of the process (Xe(t), Xs(t)) is given
by

Q(int) :=



Q
(0)
d λeI

(0) 0 . . . . . . 0
M (1) Q

(1)
d λeI

(1) 0 . . .

0
. . . . . . . . . . . .

...
...

. . . M (Ke−1) Q
(Ke−1)
d λeI

(Ke−1)

0 . . . 0 M (Ke) Q
(Ke)
d


. (3.7)

Here, Q(int) consists of Ke+1 block rows and block columns. The sizes of the blocks are not fixed. The
matrices I(ne), ne = 0, 1, . . . ,Ke−1, are of dimension (K(ne)

s +1)× (K(ne+1)
s +1). Its entries are given

by [I(ne)]ns,ns = 1, ns = 0, 1, . . . ,K(ne+1)
s , and zero in all other positions. The dimension of M (ne),



4. Analysis of the conditional mean transfer time 7

ne = 1, 2, . . . ,Ke, is (K(ne)
s +1)× (K(ne−1)

s +1), with [M (ne)]ns,ns = nerne,ns/fe, and all other entries
equal to zero. Finally, the matrices Q(ne)

d , ne = 0, 1, . . . ,Ke, are of dimension (K(ne)
s +1)×(K(ne)

s +1).
Except for the diagonal elements, Q(ne)

d is equal to the generator of the queue length process of the
M/M/K

(ne)
s /K

(ne)
s model. The diagonal elements are such that each row of Q(int) sums up to 0.

3.4 Mixed scenario
As in the model with complete segregation, a fixed capacity Ce > 0 is exclusively reserved for elastic
traffic. The remaining capacity Cs > 0 is primarily dedicated to stream traffic, but whenever stream
traffic connections do not ‘fill’ the capacity Cs, elastic traffic may use the spare capacity. However,
this capacity is immediately allocated to stream traffic, as soon as a new stream traffic connection is
requested. Therefore the capacity Ce should always be sufficient to guarantee the minimum transfer
rate r−e to each proceeding elastic traffic call. Hence, the state space of the process (Xe(t), Xs(t)) is
the same as for the segregated model: S(mix) = S(seg), see (3.3). The transfer rate rne,ns of an elastic
traffic connection is, as in the integrated model, given by (3.6), with C = Ce + Cs. Of course, the
process (Xe(t), Xs(t)) is again a Markov process.
As in Section 3.3, we denote the maximum numbers of elastic traffic connections and stream traffic
connections by Ke and Ks, respectively. The number of states in S(mix) is (Ke + 1)× (Ks + 1).
Since the elastic traffic does not affect the stream traffic, Xs(t) evolves as the queue length process of
the standard Erlang loss model, just as in the segregated model.
The process (Xe(t), Xs(t)) is a finite inhomogeneous Quasi Birth Death (QBD) process. Its generator
Q(mix) has the same structure as Q(int) in (3.7). However, this time the sizes of the blocks are all
equal: The matrices I(ne), M (ne), and Q

(ne)
d , are of dimension (Ks + 1) × (Ks + 1). The matrices

I(ne), ne = 0, 1, . . . ,Ke − 1 do not depend on ne, and are equal to the identity matrix. M (ne),
ne = 1, 2, . . . ,Ke is the diagonal matrix ne

fe
diag[rne,0, rne,1, . . . , rne,Ks ]. For convenience of notation,

we set M (0) equal to the null matrix. Then, for ne = 0, 1, . . . ,Ke − 1, Q(ne)
d = Qs − λeI −M (ne),

and Q
(Ke)
d = Qs −M (Ke), where Qs is the (tri-diagonal) infinitesimal generator of the queue length

process of the standard Erlang loss model.

4. Analysis of the conditional mean transfer time
Once the steady-state probabilities have been determined (e.g. using the method in De Nitto Personè
and Grassi [8]), the mean sojourn time E[Te] is easily computed, see the remark following (3.2).
However, for elastic traffic we are also interested in E[Te(x)], the mean transfer time of an accepted
file with given length x. Recall that, in the segregated model, E[Te(x)] is proportional to x, see
(3.5). In this section we analyse E[Te(x)] in both the integrated and the mixed model. For details
on the analysis, for interpretation of various entities, and for full proofs in this section, we refer to
Núñez Queija [14].
As in Section 3.1, we denote the state space generically by S. Thus, either S = S(int) or S = S(mix). Let
S∗ := {(ne, ns) ∈ S : ne > 0}. We restrict ourselves to the case where rne,ns > 0 for all (ne, ns) ∈ S∗.
Note that this condition is automatically satisfied when r−e > 0. For the mixed strategy, the condition
is also satisfied when Ce > 0. The case with rne,ns = 0 for some (ne, ns) ∈ S∗, can be treated in a
similar way, see Núñez Queija [14].
For (ne, ns) ∈ S∗, and x ≥ 0, we introduce the following conditional expectation:

βne,ns(x) = the expected transfer time of a (non-blocked) file of length x, starting with ne− 1 other
proceeding elastic traffic connections and ns stream traffic connections.

Let β(x) be the vector (βne,ns(x))(ne,ns)∈S∗ , where the βne,ns(x) are ordered lexicographically. Note
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that we exclude blocked elastic traffic calls. We may now write

E[Te(x)] =
1

1− pe
∑

(ne,ns)∈S∗
πne−1,nsβne,ns(x). (4.1)

We now study the functions βne,ns(x). First we formulate a system of differential equations and initial
conditions, from which we find the βne,ns(x). Then we show that these functions converge to a linear
function, as x→∞. Finally, we indicate how the βne,ns(x) can be evaluated numerically.

Lemma 4.1 The functions βne,ns(x), (ne, ns) ∈ S∗, satisfy the following system of differential equa-
tions and initial conditions:

rne,ns
∂

∂x
βne,ns(x) = 1 + 1ne,ns+1λsβne,ns+1(x) +

ns
hs
βne,ns−1(x)

+1ne+1,nsλeβne+1,ns(x) +
ne − 1
fe

rne,nsβne−1,ns(x)

−
(

1ne+1,nsλe +
ne − 1
fe

rne,ns + 1ne,ns+1λs +
ns
hs

)
βne,ns(x). (4.2)

βne,ns(0) := lim
x↓0

βne,ns(x) = 0. (4.3)

Here, the indicator function 1ne,ns is 1 if (ne, ns) ∈ S∗, and 0 otherwise.
Equivalently, we may write in matrix notation:

R ∂

∂x
β(x) = e +Q∗β(x), β(0) = 0. (4.4)

In Lemma 4.1, e is a vector with all elements equal to 1. R is the diagonal matrix, with the diagonal
entries being the lexicographically ordered rne,ns . Q∗ is the generator of a Markov process with a
similar structure as Q(int) (or Q(mix)) in (3.7).

Proof of Lemma 4.1
We show the validity of (4.2) for (ne, ns) ∈ S∗ such that (ne + 1, ns) ∈ S∗ and (ne, ns + 1) ∈ S∗. In
all other cases, similar arguments can be used. By conditioning on the events that occur in a small
time interval of length ∆, we may write, for ∆ ↓ 0:

βne,ns(x) = ∆ + λe∆βne+1,ns(x−O(∆)) +
ne − 1
fe

rne,ns∆βne−1,ns(x−O(∆))

+λs∆βne,ns+1(x−O(∆)) +
ns
hs

∆βne,ns−1(x−O(∆))

+
(

1− λe∆−
ne − 1
fe

rne,ns∆− λs∆−
ns
hs

∆
)
βne,ns(x− rne,ns∆) + o(∆).

Rearranging terms, and letting ∆ ↓ 0, we have the desired differential equation.
The initial condition follows from the fact that we assumed that rne,ns > 0, for all (ne, ns) ∈ S∗.
Therefore, once an elastic traffic call is accepted, its transfer can start immediately. 2

The system of differential equations and initial conditions in Lemma 4.1, uniquely determine the
functions βne,ns(x), x ≥ 0. The solution is given in the next theorem, see also Núñez Queija [14].

Theorem 4.1 Let π∗ = (π∗ne,ns)(ne,ns)∈S∗ be the steady-state distribution vector corresponding to the
generator Q∗: I.e., π∗Q∗ = 0. Define,

c∗ :=
∑

(ne,ns)∈S∗
nerne,nsπ

∗
ne,ns ,

p∗e :=
∑

(ne,ns)∈S∗:(ne+1,ns)/∈S∗
π∗ne,ns .
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Let γ = (γne,ns)(ne,ns)∈S∗ be the unique solution to,

−R−1Q∗γ = R−1e− 1
c∗ − λefe(1− p∗e)

e,

π∗Rγ = 0.

Then the unique solution to (4.4) is given by:

β(x) =
x

c∗ − λefe(1− p∗e)
e +

[
I − exp

{
xR−1Q∗

}]
γ. (4.5)

The entities c∗ and p∗e have the following intuitive meaning: In a system with one permanent elastic
traffic connection, c∗ is the average capacity assigned to elastic traffic per time unit; and p∗e is the
blocking probability of new elastic traffic calls.
The existence and uniqueness of γ is a well known result from Markov decision theory: The numbers
γne,ns can be interpreted as relative costs in a Markov process with generator R−1Q∗, see for instance
Tijms [21, Theorem 3.1.1 and p. 220]. Solution (4.5) can be checked by substitution in (4.4).
Note that, from Theorem 4.1 and Expression (4.1), we have an explicit expression for E[Te(x)] in
terms of x. At the end of this section we indicate how this expression can be used for computation of
E[Te(x)]. First, however, we establish a relevant limiting result for β(x) and E[Te(x)] as x→∞.

Corollary 4.2 For all (ne, ns) ∈ S∗,

lim
x→∞

βne,ns(x) −
x

c∗ − λefe(1− p∗e)
= γne,ns ,

and hence
lim
x→∞

E[Te(x)] −
x

c∗ − λefe(1− p∗e)
=

1
1− pe

∑
(ne,ns)∈S∗

πne−1,nsγne,ns .

Corollary 4.2 follows from the fact thatR−1Q∗ is the generator of a finite, irreducible Markov process:
Its largest eigenvalue is 0, has multiplicity 1 and corresponding left null vector π∗ and right null vector
e.

Numerical evaluation of the conditional mean transfer time

To compute E[Te(x)], one may use Expressions (4.5) and (4.1). The term exp
{
xR−1Q∗

}
γ can

be evaluated in a numerically stable way, by using uniformisation: Let η > 0 be such that P :=
I + 1

ηR−1Q∗ is a non-negative matrix. Then, P is a stochastic matrix that can be associated with
the uniformised jump process of the Markov process governed by R−1Q∗. Now,

exp
{
xR−1Q∗

}
= e−ηx exp {ηxP} = e−ηx

∞∑
k=0

(ηx)k

k!
Pk,

and the terms in this expression only involve non-negative numbers.
As an alternative, we may use (4.4) directly to compute recursively the coefficients of the Taylor series
of β(x) around 0. Again, this should be done using P instead of Q∗. The advantage of this alternative
is that γ need not be computed. In Experiment 3 of Section 5, we used both methods when computing
E[Te(x)]. In all cases the relative difference between the outcomes of both methods was of the order
of 10−8, or smaller.

5. Numerical results
Using the analysis presented in Sections 3 and 4, we performed an extensive numerical study on the
integration policies defined in Section 2. In this section, we present some of our results.
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Link C (all models) 155 Mbit/s
Ce (not for integr.) 105–80–55–30–5 Mbit/s

Elastic traffic fe 50 Mbit
r−e 0 Mbit/s
r+
e 10–50–155 Mbit/s

Stream traffic hs 10 sec.
rs 5 Mbit/s

Table 1: Parameters in Experiment 1

Cs 50 75 100 125 150
λs 0.446118 0.810804 1.203062 1.612456 2.033728

Table 2: Load of stream traffic (in terms of λs) for the mixed and segregated strategies; ps = 0.01

It should be emphasised that quite a number of parameters play a role in our model. This, of course,
makes it impossible to draw general conclusions over the entire parameter space. In order to cope with
that, we fix a number of parameters at a realistic value. The ‘guaranteed rate’ r−e for elastic traffic
is taken equal to zero, in the first three experiments. Notice that the r−e = 0 assumption relates e.g.
to the most likely next Internet situation with two traffic classes: high priority (stream) traffic and
low priority best effort (elastic) traffic without any bandwidth guarantee. In the fourth experiment
r−e > 0, which relates for example to the situation of an ATM network with ABR connections having
an MCR (Minimum Cell Rate) larger than zero, or to a future IP network with appropriate packet
scheduling and flow admission control mechanisms in the routers (see e.g. Roberts [18]).

Experiment 1

In our first experiment, we compare the efficiency of the three scenarios (segregated, integrated and
mixed). More precisely stated, given certain performance requirements of the two traffic types (mean
file transfer time E[Te] for elastic traffic and blocking probability ps for stream traffic calls), we
determine the maximum traffic load that can be handled under the three different strategies. Table 1
shows the model parameters.
We have chosen the traffic parameters such that the calls of the two traffic types have the same mean
size (i.e. have the same mean number of bits to be transferred): fe = hsrs. For various values of
the parameters Cs = C − Ce and r+

e , we evaluated the efficiency of each of the three strategies in
the following way: We have chosen λs such that the blocking probability ps of the stream traffic
calls for the mixed and segregated strategy equals 0.01 (note that λs can be easily computed from
the Erlang loss formula), see Table 2. In order to make a fair comparison, in the integrated scenario
we have reduced the value of λs, such that the amount of accepted stream traffic is equal for all
three strategies. Then, given a certain load of stream traffic (in terms of λs), we determined for
each of the three strategies the maximum possible load of elastic traffic (in terms of λe), such that
E[Te] = hs = 10. The results of this first experiment are shown in Figure 1. For Ce = 5 the allowed
λe is smaller than 10−5.
As expected, the mixed and integrated strategies are considerably more efficient than the segregated
strategy: apparently, the elastic traffic benefits highly from the fluctuating amount of bandwidth that
is left over by the stream traffic. The differences between the mixed strategy and the integrated strat-
egy are very small. In all cases, the mixed strategy is at least as efficient as the integrated strategy.
Finally it is noted that the impact of r+

e on the efficiency of the strategies is very small. This is due
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Figure 1: Efficiency of the three strategies (in terms of λe)

to the fact that the system is highly loaded: the number of elastic traffic calls simultaneously present
in the system is most of the time that large, that each of them receives less than 10 Mbit/s of the
total available capacity (hence, it makes no difference whether r+

e = 10, 50 or 155 Mbit/s).

Experiment 2

In the previous experiment, stream traffic calls and elastic traffic calls arrive/depart at more or less
the same time scale. What if this is not the case, i.e. what if the stream traffic fluctuates much faster
or much slower than the elastic traffic? To investigate this, we repeated Experiment 1 for the cases
hs = 1 (rapidly fluctuating stream traffic) and hs = 100 (slowly fluctuating stream traffic). All other
parameters in Table 1 remain unchanged. Note that the values of λs in Table 2 are multiplied by
a factor 10 (in case hs = 1), and by a factor 0.1 (in case hs = 100), such that ps remains equal to
0.01 in the mixed and segregated strategies. We observed that in all cases the segregated strategy
is the least efficient, and that the mixed strategy outperforms the integrated strategy (particularly
when hs = 100). For the mixed strategy, being the most efficient in all cases, the impact of the time
scale difference is reported in Figure 2. Intuitively, one expects that when the stream traffic fluctuates
very fast, the performance of elastic traffic is the same as for the segregated scenario with Ce equal
to the mean available capacity C − λs(1 − ps)hsrs. In Figure 2, also the values of λe are given for
that case. This phenomenon was already noted in Núñez Queija and Boxma [15] and Altman et al.
[1], and formally proved in Núñez Queija [13].
The numerical results show that λe increases when the stream traffic fluctuates faster (i.e. hs be-
comes smaller). Note that, as expected, the difference between the mixed scenario with hs = 1 (i.e.
stream traffic fluctuates relatively fast) and the segregated scenario with Ce = C − λs(1− ps)hsrs is
negligible. As in the previous experiment, it is seen that the impact of r+

e on the efficiency is very small.

Experiment 3

For the mixed strategy, we consider the conditional mean file transfer time E[Te(x)] as a function of
the file size x. In particular, we are interested in how fast E[Te(x)] converges to its linear asymptote
(as x → ∞). The parameters fe, r−e , hs and rs are fixed at their respective values given in Table 1,
and Ce is set equal to 80 (therefore the condition rne,ns > 0 in Section 4 is satisfied). The value of
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Figure 2: Efficiency of the mixed strategy (in terms of λe) on different time scales

λs (0.81) is again chosen such that ps = 0.01, and λe is fixed at 2.17, which is the value computed in
Experiment 1 with r+

e =∞. In Figure 3, E[Te(x)] is given for the three values of r+
e . We observe that

E[Te(x)] is considerably smaller for larger values of r+
e . We also computed the asymptote of E[Te(x)];

for r+
e = 10 the results are shown in Figure 4. For the other two values of r+

e , we obtained similar
figures, the distance between the actual curve and the asymptote being larger for larger r+

e .
Keeping λe fixed, we repeated the above experiment for rapidly fluctuating stream traffic (hs = 1) and
for slowly varying stream traffic (hs = 100). As in Experiment 2, the value of λs when hs = 1 (resp.
hs = 100) is found by multiplication by a factor 10 (resp. 0.1), such that the traffic load of stream
traffic (in terms of λshs) is the same in all cases. In both cases, the results yield graphs (not shown in
this paper) similar to the ones in Figures 3 and 4. However, for ‘fast’ stream traffic we observed that
the distance between E[Te(x)] and its asymptote is considerably smaller, and that for ‘slow’ stream
traffic this distance is very large.
The results show that in general the asymptote does not give a useful approximation for E[Te(x)].
An additional numerical study indicates that a good approximation is provided by the tangent of the
curve in the origin. In Figure 4, for values of x smaller than five times the mean file size fe = 50 Mbit,
the relative difference between E[Te(x)] and the tangent in zero is less than 2.5%. Note that the slope
of this tangent line can be easily computed from the steady-state distribution, see Núñez Queija [14].

Experiment 4

In our last experiment we consider the situation that the elastic traffic calls are guaranteed a certain
minimum bandwidth r−e . For the mixed strategy, we study the impact of Cs on the call blocking
probabilities pe and ps of the elastic traffic and the stream traffic, respectively. As before, we choose
fe = 50 Mbit and rs = 5 Mbit/s. Furthermore, hs = 10 sec., r−e = 5 Mbit/s (i.e. the transfer
time of a file of size x Mbit is bounded by x/5 seconds), and r+

e = 155 Mbit/s. We fix the call
arrival intensities at λe = 1.90 and λs = 1.15. These values are chosen such that pe = ps = 0.05 in
the mixed scenario with Ce = 75 Mbit/s. The results are shown in Figure 5. It is seen that the call
blocking probability for the stream traffic decreases very rapidly when Cs increases, while the blocking
probability for the elastic traffic grows only moderately. Note that, as Cs increases, the amount of
bandwidth (Ce = C−Cs) reserved for elastic traffic decreases. A part of this reassigned bandwidth is
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Figure 5: Blocking probabilities for different choices of Cs

however not used by the stream traffic. This amount of bandwidth, Cs−λs(1− ps)hsrs, allocated to,
but not used by the stream traffic, is apparently very well exploited by the elastic traffic calls. This is
confirmed by the results for the loss probability of elastic traffic calls in the corresponding segregated
case, which are also shown in the figure.

6. Conclusions and directions for future research
In this paper we studied the integration of stream traffic and elastic traffic in one single network, e.g.
an ATM-based or an IP-based network. First, models were developed describing different integration
strategies. Then we presented analytical techniques for obtaining performance measures, in particular
call blocking probabilities and file transfer delays. Finally, these methods were used for assessing and
comparing the efficiency gains achieved by the integration strategies.

Integration of stream and elastic traffic

The first conclusion is that integration of stream and elastic traffic in one single network is much more
efficient (with respect to the use of network resources) than having two dedicated networks for the
two traffic types (i.e. segregation). The so-called mixed scenario is slightly more efficient than the
integrated scenario, and has the additional advantage of offering calls of both types a certain ‘pro-
tection’ against each other, when calls of one type generate (temporarily) a relatively large load. For
other integration schemes – like trunk reservation – the analysis and computation of the performance
measures can be done in a similar way; comparison with the integration strategies considered in this
paper would be an interesting issue for further research.

Analytical techniques

We demonstrated that the relevant performance measures can be analysed and efficiently calculated
in a numerically stable way. In particular, we developed a technique for evaluating the mean transfer
time E[Te(x)] of an ‘elastic’ file of given length x. Our numerical study showed that, for values of
x up to four or five times the mean file size, a good approximation of E[Te(x)] is provided by the
tangent line in the origin; the slope of this tangent line can be easily determined from the steady-state
distribution.
A possible direction for further research is the following. In the present study file lengths are (mostly)
assumed to have an exponential distribution. This assumption allowed for a detailed analysis of
the impact of the interaction between both traffic types on their performance. Extension of our
analysis to phase type distributions is possible and we expect that similar results hold. However,
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extension to the case of file size distributions with ‘heavy tails’, e.g., the Pareto distribution, is not
straightforward. It would be useful to be able to compute the relevant performance measures under this
modelling assumption, cf. Zwart and Boxma [27] for the case that only elastic traffic calls share the link
bandwidth. An interesting question then is whether our conclusions regarding integration/segregation
still hold. In particular, can E[Te(x)] (for quite large values of x) still be approximated by its tangent
in the origin and does it converge to a linear function when x grows to infinity?
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