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Abstract

We consider a system with two service classes, one of which supports elastic traffic.
The traffic characteristics of the other class can be completely general, allowing
streaming applications as an important special case. The link capacity is shared be-
tween the two traffic classes in accordance with the Generalized Processor Sharing
(GPS) discipline. GPS-based scheduling algorithms, such as Weighted Fair Queue-
ing, provide a flexible mechanism for service differentiation and prioritization.

We examine the user-level performance of the elastic traffic. The elastic traf-
fic users randomly initiate file transfers with a heavy-tailed distribution. Within
the elastic traffic class, the active flows share the available bandwidth in an ordi-
nary Processor-Sharing (PS) fashion. The PS discipline has emerged as a natural
paradigm for evaluating the user-perceived performance of bandwidth sharing al-
gorithms like TCP. For a certain parameter range, we establish that the transfer
delay incurred by the elastic traffic flows is asymptotically equivalent to that in
an isolated PS system with constant service rate. This service rate is only affected
by the streaming traffic through its average rate. Specifically, the elastic traffic is
largely immune from possible adverse traffic characteristics or performance degra-
dation due to prioritization of the streaming traffic. This confirms that GPS-based
multiplexing mechanisms achieve significantly better performance for both traffic
classes than a static bandwidth partitioning approach.

Key words: delay asymptotics, differentiated services, Generalized Processor
Sharing (GPS), heavy-tailed traffic, processor sharing
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1 Introduction

The future Internet is expected to support a wide range of services on a com-
mon infrastructure, such as voice, video and data applications. The consol-
idation of several services on a single platform offers significant operational
advantages. Besides the typical scaling efficiencies, a second benefit lies in the
greater flexibility in supporting future applications whose features are intrin-
sically uncertain. While offering potential synergies, however, the co-existence
of heterogeneous services also involves several challenging issues. In particular,
different applications may not only have extremely diverse traffic characteris-
tics, but also drastically different Quality-of-Service (QoS) requirements. The
integration of heterogeneous services thus raises the need for differentiated
QoS, catering to the specific requirements of the various traffic flows.

One potential approach to achieve service differentiation is through the use of
discriminatory scheduling mechanisms, which distinguish between packets of
the various traffic streams. Because of scalability issues, it is practically infea-
sible though to manipulate packets at the granularity level of individual flows
in the core of any high-speed network. To avoid these complexity problems,
traffic lows may instead be aggregated into a small number of representative
classes, with scheduling mechanisms acting at the coarser level of composite
streams. For example, the majority of applications may be broadly categorized
into two service classes, one supporting streaming traffic, the other carrying
elastic traffic. Streaming traffic is produced by audio and video applications for
both real-time communication and reproduction of stored sequences ( ‘traces’).
Usually, the transmission rate has some intrinsic time profile, which may either
be nearly constant or highly bursty, depending on the specific application. In
both these cases, the QoS experienced by the users is mainly determined by
integrity of the time profile, making small packet delay and low loss crucial
requirements. Elastic traffic, on the other hand, results from the transfer of
digital documents such as Web pages, files and e-mails. In contrast to stream-
ing traffic, the transmission rate is continuously adapted over time, based on
the level of congestion in the network. Typically, it is not so much the delay of
individual packets that matters, but the total transfer delay of the document
that determines the QoS perceived by the users.

The above notions are at the heart of the DiffServ proposal [3], which defines
the EF class (Expedited Forwarding) for delay-sensitive traffic, and the AF
class (Assured Forwarding) for traffic with some degree of delay tolerance. In
view of the relative delay sensitivity, it is desirable that streaming applications
receive some sort of priority over the elastic flows, at least over short time
scales. The DiffServ philosophy postulates that coarse scheduling at the class
level preempts the need for fine-grained scheduling at the level of individual
flows, avoiding the scalability issues mentioned above. In particular, the queue



for the streaming class should normally be so small that internal scheduling is
not essential and simple FIFO queueing for example is adequate. The queue
for the elastic class may be larger, but will be regulated by end-to-end flow
control protocols.

Although some degree of priority for the streaming sessions is appropriate,
strict priority scheduling may in fact not be ideal, since it may lead to star-
vation of the elastic traffic. Even temporary starvation effects may cause flow
control protocols like TCP to suffer a severe degradation in throughput per-
formance. The Generalized Processor Sharing (GPS) discipline provides a po-
tential mechanism for implementing priority scheduling in a flexible way, with
strict priority queueing as an extreme option [14,15]. In GPS-based scheduling
algorithms, such as Weighted Fair Queueing, the link capacity is shared among
the backlogged classes in proportion to certain class-defined weight factors. By
setting the weight factor for the elastic class relatively low, one may provide
some degree of priority to the streaming sessions, while avoiding starvation of
the elastic traffic.

In the present paper we examine the user-level performance of the elastic
traffic in the above situation, where the link capacity is shared between the
two classes in a GPS manner. The elastic traffic users randomly generate files
whose sizes follow a heavy-tailed distribution. The assumption of heavy-tailed
file sizes is motivated by extensive measurement studies [7]. The other class
could carry streaming applications as described above, but is in fact allowed
to be completely general in terms of traffic characteristics, while the inter-
nal scheduling mechanism can be any work-conserving discipline. Within the
elastic traffic class, the active users share the capacity in a standard processor-
sharing (PS) fashion. The PS discipline has been commonly adopted as a con-

venient modeling abstraction for evaluating the user-perceived performance of
bandwidth sharing algorithms like TCP [11,12].

The delay distribution in PS queues with heavy-tailed service requirements
has attracted significant interest over the past few years. Under different dis-
tributional assumptions and by means of different proof methods, the tail of
the delay distribution was shown to be asymptotically equivalent to that of
the service requirement distribution [19,18,12,13,9]. (See Section 3 for a more
detailed discussion.)

In parallel, the workload behavior in GPS queues with heavy-tailed traffic
characteristics has been intensively studied, see for instance [5,6,10]. These
papers showed that for a wide range of parameter settings the workload of
an individual traffic class is asymptotically equivalent to that in an isolated
system with a constant service rate. In many situations, the latter service
rate equals the capacity of the original system reduced by the average rate
of the other classes, hence the term reduced-load equivalence [1]. Subsequent



work [17] generalized the reduced-load equivalence result to networks of GPS
queues.

All of the above papers, however, focused on the workload behavior in GPS sys-
tems rather than delay asymptotics. To the best of our knowledge, the present
paper is the first one to investigate the delay asymptotics for a PS queue within
a GPS system. For a certain range of parameter values, we demonstrate that
the transfer delay incurred by the elastic traffic flows is asymptotically equiv-
alent to that in an isolated PS system with constant service rate. This service
rate is only affected by the streaming traffic through its average rate. In partic-
ular, the elastic traffic is protected from possible adverse traffic characteristics
or performance degradation due to prioritization of the streaming traffic. This
confirms that GPS-based bandwidth sharing mechanisms produce better per-
formance for both traffic classes than a static segregation scheme. A somewhat
related paper is that of Tinnakornsrisuphap et al. [16].

The remainder of the paper is organized as follows. In Section 2, we present a
detailed model description. We provide a discussion and interpretation of the
main result in Section 3. The detailed proof may be found in Section 4. We
conclude the paper with a brief summary in Section 5.

2 Model description

We first present a detailed model description. We consider two traffic classes
sharing a link of unit rate. The link rate is shared in accordance with the
Generalized Processor Sharing (GPS) discipline, which operates as follows.
Class 1 is assigned a weight ¢;, ¢ = 1,2, with ¢; + ¢ = 1. As long as both
classes are backlogged, class-i is served at rate ¢;. If one of the classes is not
backlogged however, then the capacity is reallocated to the other class, which
is then served at the full link rate (if backlogged). (In case of gradual input,
it may occur that class 2 is not backlogged while generating traffic at some
rate r9 < ¢9. In that case, only the excess capacity ¢o — ro is reallocated to
class 2.)

Let A;(s,t) be the amount of class-i traffic generated during the time interval
(s,t]. Denoting the class-i traffic intensity by p;, we assume that

lim LAi(s,t) = lim

t—oo — S U——00 § — U

A;i(u, s) = pi, w.p. 1, (1)

for all s and 7 = 1,2. The aggregate traffic process is denoted with A(s,t) :=
Aq(s,t) + Ay(s,t) and the corresponding traffic intensity with p := p; + po.
For stability, we assume that p < 1.



Class-1 customers arrive as a Poisson process of rate A;, and have service re-
quirements with distribution Bj(-) and mean (i, so that p; = A\15;. (These
additional assumptions are in agreement with (1).) We assume that the service
requirements of class-1 customers are intermediately regularly varying, de-
noted as B;(-) € ZR, which means that lim,;; limsup,_ . B (az)/B(z) = 1,
with B;(z) := 1—B; (). Class-1 customers are served according to the Proces-
sor Sharing (PS) discipline, i.e., the available service rate for class 1 is equally
shared among all the class-1 customers present. Thus, when there are n class-1
customers present at time ¢, each of them receives service at rate ¢, (t)/n, with
c1(t) representing the available service rate for class 1 at time t as governed
by the GPS mechanism described above.

Other than (1), we do not make any specific assumptions regarding the traffic
characteristics of class 2. Also, the internal scheduling mechanism for class 2
can be any work-conserving discipline.

We finally introduce some notation that will be used throughout the paper.
For any two real functions g(-) and h(-), we write g(t) = o(h(t)), as t — oo, if
lim; ., g(t)/h(t) = 0. We further use the notational convention g(t) ~ h(t) to
denote lim; ., g(t)/h(t) = 1, or equivalently, g(¢) = h(t)(1 + o(1)) as t — oo.

3 Main result

We now formulate and explain the main result of the paper. To put things
in perspective, we first review the sojourn time asymptotics in an ordinary
(isolated) PS queue. Then we turn to the sojourn time asymptotics of class 1
in the integrated GPS system described in the previous section.

M/G/1 PS queue

Consider an ordinary isolated PS queue where class 1 is served at constant rate
¢ > p1. Let By and S§ be the service requirement and sojourn time of a tagged
customer arriving to the system at time 0. Denote by W{(¢) the amount of
class-1 work in the isolated system at time ¢, i.e., the sum of the remaining
service requirements of all the customers in the system at time ¢ except the
tagged customer. Define Bf(0, 1) as the total amount of service received during
the time interval (0, ¢] by all customers except the tagged customer. Then By
and S§ satisfy the following identity relation

¢S5 = By + B{(0, 57),



with

B0, ) = WE(0) + A, (0,8) — WEt), ¢ >0,

so that

cS§ = By + WE(0) + A1(0, S§) — WE(Sg). )

Large-deviations results suggest that rare events, given that they occur, almost
exclusively tend to happen in the most probable manner. In the case of heavy-
tailed processes, the most likely scenario for the rare event under consideration
to occur often consists of a single extreme deviation in the traffic process. For
a PS queue with a service requirement distribution of intermediate regular
variation, the specific premise is that the most plausible cause for a large
sojourn time S§ arises from a large service requirement Bj of the customer
itself, while the system otherwise shows average behavior. In particular, the
amount of traffic generated over the course of the large sojourn time of the
tagged customer is close to average, i.e., A;(0,S5) ~ p1S§. In addition, the
amount of work found upon arrival by the tagged customer is typical, and thus
negligibly small compared to the service requirement By, i.e., W{(0) = o(B).
The amount of class-1 work that is left behind by the tagged customer is
asymptotically negligible as well, i.e., W{(S§) = o(Bp). From (2), we thus
obtain ¢S§ ~ By + p15§, or equivalently, S§ ~ By/(c— p1). Of course, there are
various other ways in which a large sojourn time may occur. In that sense, the
above scenario only yields a lower bound for the probability of a large sojourn
time occurring. However, all these alternatives are exceedingly improbable
compared to the above scenario, so that the lower bound in fact provides the
exact asymptotics, as reflected in the next theorem.

Theorem 1 If Bi(-) € ZR and py < c, then

P{S§ > t} ~ P{Bgy > t(c — p1)}.

The above equivalence result was first proven for regularly varying service re-
quirement distributions in Zwart & Boxma [19] using transform techniques.
In a sequel paper of Zwart [18], the result was generalized to multi-class PS
queues. Using a probabilistic proof based on conditional moments, Ninez-
Queija [12,13] extended the tail equivalence result to PS models with a time-
varying service capacity and intermediately regularly varying service require-
ments. Recently, Jelenkovi¢ & Momc¢ilovié [9] used an alternative probabilistic
method to generalize the result to a larger subclass of subexponential dis-
tributions with a so-called square-root insensitivity property. The latter class
includes Weibull distributions with an index parameter smaller than 1/2. They



further showed that the result is sharp, in the sense that the tail equivalence
does not hold for Weibull distributions with a larger index parameter.

Remark 2 The discussion preceding Theorem 1 in fact suggests that an ez-
tremely large service requirement and an extremely large sojourn time tend to
occur simultaneously, which is a stronger statement than that of the theorem.
This was indeed proved in [13, Lemmas 2.1 and 2.2] for an isolated PS queue.
Although not explicitly stated, this stronger property also holds for the class-1
queue in the GPS system. This follows from the proofs in Section 4.

Integrated GPS system

We now turn our attention to the class-1 sojourn time asymptotics in the
integrated GPS system described in Section 2. Let By and Sy be the service
requirement and sojourn time of a tagged class-1 customer arriving to the
system at time 0. Denote by W;(¢) the amount of class-i work in the system
at time t, i.e., the sum of the remaining service requirements of all the class-i
customers in the system at time ¢ except the tagged class-1 customer. Define
B;(0,t) as the total amount of service received during the time interval (0, ]
by all class-i customers except the tagged class-1 customer.

As before, the premise is that the most likely scenario for a large sojourn
time Sy to occur arises from a large service requirement B, of the tagged
customer itself. However, the interaction with the competing traffic class must
now be accounted for as well, as expressed in the following identity relation

So = By + B1(0, So) + B>(0, Sp), (3)
with

B;(0,t) = W;(0) + A;(0,t) — W;(¢), t>0, (4)
so that

S() = BO + Wl (0) + WQ(O) + Al (0, S()) + AQ(O, S()) —W1 (S()) —WQ(S()) (5)

As before, the amount of traffic generated by each class over the course of the
large sojourn time Sy is likely to be close to its average, i.e., 4;(0, So) ~ p;So.
In addition, the amount of work found upon arrival by the tagged customer is
typical, and thus negligibly small compared to the service requirement By since
p < 1,ie., Wi(0)4+Ws(0) = o(By). Further observe that W;(t) < W (t), since
class 7 is guaranteed to receive a minimum service rate ¢; whenever backlogged
(for class 2 this is an immediate consequence of the GPS mechanism; for



class 1 the capacity taken away by the tagged customer needs to be taken into
account, see Lemma 4 for a rigorous proof). Since p; < ¢1, the amount of class-
1 work that is left behind by the tagged customer is asymptotically negligible,
ie., Wi(Sp) = o(By). Similarly, the amount of class-2 work is negligible in
case py < ¢o, i.e., Wa(Sg) = o(Byg). However, in case ps > ¢, class-2 work will
accumulate over the course of the large sojourn time Sy in a roughly linear
manner at rate py — @9, i.e., Wo(Sy) = (pa — ¢2)Sp, which may also be seen
from By(0, Sp) =~ ¢2Sp. From (5), we thus obtain Sy ~ By + (p1 + ¥2)So, with
Wy := min{py, ¢o}, or equivalently, Sy ~ By/(1 — 12 — p1). Of course, there
are various alternative scenarios in which a large sojourn time may occur, but
these are all extremely unlikely compared to the above scenario.

The above heuristic arguments are confirmed by the next theorem, which is the
main result of the paper. The detailed proof is provided in the next section, and
proceeds by strengthening the above intuitive insight into rigorous statements.

Theorem 3 If Bi(-) € ZR and p; < ¢1, then

P{So >t} ~P{By > (1 — ¢ — p1)t}

and hence (by Theorem 1),

P{Sy >t} ~ P{S; > > t}.

The above theorem shows that the class-1 sojourn time distribution is asymp-
totically equivalent to that in an isolated PS system with constant service
rate 1 — 1p,. The latter service rate simply equals the original service rate re-
duced by either the average rate or the minimum guaranteed rate of class 2,
whichever is lower. This phenomenon is reminiscent of the reduced-load equiv-
alence result which was first established in Agrawal et al. [1] for the workload
asymptotics of the superposition of a heavy-tailed On-Off source and a second
lighter-tailed traffic process. In later work [6], this notion was generalized to
the workload asymptotics in GPS queues with heavy-tailed traffic flows.

It is worth observing that the above theorem does not involve any specific
assumptions regarding the traffic characteristics of class 2 other than through
its average rate. In particular, the class-1 sojourn time asymptotics are not
significantly affected by possible adverse traffic characteristics of class 2, pro-
vided p; < ¢;. In case p; > ¢, (forcing py < ¢ for stability), however, class 1
is no longer protected from class 2. In that case, class 1 will temporarily fail
to receive a sufficiently large service rate so as to guarantee stability of class 1
when class 2 is backlogged, thus creating a potential alternative scenario for
large sojourn times to occur. It strongly depends on the traffic characteris-
tics of class 2 how likely this alternative scenario is compared to the earlier



scenario. We conjecture that the above reduced-load equivalence result will in
fact continue to hold as long as the traffic characteristics of class 2 are ‘lighter’
than those of class 1, namely when P{sup,-{42(0,t) — ¢ot} > 2} = o(Bi(z))
as £ — 0o, which is the most interesting case from a practical perspective.
This is proved in [12, Chapter 5] for a situation where class 2 has strict priority
over class 1 (¢, = 0), assuming an infinite variance of the service requirements
of class 1. If p; > ¢; and class 2 does not have lighter traffic characteristics
(in the sense described above), the tail behavior of the class-1 sojourn time
distribution is determined by the temporary starvation during activity periods
of class 2, and thus inherits the traffic characteristics of class 2. This effect is
similar to the concept of induced burstiness for the workload asymptotics in
GPS queues as described in [6]. We expect that the derivation of the class-1
sojourn time asymptotics in this regime involves the analysis of unstable PS
queues along the lines of Jean-Marie & Robert [8].

4 Proof of the main result

In this section we provide the proof of Theorem 3, by separately proving
lower and upper bounds in Theorems 7 and 9, respectively. We first introduce
the notion of a “permanent” class-1 customer, which plays a central role in
the subsequent analysis of the sojourn time of an arbitrary tagged class-1
customer. Suppose that at time 0 a class-1 customer arrives, requiring an
infinite amount of service. This customer will never leave the system and
shares in the capacity as any ordinary class-1 customer. The amount of service
received by the permanent customer over the interval (0,¢] is denoted with
By(0,t). Since the PS discipline does not discriminate between customers,
irrespective of their service requirements, By(0,t) would also be the amount
of service received over the interval (0,t] by the customer arriving at time 0 if
it had had a finite service requirement, provided that this service requirement is
not less than By(0,t). Technically speaking, we may view the service process
By(0,t) of the (fictitious) permanent customer as a stochastic process and
define the sojourn time Sy of a customer with service requirement Bg as a
stopping time:

S() ;= inf {t 2 0: BO S B()(O,t)} .
Indeed, a customer’s sojourn time exceeds t if and only if it requires an amount

of service larger than that received during an interval of length ¢t. We may
therefore write

P{Sy > t} = P{By > Bo(0,1)}. (6)



Paralleling (3) we may write the fundamental identity

Bo(0,¢) + B1(0, 1) + By(0,1) = t, (7)

where we use the fact that the permanent customer remains for ever in the
system after time 0. The total backlog in the system at time t not including the
permanent customer is denoted with W (t) := Wi (t) + Wa(t). Because of (1)
we also have, for all s,

lim A(s,t) = lim

t—oo{ — § u——00 § — 1,

A(u, s) = p, w.p. 1, (8)

and since p < 1, the total backlog at time 0, expressed as

W(0) = sup {A(—u,0) —u},

u>0

has a non-defective distribution.

We construct an isolated reference system for class 1 by placing a copy of
each arriving class-1 customer (with the same service requirement) in a PS
queue with constant service capacity ¢;. At time 0, we also place a permanent
customer in the reference queue. W' (t) and BE'(0,t) represent the backlog
due to non-permanent customers in the reference queue and the amount of
service received by the permanent customer up to time ¢t > 0, respectively.
We assume that at time —oo both the original GPS and the reference system
were empty.

Lemma 4 At any time t each customer present in the GPS system has re-
cetved at most the same amount of service in the reference system. As a con-
sequence,

Wi(t) < Wit (t), (9)
and

By(0,t) > BS(0,1) (10)
for all t.

PROOF. First focus on a customer that arrives when there are no class-1
customers in either system. In the GPS system this customer will receive ser-
vice at least at rate ¢; until its departure or the next class-1 arrival, whichever

10



occurs first. Clearly, during this period of time the assertions of the lemma
hold.

Next, we show that this remains true for any time instant. Focus on a time
t = ty for which the assertions of the lemma hold, i.e., all class-1 customers
present in the GPS system have at least the same residual service requirement
in the reference queue. (Besides these customers, there may be more customers
present in the reference queue.) The total available service rate for class 1 in the
GPS system (when backlogged) is never less than that in the reference system.
At time ty, the number of class-1 customers in the reference queue is not less
than that in the GPS system. Therefore, the service rate for individual class-1
customers in the GPS system is not smaller than that in the reference system.
Consequently, the assertions of the lemma remain true until the next arrival or
departure (from either queue). Clearly, a class-1 arrival cannot invalidate the
lemma, since an identical copy of the customer is placed in the reference queue.
The same holds for a departure from either the GPS system alone or from
both systems simultaneously, since a customer cannot obtain its total service
requirement in the reference system sooner than in the GPS system. Note that
the presence of the permanent customer after time 0 does not interfere with
the above arguments. O

The following is an immediate consequence of Lemma 4.

Corollary 5 Let Sy and Sfl represent the sojourn time of the same customer
in the GPS system and in the reference system, respectively. Then, with prob-
ability 1,

Sy < S¢.

We now review several useful results from the literature. It is known [2, Sec-
tion 8] that an isolated M/G/1 PS queue with a permanent customer is stable
and, as t — oo, the distribution of WY (t) converges to that of a proper
non-defective random variable Wfl:

P{W?' <z} := lim P{W (t) <z}, x>0.

For ¢ < po, the following random variable represents the maximum of a random
walk with a negative drift and, as such, has a proper non-defective distribution:

Z5(s) :=sup {e(u — s) — Aa(s,u)}.

u>s

The next lemma gives a sample path upper bound for the service process
By(0,t), which in Theorem 7 results in a lower bound for the sojourn time.

11



Specifically, the lemma relates By(0,t) to the average service rate available
for the permanent customer, which equals 1 — p; — 1)5. The remaining terms
account for random fluctuations around the mean.

Lemma 6 Fort >0 and e > 0,

By(0,1) < (1 — pr — o +26)t + (p1 — €)t — A1(0,1) + W (t) + Z3°7*(0).
PROOF. Using (4), (7) and (9), we obtain

Bo(0,1) <t — A1 (0, 1) + Wi (t) — By(0,1)
<t—(p1— )t + (p1 — )t — A1 (0, 1) + W () — By(0,1).

Let s be the last time within the interval [0, ¢] at which there was no backlog
of class 2 in the GPS system. If such an s does not exist, take s = 0. We
obviously have

By(0,t) > A3(0,5) + ¢o(t — 5) > Ag(0,5) + ha(t — )
> (1hy — )t + Az(0,5) — (V2 — €)s > (b2 — €)t — 23 (0).

This concludes the proof. O

Using Lemma 6, we prove the following probabilistic lower bound for the
sojourn time.

Theorem 7 (lower bound) If Bi(-) € ZR and p, < ¢y, then

.. ]P){S() > t}
lim inf > 1.
t—o0 P{BO > (1 —p1 — wg)t} -

PROOF. Using (6) and Lemma 6, we have

P{S, > 1} (11)
>P{By > (1 — p1 — ¥2 + 26)t + (p1 — €)t — A1(0, ) + WP (2) + Z327°(0)}
> P{By > (1 — p1 — ¢ + 4e)t}

xP{(py — €)t — A1(0, 1) + WP (t) < et} P{Z3>7<(0) < et}.

Note that A, (0,¢) and W () are not independent. Since Z3> “(0) has a non-
defective distribution, it follows that

lim P{Z3*¢(0) < et} = 1.

12



Observe that

P{(pl — G)t — Al((], t) + Wl l(t) S Gt}
>P{A:(0,7) = (p1 — €)t, W' (1) < et}
>P{A;(0,t) > (p1 — €)t} — P{W () > et}.

Now, P{A;(0,t) > (p1 — €)t} — 1 as t — oo, because of (1). Moreover, for
fixed x > 0,

lim sup P{W?' (¢) > et} < limsup P{W (1) > 2} = P{W?' > z}.
t—o00

t—o0

Letting + — oo and using the fact that W‘fl has a proper distribution, we
thus have

Jim P{W?*(t) > et} = 0.

Using (11), we have

lim inf P{So > t} >1
t—00 P{BO > (1 —p1 — wg + 46)t}

Finally, use the fact that B;(-) € ZR:

lim inf
t—oo” P{Bg > (1 — p1 — 1o)t}
> lim inf P{S >} P{Bo > (1 — p1 — 92 +4e)t}

t—oo P{BO > (1 —p1— Yo+ 46)t} P{BO > (1 —p1 — wz)t}
.. P{Bo> (1 —p1 — v +4e)t}
S (TS T S

€l 0. O

The following lemma implies an upper bound for the sojourn time. We will
need this bound for the case py < ¢9. When py > ¢, it turns out that the
upper bound provided by Corollary 5 is already tight.

Lemma 8 Fort >0,

Bo(0,1) >t — W(0) — A0, ).

PROOF. Directly from (4) and (7). O

13



Corollary 5 and Lemma 8 provide the necessary ingredients to prove the next
theorem which together with Theorem 7 implies the result of Theorem 3.

Theorem 9 (upper bound) If Bi(-) € ZR and p; < ¢; then

. P{So > t}
lim su < 1.
t—»oop P{BO > (1 —pP1— 1/12)t} -

PROOF. When py > ¢4, the theorem is immediately implied by Theorem 1
and Corollary 5. Let us therefore assume that ps < ¢9, i.e., 1o = py. By virtue
of Corollary 5 and Lemma 8 we may write

P{S, > t}
<P{S? > ¢, By > (1—p—e€)t —W(0)+ (p+ )t — A0, 1)}
<P{By > (1 —p—2€)t} + P{SF >t, W(0) + A(0,) — (p+ €)t > et}
<P{Bg > (1 —p—2€)t} + P{SP >t, By < (¢1 — p1 — €)t}

+P{Bgy > (¢ — p1 — )t} P{W(0) + A(0,t) — (p + €)t > et}.

Using [13, Lemma 2.1] — the assumptions of which are satisfied by the sojourn
time in an isolated PS queue because of [13, Theorem 4.1] — we have

P{S§" > t, By < (¢1 — p1 — €)t} = o(P{Bo > (¢ — p1 — €)t}), t — oo
Furthermore, as t — oo,
P{W(0) + A(0,t) — (p+ €)t > et}
<P{W(0) > et} + P{A(0,t) > (p+ €)t} — 0,
where we use (8) and the fact that W (0) has a non-defective distribution.
Therefore,
Z]P){BO > (1 —p— 26)t} + O(]P’{BO > (1 — p)t})

The last equality uses the fact that B;(-) € ZR and can be proved using [13,
Appendix B]. Using Bi(-) € ZR once more, we finally obtain

| <1 —
P EB, > (1-p)t = el T BBy > (1)t} !

letting € | 0. O
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5 Summary

We have investigated the delay of elastic traffic when served together with
other traffic in a two-class GPS system. Within the elastic class, capacity
is shared according to the PS mechanism, which ensures that bandwidth
is equally divided among the customers present. Previous work has already
shown that GPS-like mechanisms are able to protect flows in the sense that
the workload asymptotics are not affected by other classes, unless the weights
are chosen too small. Therefore, these mechanisms are considered relevant for
future DiffServ applications.

We have shown that the delay asymptotics of the elastic traffic class are not
affected by the other class, provided that the GPS weight of the elastic class
is chosen larger than its average traffic rate.

The result established in Theorem 3 extends the known tail equivalence result
for the ordinary M/G/1 processor-sharing queue (Theorem 1) to a GPS envi-
ronment. In contrast, the sojourn time and service requirement distributions
will not necessarily be equally heavy when the weight of the elastic class is
too small, unless additional assumptions are imposed on the traffic character-
istics of the other class (see e.g. [12] for a scenario with strict priority for the
competing class).
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