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ABSTRACT

For the G/G/1 queue with First-Come First-Served, it is well known that the tail of the
sojourn time distribution is heavier than the tail of the service requirement distribution
when the latter has a regularly varying tail. In contrast, for the M/G/1 queue with Pro-
cessor Sharing, Zwart and Boxma [26] showed that under the same assumptions on the
service requirement distribution, the two tails are \equally heavy". By means of a prob-
abilistic analysis we provide a new insightful proof of this result, allowing for the slightly
weaker assumption of service requirement distributions with a tail of intermediate regu-
lar variation. The new approach allows us to also establish the \tail equivalence" for two
other service disciplines: Foreground-Background Processor Sharing and Shortest Remain-
ing Processing Time. The method can also be applied to more complicated models, for
which no explicit formulas exist for (transforms of) the sojourn time distribution. One
such model is the M/G/1 Processor Sharing queue with service that is subject to random
interruptions. The latter model is of particular interest for the performance analysis of
communication networks.
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1 Introduction

Cohen [7] showed that in the G/G/1 queue with the First-Come First-Served (FCFS) discipline, the
waiting-time distribution is regularly varying of index 1�� if and only if the distribution of the service
requirements is regularly varying of index ��, where � > 1. (A formal de�nition of regularly varying
distributions is given in Appendix A.) Thus, the tail of the waiting-time distribution (and, hence, the
sojourn time distribution) is \as heavy" as the integrated tail distribution of the service requirements
and, therefore, heavier than the tail of the service requirement distribution itself. In particular, the
m-th (m > 0) moment of the sojourn time distribution is �nite if and only if the (m+ 1)-st moment
of the service requirement distribution is �nite.
Assuming Poisson arrivals and a regularly varying tail of the service requirement distribution with

index � 2 (1; 2), Anantharam [1] has shown that the mean of the sojourn time is in�nite for any
non-preemptive service discipline. In contrast, Anantharam [1] also showed that, under the same
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assumptions on the arrival process and the service requirements, there exist preemptive service disci-
plines for which the mean sojourn time is �nite. More speci�cally, Zwart and Boxma [26] proved that
in the M/G/1 queue with Processor Sharing (PS) the tail of the sojourn time distribution is exactly
as heavy as that of the service requirement distribution when the latter has a regularly varying tail.
In this paper we provide an alternative probabilistic proof of Zwart and Boxma's \tail-equivalence"

result (the original proof was based on Laplace transform techniques) and we extend it in several
directions. Our approach allows for the slightly larger class of intermediate regularly varying service
requirement distributions (see Assumption 2.1 for a de�nition). This shows that the tail equivalence
still applies in cases where the tail of the service requirement distribution \
uctuates" between those of
Pareto distributions with di�erent indexes1. Besides PS, we show that the tail-equivalence also holds
when the service discipline is either Foreground-Background Processor Sharing (FBPS) or Shortest
Remaining Processing Time (SRPT). Our main interest being in PS, the latter two disciplines are
only considered in the case that the variance of the service requirements is in�nite. In the proofs, we
use known expressions for the moments of the sojourn time distribution [21, 23, 24]. We emphasize
that, although in the literature these expressions were derived from the Laplace transforms of the
sojourn time distributions, they can alternatively be derived by solving simple ordinary di�erential
equations. This allows us to apply the method to more complicated models where Laplace transform
expressions are not available. In particular, the method's 
exibility was illustrated in [17, Ch. 5] by
establishing the tail equivalence for an M/G/1-PS model with random service interruptions.
Our method is based on establishing a relationship between a customer's sojourn time and its

service requirement. Henceforth, the sojourn time of customers having a given service requirement
will be referred to as the conditional sojourn time. We shall provide conditions on the moments of the
conditional sojourn time distribution which imply that the tails of the sojourn time and the service
requirement distributions are equally heavy when the latter is of intermediate regular variation (this
will be made precise below).
Independent of the present analysis, Jelenkovi�c and Mom�cilovi�c [12] used a related large deviations

analysis to extend the tail equivalence result for the M/G/1-PS model to cases in which the tail of
the service requirement distribution is \lighter" than that of Pareto distributions.

The analysis of queueing models with heavy tailed tra�c characteristics is an important issue in the
performance analysis of data communication systems. Heavy tails in the `input' processes provide an
explanation for phenomena such as long-range dependence and self-similarity that have been observed
in data tra�c measurements [14]. Moreover, in the context of telecommunications, the PS discipline is
particularly relevant as it provides a justi�able modeling assumption for the way capacity is allocated
to so-called elastic tra�c 
ows [15, 17], which constitute the bulk of tra�c in modern communication
networks. The capacity available to elastic tra�c is, however, not constant in time, but varies due to
other applications that also share in the network's resources. PS systems in which the service capacity
varies over time are, however, hard to analyze and closed-form expressions for performance measures
such as (transforms of) the sojourn time distribution are only available in speci�c cases [16, 17]. For
this reason it is important to develop methods that allow for analysis of such models, not relying on
closed-form expressions. The 
exibility of the technique presented in this paper is illustrated in [17,
Ch. 5], where it is applied to establish the tail equivalence result in a modi�ed M/G/1-PS model,
with service that alternates between availability periods (exponentially distributed) and unavailabil-
ity periods (generally distributed). For that model, even basic measures such as the mean number of
customers in the system and the mean sojourn time are not known.

The structure of the remainder of the paper is as follows. Section 2 presents our approach in a
general context. Intermediate results that are needed to apply the techniques of Section 2 to various

1An example of such a distribution is H(x) = 1� x�1 (sin (ln (ln(x+ 1)))� �2), x � 0, where �1 > 0 and �2 �
p
2.

This distribution 
uctuates between Pareto distributions with indexes ��1(�2 � 1) and ��1(�2 + 1)
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queueing models are gathered in Section 3. In Sections 4, 5 and 6 we show the tail equivalence for
the M/G/1 queue with PS, FBPS and SRPT, respectively. The discussion in Section 7 provides an
intuitive explanation of the results and Section 8 concludes the paper.

2 Su�cient conditions for tail equivalence

We state the main result in a general setting. Let B be a non-negative random variable with distri-
bution function B(x), x � 0. For � � 0 let V (�) � 0 be a non-negative random process independent
of B. We will be interested in V (B), i.e., the value of the process V (�) at the stopping time B. The
random variable V (B) is well de�ned and its distribution function is given by

P fV (B) � tg =

Z 1
�=0

P fV (�) � tgdB(�):

Remark 2.1 In the subsequent sections, B(x) will represent the service requirement distribution
and V (�) will stand for the sojourn times of customers with service requirement � . Consequently, the
unconditional sojourn time of an arbitrary customer shall be distributed as V (B).

Assumption 2.1 The tail B(x) := 1 � B(x) of the distribution function B(x) is of intermediate
regular variation at in�nity, i.e.,

lim inf
"#0

lim inf
x!1

B(x(1 + "))

B(x)
= 1:

When this assumption is satis�ed, we write B(x) 2 IR. In particular, all functions with a regularly
varying tail are of intermediate regular variation, see Cline [6] for a discussion. Assumption 2.1 implies
that there exist numbers � 2 (0;1), x0 2 (0;1), and � 2 (0; 1) such that, for all x2 � x1 � x0,

B(x2)

B(x1)
� �

�
x2
x1

���
; (2.1)

see Appendix B.

Besides Assumption 2.1 on the distribution B(x), we further impose on V (�) the conditions in
Assumption 2.2 below. In the subsequent sections we will show for several queueing models that
Assumption 2.1 implies Assumption 2.2, where B(x) and V (�) have the interpretation given in Re-
mark 2.1.

Assumption 2.2 The following three conditions are satis�ed:

(i) For some g > 0,

lim
�!1

E [V (�)]

�
= g: (2.2)

(ii) For � � 0 as in (2.1) there exist � > � and � > 0 such that:

lim
�!1

���+�E
h��� V (�)�E [V (�)]

����i = 0; (2.3)

i.e.,

E
h��� V (�) �E [V (�)]

����i = o(����); � !1:
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(iii) For all t � 0, the probability P fV (�) > tg is non-decreasing in � � 0. Hence, all moments
E [V (�)n], n 2 IN, are non-decreasing in � .

In the sequel, the constants g, �, � and � will be as in Assumption 2.2. The main result is stated
in Theorem 2.3. In its proof we use Lemmas 2.1 and 2.2 which rely on the following form of Markov's
inequality (see Williams [22, Section 6.4]) for the tail distribution of V (�):

P fV (�) �E [V (�)] > tg �
E
��� V (�) �E [V (�)]

����
t�

; (2.4)

for all � � 0 and t > 0. When � = 2, which is the case in two of the examples studied in the next
sections, this reduces to Chebyshev's inequality:

P fV (�) �E [V (�)] > tg �
Var [V (�)]

t2
: (2.5)

Our �rst lemma states that \when B is small, V (B) can not be large".

Lemma 2.1 Suppose Assumptions 2.1 and 2.2 are satis�ed. Then, for �xed " 2 (0; 1),

lim
x!1

P fV (B) > g x;B � x(1� ")g

P fB > x(1� ")g
= 0:

Proof. For transparency of the presentation, the proof is deferred to Appendix C.
The following lemma complements the statements of Lemma 2.1 for the case that B is large.

Lemma 2.2 If Assumption 2.2 is satis�ed then, for all " > 0,

lim
x!1

P fV (B) > g x;B > x(1 + ")g

P fB > x(1 + ")g
= 1:

Proof. Clearly, the lim sup of the above expression can not be larger than 1. Therefore, it su�ces to
show that the lim inf is at least 1. By Assumption 2.2 we have, for all � � x(1 + "),

P fV (�) > g xg � P fV (x(1 + ")) > g xg :

Hence,

P fV (B) > g x;B > x(1 + ")g =

Z 1
�=x(1+")

P fV (�) > g xgdB(�)

� P fV (x(1 + ")) > g xgP fB > x(1 + ")g :

From (2.2) it follows that E [V (x(1 + "))]� g x > 0, for x large enough. By Markov's inequality:

P fV (x(1 + ")) � g xg

= P fE [V (x(1 + "))]� V (x(1 + ")) � E [V (x(1 + "))]� g xg

�
E
��� V (x(1 + "))�E [V (x(1 + "))]

����
(E [V (x(1 + "))]� gx)�

;

and, by (2.2) and (2.3), this vanishes as x!1. Therefore,

lim
x!1

P fV (x(1 + ")) > g xg = 1;

and the proof is completed. 2

Together, Lemmas 2.1 and 2.2 enable us to prove our main result which is stated in the following
theorem.
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Theorem 2.3 Suppose Assumptions 2.1 and 2.2 are satis�ed. Then the tail distributions of the
random variables B and V (B) are equally heavy in the sense that:

lim
x!1

P fV (B) > g xg

P fB > xg
= 1:

Proof. The proof is given in two parts. First we write, for " > 0,

P fV (B) > g xg � P fV (B) > g x;B � x(1� ")g

+ P fB > x(1� ")g :

By Lemma 2.1 and the fact that B(x) 2 IR we may neglect the �rst term on the right-hand side.
Hence,

lim sup
x!1

P fV (B) > g xg

P fB > xg
� lim sup

x!1

P fB > x(1� ")g

P fB > xg
:

Letting " # 0, the right-hand side tends to 1. For the second part of the proof we write, for " > 0,

P fV (B) > g xg � P fV (B) > g x;B > x(1 + ")g :

Combining this with Lemma 2.2, we have

lim inf
x!1

P fV (B) > g xg

P fB > xg
� lim inf

x!1

P fB > x(1 + ")g

P fB > xg
:

By Assumption 2.1 the right-hand side tends to 1 as " # 0. 2

3 Intermediate results

Before applying the results of the previous section to various models, we review some common no-
tation and technical results that shall be used in the sequel. We start by considering an M/G/1
queue. Customers arrive according to a Poisson process with intensity � and their service requirement
distribution is B(x) with mean �1 <1 and kth moment �k � 1, k > 1. Service is rendered at rate
1 whenever the system is not empty. The tra�c load is denoted by � = ��1 and we assume that
the system is stable: � < 1. The random variables B, V (�) and V (B) will generically represent the
service requirement, the sojourn time conditional on B = � , � � 0, and the unconditional sojourn
time, respectively.
When the second moment of the service requirement distribution (�2) is in�nite, we need to impose

the following conditions:

Assumption 3.1 E [B�] <1 for some � 2 (1; 2).

Assumption 3.2 E
�
B�
�
=1 for some � 2 (1; 2).

It is straightforward to see that when Assumption 3.2 is satis�ed and B(x) 2 IR, then (2.1) holds
for the same choice of �. Assumption 3.1 implies that the tail of the service requirement distribution
is dominated by a Pareto tail, i.e., that for some � > 0 and all x large enough, B(x) is smaller than
x��. We formalize the latter statement in a more general context in the next lemma.



3 Intermediate results 6

Lemma 3.1 If Z is a non-negative random variable with E
�
Z�
�
<1, for some � 2 IR, then

P fZ > ug = o(u��);

for u!1. Hence, there exists a number u0 > 0 such that P fZ > ug � u��, for all u � u0.
Conversely, if P fZ > ug = o(u��), for u!1, then E

�
Z��"

�
<1, for all " 2 (0; �).

Proof. The �rst statement follows from the fact that

lim
u!1

�
u�P fZ > ug

�
= lim

u!1

�
�

Z u

x=0

x��1P fZ > xg dx�

Z u

x=0

x�dP fZ � xg

�
= E

�
Z�
�
�E

�
Z�
�
= 0:

The existence of the number u0 is trivial and the last statement follows from:

E
�
Z��"

�
= (� � ")

Z 1
u=0

u��"�1P fZ > ugdu < 1:

2

In the sequel, the random variable W�;B is distributed as the (steady-state) waiting time in the
M/G/1 FCFS queue with arrival rate � and service time distribution B(x), i.e.,

P fW�;B � tg = (1� �)

 
1 +

1X
n=1

�nP fBres;1 + � � �+Bres;n � tg

!
;

cf. Cohen [8, Part II, Expression (4.82)]. Here, Bres;1; Bres;2; : : : represents a sequence of i.i.d. random
variables, drawn from the forward recurrence distribution of the service requirements, i.e., for all k,

P fBres;k � tg =
1

�1

Z t

x=0

P fB > xgdx:

It will be convenient to write the distribution of W�;B as follows,

P fW�;B � tg = (1� �)

1X
n=0

�n
�
1

�1

Z t

x=0

P fB > xg dx

�n?
; (3.1)

where the symbol ? denotes the convolution operator for probability distributions, i.e., for a distribu-
tion function H(x), x � 0, we de�ne H(x)

0?
:= 1; for all x � 0, and for n 2 IN0 and x � 0,

H(x)
(n+1)?

:=

Z x

u=0

H(x� u)
n?
dH(u): (3.2)

The next lemma states a direct implication of Assumption 3.1 for the distribution of W�;B . This
relation will be useful in the analysis of sojourn times in the case that �2 =1.

Lemma 3.2 Let � > 1. If E [B�] <1 then E
h
(W�;B)

��1
i
<1.

Proof. Asmussen [2, Thm. VIII.2.1]. An alternative proof can be found in [17, Ch. 5]. 2
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4 Processor Sharing

In the M/G/1 PS queue, at any point in time all customers in the system share equally in the service
capacity. For an overview on the literature on PS queues we refer to Yashkov [24, 25]. More recent
references can be found in [17]. Here we are interested in the tail of the sojourn time distribution.
In order to prove that the tails of the sojourn time and service requirement distributions are equally
heavy, in the sense of Theorem 2.3, we will need to verify Assumption 2.2. For this reason we shall �rst
list some known results for the moments of V (�). It is well known that the mean of the conditional
sojourn time is given by:

E [V (�)] =
�

1� �
; (4.1)

see Sakata et al. [19, Eq. (10)], Sakata et al. [20, Eq. (49)], or Kleinrock [13, Eq. (4.17)]. The variance
of V (�) is given by

Var [V (�)] =
2

(1� �)2

Z �

u=0

(� � u)P fW�;B > ugdu; (4.2)

cf. Yashkov [23, Eq. (3.20)] and Zwart and Boxma [26, Eq. (3.5), (3.10)]. W�;B is distributed as
in (3.1). When �2 <1 we have for k = 2; 3; : : : , and � !1,

E
�
V (�)k

�
= E [V (�)]k +

�2
2�1

�

1� �

k(k � 1)

(1� �)k
�k�1 + o(�k�1); (4.3)

cf. Zwart and Boxma [26, Rem. 3.3].

In the literature these results have mostly been obtained from expressions derived for the Laplace-
Stieltjes transform of V (�). However, (4.1){(4.3) can be obtained from a set of simple (integro-
)di�erential equations instead of deriving the Laplace-Stieltjes transform of V (�), see Yashkov [23,
Rem. 3] for an outline of how this can be done for (4.2).
The di�erential equations rely on a well known decomposition of the sojourn time of a customer with

service requirement � that arrives to the system when n customers are present with remaining service
requirements x1; : : : ; xn, respectively. Denoting this conditional sojourn time by Vn(� ;x1; : : : ; xn) it
holds that (cf. Yashkov[23, Eq. (3.4)])

Vn(� ;x1; : : : ; xn) = D(�) +

nX
i=1

�(xi; �); (4.4)

where the terms on the right-hand side are independent random variables. The random variable D(�)
constitutes a \basic" component of the sojourn time: it has the distribution of the sojourn time of a
customer with service requirement � that enters into an empty system. When the system is not empty,
the i-th customer present (with remaining service requirement xi) \adds" a delay �(xi; �) to the new
customer's sojourn time. It is worth emphasizing that the delay components �(xi; �); i = 1; : : : ; n;
are independent of each other and independent of D(�).
The decomposition in (4.4) has played a central role in the analysis of PS queues [9, 10, 18, 16]. It

is also essential to the asymptotic analysis of the M/G/1 PS queue in Jelenkovi�c and Mom�cilovi�c [12]
and that of the already mentioned modi�ed M/G/1 PS queue with random service interruptions in [17,
Ch. 5]. It is beyond the scope of this paper to work out the details, instead, the reader interested in
the derivation of the di�erential equations from which the moments can be found is referred to [16, 17].

The following result was previously proved by Zwart and Boxma [26, Thm. 4.1] for the case that
the service requirement distribution has a regularly varying tail.
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Theorem 4.1 Consider the M/G/1 PS queue. If B(x) 2 IR and one of the following conditions is
satis�ed,

(i) �2 <1,

(ii) Assumptions 3.1 and 3.2 hold,

then

lim
x!1

P
n
V (B) > x

1��

o
P fB > xg

= 1:

Remark 4.1 Note that we exclude the case that �2 = 1 and E
�
B�
�
< 1 for all � 2 (1; 2). This

case can be included by studying the fourth moment of the sojourn time.

Proof of Theorem 4.1. We show that Assumption 2.2 is satis�ed. First we note that the monotonicity of
P fV (�) > tg in � , the last condition in Assumption 2.2, is easily seen using a sample-path argument:
Comparing the sojourn times of two customers, for the same sequences of inter-arrival times and
service requirements of other customers, it follows immediately that the one requiring the smaller
amount of service leaves before the one with the larger service requirement. As a consequence of (4.1),
we also have that (2.2) holds with g = 1=(1� �).
We now focus on (2.3) and �rst consider the case that �2 <1. Equation (4.3) implies the following

asymptotic result, for arbitrary " > 0 and k = 2; 3; : : : ,

E
h
(V (�) �E [V (�)])

k
i

= o(�k�1+"); � !1:

Thus, if B(x) 2 IR and � is as in (2.1), then let � be an even integer which is larger than �. Then
Assumption 2.2 is satis�ed for any � 2 (0; 1) with g = 1=(1� �), hence, Theorem 2.3 can be applied.
In the case that E [B�] < 1 and E

�
B�
�
= 1, for some 1 < � < � < 2, we note that B(x)

satis�es (2.1). Using Lemmas 3.1 and 3.2, we have P fW�;B > ug = o(u1��) and, using (4.2),
Var [V (�)] = o(�3��+") for all " > 0. Thus, Assumption 2.2 is satis�ed with � = 2 and 0 < � < ��1.
Now apply Theorem 2.3. 2

5 Foreground-Background Processor Sharing

With the FBPS discipline, at all times, the service capacity is used to serve the customer(s) which
so far have received the least amount of service, see Kleinrock [13] or Yashkov [24]. Note that more
than one customer can have the (same) minimum amount of attained service. In that case the service
capacity is shared equally among these customers, hence the term processor sharing.
Assuming B(x) is absolutely continuous, the mean and variance of the sojourn time are given by:

E [V (�)] =
�

1� �h1(�)
+

�h2(�)

2(1� �h1(�))2
; (5.1)

Var [V (�)] =
�h3(�)

3(1� �h1(�))3
+

��h2(�)

(1� �h1(�))3
+

3(�h2(�))
2

4(1� �h1(�))4
; (5.2)

cf. Yashkov [24, Form. (6.2) and (6.3)]. The functions hj(�), j = 1; 2; 3, are given by

hj(�) = j

Z �

x=0

xj�1B(x)dx: (5.3)
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For FBPT the tail equivalence of sojourn time and service requirement distribution holds under the
same assumptions as imposed on the M/G/1 queue with PS in the previous section. In this paper
we shall only proof this for the case that �2 = 1 by using the above expressions. Similar as for the
PS model, in the general case the proof can be given by �rst deriving di�erential equations for higher
moments and, by means of these, showing that part (ii) of Assumption 2.2 is satis�ed.

Theorem 5.1 Consider the M/G/1 queue with FBPS. If B(x) 2 IR and Assumptions 3.1 and 3.2
are satis�ed, then

lim
x!1

P
n
V (B) > x

1��

o
P fB > xg

= 1:

Proof. First we remark that, as in the proof of Theorem 4.1, the monotonicity of P fV (�) > tg in � ,
follows from a sample-path argument. Hence, it remains to be shown that (2.2) and (2.3) hold.
Note that the hj(�) de�ned in (5.3) are non-decreasing, positive functions, and that

lim
�!1

h1(�) = �1 < 1:

By Lemma 3.1 there is a number x0 > 0 such that B(x) � x��, for all x � x0. Using this in (5.3) for
j = 2; 3, we have, for arbitrary " > 0,

hj(�) = o(� j��+"); � !1:

Hence, by (5.1) and (5.2),

lim
�!1

E [V (�)]

�
=

1

1� �
; lim

�!1

Var [V (�)]

�3��+"
= 0:

Now, Assumption 2.2 is implied by Assumption 3.2 (with � = 2 and 0 < � < �� 1). 2

6 Shortest remaining processing time �rst

Now we consider an M/G/1 queue in which the total service capacity is always allocated to the
customer with the shortest remaining processing time. The service of a customer is pre-empted when
a new customer arrives with a service requirement smaller than the remaining service requirement of
the customer being served. The service of the customer that is pre-empted is resumed as soon as there
are no other customers with a smaller amount of work in the system. Currently, there is renewed
interest in the SRPT discipline due to its relevance in Web server modeling [3, 11].

Remark 6.1 Note that if the service requirement distribution has discontinuity points, it may occur
(with positive probability) that two customers have the same remaining service requirement, see
Schrage and Miller [21]. Here we assume this is not the case, thus, B(x) is a continuous function.

Following Schrage and Miller [21] we decompose the sojourn time into two di�erent periods: The
waiting time (the time until the customer is �rst served) and the residence time (the remainder of the
sojourn time). For a customer with service requirement � , we denote the waiting time by W (�) and
the residence time by R(�). Thus, the sojourn time is given by V (�) =W (�) +R(�). We emphasize
that the residence time may contain service pre-emption periods caused by customers with a smaller
service requirement. Schrage and Miller [21] obtained the LST of W (�) and R(�). For our purposes
we only need the �rst two moments of these random variables. First we de�ne �(�) as the tra�c load
of customers with an amount of work less than or equal to � ,

�(�) := �

Z �

t=0

tdB(t): (6.1)
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The �rst two moments of W (�) are given by:

E [W (�)] = �

R �
t=0

t2dB(t) + �2B(�)

2 (1� �(�))2
; (6.2)

E
�
W (�)2

�
= �

R �
t=0 t

3dB(t) + �3B(�)

3 (1� �(�))
3

+�2
Z �

t=0

t2dB(t)

R �
t=0 t

2dB(t) + �2B(�)

(1� �(�))
4 ; (6.3)

and the mean and variance of R(�) by

E [R(�)] =

Z �

t=0

1

1� �(t)
dt; (6.4)

Var [R(�)] = �

Z �

t=0

R t
u=0 u

2dB(u)

(1� �(t))
3 dt: (6.5)

These expressions enable us to apply Theorem 2.3, thus showing the tail equivalence in the case
that �2 =1. Although not shown here, the result is also true when �2 <1.

Theorem 6.1 Consider the M/G/1 queue with SRPT. If B(x) 2 IR and Assumptions 3.1 and 3.2
are satis�ed, then

lim
x!1

P
n
V (B) > x

1��

o
P fB > xg

= 1:

Proof. The proof proceeds along the same lines as those of Theorems 4.1 and 5.1. The monotonicity of
P fV (�) > tg in � follows from a sample-path argument. Furthermore, note that �(�) de�ned by (6.1)
is a positive, non-decreasing function with �(�) �! �, as � ! 1. Using that the C�esaro limit of a
function is �nite and equal to the ordinary limit when the latter exists, we have:

lim
�!1

E [R(�)]

�
= lim

t!1

1

1� �(t)
=

1

1� �
:

Now consider (6.5) and replace dB(u) by �dB(u). By Lemma 3.1 there is a number x0 > 0 such that
B(x) � x��, for all x � x0. Using partial integration and the fact that �(t) � � for all t � 0, we have,
for arbitrary " > 0,

Var [R(�)] = ��

Z �

t=0

R t
u=0

u2dB(u)

(1� �(t))
3 dt

�
��

(1� �)
3

Z �

t=0

�
t2B(t)� 2

Z t

u=0

uB(u)du

�
dt

= o(�3��+"); � !1:

In the same way, by partial integration we have for E [W (�)], using Formula (6.2),

E [W (�)] = �

R �
t=0 tB(t)dt

(1� �(�))
2 ;

and similarly for E
�
W (�)2

�
. With the above bound for B(u), the following relations follow for all

" > 0:

lim
�!1

E [W (�)]

�2��+"
= lim

�!1

E
�
W (�)2

�
�3��+"

= 0;
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hence, since 3� � > 2(2� �),

Var [W (�)] = o(�3��+"); � !1:

Using the fact that the random variables W (�) and R(�) are independent for �xed � > 0, we have,
for all " > 0,

lim
�!1

E [V (�)]

�
=

1

1� �
; lim

�!1

Var [V (�)]

�3��+"
= 0:

Thus, Assumptions 2.1 and 2.2 are satis�ed (for � = 2 and 0 < � < � � 1) and we may apply Theo-
rem 2.3. 2

7 Discussion of the results

In all three models of Sections 4 { 6 we found that, when applying Theorem 2.3, the factor g is equal
to 1=(1� �). An intuitive interpretation of this is as follows. Theorems 4.1, 5.1 and 6.1 state that the
probability that a customer's sojourn time exceeds the value x=(1� �) is asymptotically (for x!1)
equal to the probability that a customer's service requirement exceeds a value x. This property can
be understood partly by noting that the three models share the property that if a customer with an
in�nite service requirement is placed in the queue, then the queue remains stable. Hence, after a
very long period, say t time units with t ! 1, the average capacity per unit of time devoted to the
service of non-permanent customers is approximately equal to the average tra�c load � (because the
system is stable and, hence, all non-permanent customers eventually leave the system). The average
total service capacity rendered by the system (per unit of time) is approximately 1. Thus, the average
service capacity devoted to the permanent customer is approximately 1� �. If the amount of service
received by the permanent customer at time t is denoted by S(t), we have that

S(t)

t
� 1� �;

hence, the factor g above.
The above reasoning for the ratio S(t)=t also holds when the service requirement distribution is not

heavy tailed. However, it is known that the tail equivalence result does not hold for the M/M/1 PS
queue [5]. The reason for this is that with a \light-tailed" service requirement distribution, Lemma 2.1
{ which we need in the proof of Theorem 2.3 { does not hold: A large sojourn time may be due to
the fact that many other customers are requesting service. Di�erent from the heavy-tailed case, the
probability of this happening is not negligible compared to that of a large sojourn time and a large
service requirement occurring simultaneously.

8 Summary

We presented a new approach for the analysis of the tail of the sojourn time distribution when the
service requirement distribution has a heavy tail of intermediate regular variation. We extended the
\tail equivalence" of the sojourn time distribution and the service requirement distribution in the
M/G/1 PS queue to distributions of this class. We also established the tail equivalence in the M/G/1
queues with FBPS or SRPT.
The strength of the approach outlined in this paper is its 
exibility to be applied to models for

which no closed-form expressions are available. An example of such a model is the M/G/1 PS queue
with random service interruptions studied in [17, Ch. 5]. To establish the tail equivalence it su�ces
to verify the three asymptotic properties listed in Assumption 2.2. (This, in itself, is not a trivial
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exercise due to the fact that even basic performance measures are not known for this model. As for
the ordinary M/G/1 PS queue it may be accomplished by means of a set of di�erential equations for
the moments of the conditional sojourn times, which must be solved \asymptotically" [17].)
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A De�nition of regularly varying distributions

A distribution function H(x), x � 0, is said to have a regularly varying tail (at in�nity) with index
� < 0 if, for arbitrary t > 0,

lim
x!1

1�H(tx)

1�H(x)
= t�:

The foremost important member of this class is the Pareto distribution: H(x) = 1� (1 + a x)�, x � 0,
where a > 0 is an additional constant.

B Proof of Relation (2.1)

First we repeat the relation in the next lemma.

Lemma Let B(x) 2 IR. Then there exist numbers � 2 (0;1), x0 2 (0;1), and � 2 (0; 1) such that,
for all x2 � x1 � x0,

B(x2)

B(x1)
� �

�
x2
x1

���
:

Proof. Let " > 0. Because B(x) 2 IR, there exists a K = K(") 2 (0; 1) and an x0 = x0(";K) such
that, for all x � x0,

B(x(1 + "))

B(x)
� K:

Let x1 and x2 be such that x2 � x1 � x0, and let

n :=

�
ln(x2)� ln(x1)

ln(1 + ")

�
;

where dye is the smallest integer which is larger than or equal to y 2 IR. Obviously, n > 0 and
x2 � x1(1 + ")n. We may write:

B(x1) � K�1B(x1(1 + ")) � : : :

� K�nB(x1(1 + ")n) � K�nB(x2):

Now the lemma is proved by setting

� =
� ln(K)

ln(1 + ")
> 0;

and � = (1 + ")�� . 2
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C Proof of Lemma 2.1

Lemma Suppose Assumptions 2.1 and 2.2 are satis�ed. Then, for �xed " 2 (0; 1),

lim
x!1

P fV (B) > g x;B � x(1� ")g

P fB > x(1� ")g
= 0:

Proof. We prove the lemma using the following relations, which hold for x \large enough":

P fV (B) > g x;B � x(1� ")g =

Z x(1�")

�=0

P fV (�) > g xg dB(�)

�

Z x(1�")

�=0

P fV (�)�E [V (�)] > g x�E [V (x(1� "))]gdB(�)

�

R x(1�")
�=0 E

��� V (�) �E [V (�)]
���� dB(�)

(g x�E [V (x(1� "))])�
: (C.1)

The �rst inequality is an immediate consequence of the monotonicity of E [V (�)] in � , see Assump-
tion 2.2. For the second inequality we use (2.4). Note that, indeed, for x large enough it must be that
g x�E [V (x(1� "))] is positive, since by Assumption 2.2:

g x

E [V (x(1� "))]
�!

1

1� "
> 1; x!1:

Hence, for large x, the denominator of the right-hand side of (C.1) \behaves as" (gx")
�
:

Next we study the numerator. We can choose � > 0 small enough such that � � � > �. Let x0 be
as in (2.1), and �0 � x0 such that, for all � � �0:

E
h��� V (�) �E [V (�)]

����i � ���� :

Such a �0 exists by Assumption 2.2. If x is such that x(1� ") > �0 then (C.1) leads to:Z x(1�")

�=�0

E
h��� V (�)�E [V (�)]

����i dB(�)
� �

Z x(1�")

�=�0

����dB(�)

p:i:
= ����0 B(�0)� (x(1� "))

���
B(x(1� "))

+(�� �)

Z x(1�")

�=�0

�����1B(�)d�

� ����0 B(�0) + (�� �)B(x(1� "))

Z x(1�")

�=�0

�����1
�

�

x(1� ")

���
d�

� ����0 B(�0) +
�� �

�� � � �
B(x(1� ")) (x(1� "))

���
;

where \p.i." indicates the use of partial integration. In the second inequality we used (2.1) and the

fact that (x(1� "))
���

B(x(1� ")) � 0. SinceZ �0

�=0

E
h��� V (�) �E [V (�)]

����i dB(�)
is independent of x and � � � > �, the numerator of the right-hand side of (C.1) is bounded from

above by a function that tends to in�nity as B(x(1� ")) (x(1� "))
���

. Recall that the denominator
\behaves as" (gx")

�
: Therefore, dividing the right-hand side of (C.1) by B(x(1 � ")), and letting

x!1, proves the lemma. 2
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