Performance of TCP-Friendly Streaming Sessions
in the Presence of Heavy-Tailed Elastic Flows*

René Bekker!*, Sem Borst™* Rudesindo Nufiez-Queija’*

"Department of Mathematics & Computer Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

*CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

iBell Laboratories, Lucent Technologies
P.O. Box 636, Murray Hill, NJ 07974, USA

Abstract

We consider a fixed number of streaming sessions which share a bottleneck link with
a dynamic population of elastic flows. Motivated by extensive measurement studies, we
assume that the sizes of the elastic flows exhibit heavy-tailed characteristics. The elastic
flows are TCP-controlled, while the transmission rates of the streaming applications are
governed by a so-called TCP-friendly rate control protocol. TCP-friendly rate control pro-
tocols provide a promising mechanism for avoiding severe fluctuations in the transmission
rate, while ensuring fairness with competing TCP-controlled flows.

Adopting the Processor-Sharing (PS) discipline to model the bandwidth sharing, we
investigate the tail distribution of the deficit in service received by the streaming sessions
compared to a nominal service target. The latter metric provides an indication for the
quality experienced by the streaming applications. The results yield valuable qualitative
insight into the occurrence of persistent quality disruption for the streaming users. We
also examine the delay performance of the elastic flows by exploiting a useful relationship
with a Processor-Sharing queue with permanent customers.

1 Introduction

Over the past decade, TCP has gained ubiquity as the predominant congestion control mecha-
nism in the Internet. While TCP is adequate for best-effort elastic traffic, such as file transfers
and Web browsing sessions, it is less suitable for supporting delay-sensitive streaming ap-
plications. In particular, the inherent fluctuations in the window size adversely impact the
user-perceived quality of real-time streaming applications. As a potential alternative, UDP
could be used to avoid the wild oscillations in the transmission rate. Since UDP does not
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respond to congestion, it may cause severe packet losses however, and give rise to unfairness
in the competition for bandwidth with TCP-controlled flows.

Discriminatory packet scheduling mechanisms provide a further alternative to achieve some
form of prioritization of streaming applications. However, the implementation of scheduling
mechanisms is surrounded with substantial controversy, because it entails major complexity
and scalability issues. In addition, priorization of streaming applications may cause perfor-
mance degradation and even starvation of TCP-controlled flows that back off in response to
congestion. Evidently, the latter issue gains importance as the amount of streaming traffic in
the Internet grows.

The above considerations have motivated an interest in TCP-friendly or equation-based rate
control protocols for streaming applications [14, 23, 25]. The key goal is to eliminate severe
fluctuations in the window size and adjust the transmission rate in a smoother manner. In
order to ensure fairness with competing TCP-controlled flows, the specific aim is to set the
transmission rate to the ‘fair’ bandwidth share, i.e., the throughput that a long-lived TCP
flow would receive under similar conditions.

Various methods have been proposed for determining the fair bandwidth share in an accurate
and robust manner. Typical methods involve measuring the packet loss rate and round-
trip delay (e.g. by running a low-rate connection to probe the network conditions). The
corresponding throughput may then be estimated from well-established equations that express
the throughput of a TCP-controlled flow in terms of the packet loss rate and round-trip delay,
see for instance [19, 22].

In the present paper we explore the performance of streaming applications under such TCP-
friendly rate control protocols. We consider a fixed number of streaming sessions which share
a bottleneck link with a dynamic population of elastic flows. The assumption of persistent
streaming users is motivated by the separation of time scales between the typical duration
of streaming sessions (minutes to hours) and that of the majority of elastic flows (seconds to
minutes). We assume that the sizes of the elastic flows exhibit heavy-tailed characteristics.
The latter assumption is based on extensive measurement studies which show that file sizes in
the Internet, and hence the volumes of elastic transfers, commonly have heavy-tailed features,
see for instance [12].

As mentioned above, the design and implementation of TCP-friendly mechanisms is a sig-
nificant challenge. In the present paper we leave implementation issues aside though, and
investigate the performance under idealizing assumptions. Specifically, we assume the rate
control mechanism reacts instantly and perfectly accurately to changes in the population of
elastic flows, and maintains a constant rate otherwise. This results — at the flow level — in a fair
sharing of the link rate in a Processor-Sharing (PS) manner. The PS discipline has emerged
as a useful paradigm for modeling the bandwidth sharing among dynamically competing TCP
flows, see for instance [3, 18, 20]. Although the PS paradigm may not be entirely justified for
short flows, inspection of the proofs suggests that this assumption is actually not that crucial
for most of the asymptotic results to hold.

We consider the probability that a possible deficit in service received by the streaming sessions
compared to a nominal service target exceeds a certain threshold. The latter probability
provides a measure for the degree of disruption in the quality experienced by the streaming
users. We furthermore examine the delay performance of the elastic flows.

In [17], the authors consider a mixture of elastic transfers and streaming users sharing the
network bandwidth according to weighted a-fair rate algorithms. Weighted a-fair allocations



include various common fairness notions, such as max-min fairness and proportional fairness,
as special cases. They also provide a tractable theoretical abstraction of the throughput
allocations under decentralized feedback-based congestion control mechanisms such as TCP,
and in particular cover TCP-friendly rate control protocols. In a recent paper [6], the authors
derive various performance bounds for a related model with a combination of elastic flows and
streaming traffic sharing the link bandwidth in a fair manner. The latter papers however focus
on different performance metrics.

The remainder of the paper is organized as follows. In Section 2 we present a detailed model
description. In Section 3 we analyze the delay and workload performance of the elastic flows
by exploiting a useful relationship with a M/G/1 PS model with permanent customers. The
main result is presented in Section 4, where we consider the workload asymptotics of the
streaming users for the case of constant-rate traffic. Besides a heuristic interpretation of the
result, we also give some preliminaries and an outline of the proof, which involves lower and
upper bounds that asymptotically coincide. The proofs of the lower and upper bounds may
be found in Sections 5 and 6, respectively. We extend the results to the case of variable-rate
streaming traffic in Section 7. In Section 8 we make some concluding remarks.

2 Model description

We consider two traffic classes sharing a link of unit rate. Class 1 consists of a static popu-
lation of K > 1 statistically identical streaming sessions. These sessions stay in the system
indefinitely. Class 2 consists of a dynamic configuration of elastic flows. These users arrive
according to a renewal process with mean interarrival time 1/, and have service requirements
with distribution B(-) and mean § < oo.

The elastic flows are TCP-controlled, while the transmission rates of the streaming sessions
are adapted in a TCP-friendly fashion. Abstracting from packet-level details, we assume that
this results in a fair sharing of the link rate according to the PS discipline. Thus, when there
are N (u) elastic flows in the system at time u, the available service rate for each of the users
— either elastic or streaming — is 1/(K + N(u)). Denote by C;(u) := K/(K + N(u)) the total
available service rate for the streaming traffic at time u. Define Ci(s,t) := f;':s Ci(u)du as
the total amount of service available for the streaming sessions during the time interval [s, ¢].
In the present paper, we will mainly be interested in the quantity Vi(t) := sup{A4i(s,t) —

s<t

C1(s,t)}, where Aj(s,t) denotes the amount of service which ideally should be available for
the streaming traffic during the interval [s,¢]. For example, A;(s,t) may be taken as the
amount of streaming traffic that would nominally be generated during the interval [s,¢] if
there were ample bandwidth. Thus, Vi (¢) may be interpreted as the shortfall in service for the
streaming traffic at time ¢ compared to what should have been available in ideal circumstances.
For conciseness, we will henceforth refer to Vi(¢) as the workload of the streaming traffic at
time ¢. It is worth emphasizing though that A; (s, t) represents just the amount of traffic which
ideally should have been served, and not the amount of traffic that is actually generated, which
is primarily governed by the fair service rates as described above. Thus, Vi(t) provides just
a virtual measure of a service deficit compared to an ideal environment, and by no means
corresponds to the backlog or buffer content in an actual system.

In Sections 3—6 we will focus on the ‘constant-rate’ case A;(s,t) = Kr(t—s), which amounts to
a fixed target service rate r per streaming session. We will extend the analysis in Section 7 to
the ‘variable-rate’ case where A; (s, t) is a general stochastic process with stationary increments.



We will also consider the quantity Va(t) := sup{Aa(s,t) — Ca(s,t)}, where As(s,t) denotes
s<t

the amount of elastic traffic generated during the time interval [s,¢], and Ca(s,t) represents
the amount of service available for the elastic flows during [s,t]. By definition, Ca(s,t) :=
/, t:s C2(u)du, with Ca(u) denoting the total available service rate for the elastic traffic at
time w. Evidently, C2(u) > 1 — Ci(u), with equality in case the streaming sessions always
claim the full service rate available. For the elastic traffic, the latter case is equivalent to a
G/G/1 PS queue with K permanent customers, accounting for the presence of the competing
streaming sessions.

However, we allow for possible strict inequality in case the streaming sessions do not always
consume the full service rate available, and the unused surplus is granted to the elastic class,
ie., Ca(s,t) =t — s — Bi(s,t), with B;(s,t) < C;(s,t) denoting the actual amount of service
received by class 7, ¢ = 1,2, during the interval [s, t]. For example, when the ‘workload’ of the
streaming sessions is zero, the actual service rate may be set to the minimum of the aggregate
input rate and the total service rate available. In particular, in the ‘constant-rate’ case the
actual service rate per streaming session at time w is then only min{r,1/(K + N(u))} when
Vi(u) = 0. Note that the total service rate is thus used at time u as long as Vi (u) + Va(u) >
0, which implies that Vi(t) + Va(t) = sup{Ai(s,t) + Aa(s,t) — (t — s)}. Hence, the case

s<t

Cy(s,t) = t — s — By(s,t) will be termed the work-conserving scenario, whereas the case
Ca(u) =1-C1(u) = N(u)/(K + N(u)) will be referred to as the permanent-customer scenario.
It may be checked that the work-conserving and permanent-customer scenarios provide lower
and upper bounds for the general case with t — s — Ci(s,t) < Ca(s,t) <t —s— Bi(s,t).
Define p := AS as the traffic intensity of class 2. Without proof, we claim that p < 1 is a
necessary and sufficient condition for class 2 to be stable. While the former is obvious, the
latter may be concluded from the comparison with the G/G/1/PS queue with K permanent
customers mentioned above (see [4] for the case of Poisson arrivals). For class 1 to be stable
as well, we need to assume that p + Kr < 1, with E[A(0,1)] = Kr. Here class 1 is said to
be stable if the ‘workload’ Vi(t) converges to a finite random variable as ¢ — oo. Denote by
Vi a random variable with the steady-state distribution of V;(¢), ¢ = 1,2. In Sections 4-7, we
additionally assume that (K + 1)r > 1 — p, which implies that the system is critically loaded
in the sense that one extra streaming session — or a ‘persistent’ elastic flow — would cause
instability. Combined, the above two assumptions give Kr < 1 —p < (K + 1)r.

We finally introduce some additional notation. Let B be a random variable distributed as the
generic service requirement of an elastic user, and let B" be a random variable distributed as
the residual lifetime of B, i.e., B"(z) =P{B" <z} = % J5 (1 = B(y))dy. We assume that the
service requirement distribution is regularly varying of index —v (denoted as B(-) € R_,), i.e.,
1— B(z) ~ L(z)z ¥,v > 0, with L(x) some slowly varying function. Here, and throughout
the paper, we use the notation f(z) ~ g(z) to indicate that f(z)/g(z) - 1 as z — oco. (A
function L(-) is called slowly varying if L(nz) ~ L(z) for all > 1.) It follows from Karamata’s
Theorem [5, Thm. 5.1.11] that 2P{B > z} ~ (v — 1)BP{B" > z}, so that B"(:) € R1_,.

3 Delay performance of the elastic flows

As mentioned earlier, our model shows strong resemblance with a G/G/1 PS queue with
K permanent customers [4]. The permanent customers play the role of the persistent streaming
users in our model, while the regular (non-permanent) customers correspond to the elastic



flows, inheriting the same arrival process and service requirement distribution B(-). In the
= K]J\S\tf)(t)
named the permanent-customer scenario), the two models are actually equivalent in terms
of the number of elastic users and their respective residual service requirements. It may be
checked that, in general, the service rate available for the elastic class in our model is always
at least that in the model with K permanent customers. Hence, the number of elastic flows,
their individual residual service requirements, their respective delays (sojourn times), and the
workload of the elastic class are stochastically dominated by the corresponding quantities in
the model with permanent customers. This may be formally shown using similar arguments as
in the proof of Lemma 4 in [7]. The stochastic ordering between the two models is particularly
useful, since it provides upper bounds for several performance measures of interest in our model
in terms of the model with permanent customers. In order for the bounds to be analytically
tractable, we assume in the remainder of the section that the elastic flows arrive according to
a Poisson process of rate A.

The M/G/1 PS queue with permanent customers is a special case of the model studied in [11].
To obtain the model with K permanent customers, we take the service rate of each customer to
be f(n) = ﬁ, when there are n customers. Let N(g) be the number of regular customers in

special case where the service rate of the elastic class is always Ca(t) (which we

the model with K permanent customers and, given N(x) = n, let Bl, ey B, be their residual
service requirements. Then, according to [11],

. R K\ &
P{N(K) =n;B1 > z1;...;Bp > wn} =(1 —P)Kﬂpn(n:: ) H P{B! > zm}.
m=1

We thus obtain an upper bound for the probability that the service rate of the streaming users
is below a given desired rate s:

K
IEI>{K-1FN < 5} <P{Nu) > |1/s - K]} = ;) ([1/? + 1)(1 — p)iplt/al =i

In the M/G/1 PS queue with m permanent customers, let S(,,) be the steady-state sojourn
time of a non-permanent elastic flow. As mentioned above, the delay (sojourn time) of elastic
flows in our model (denoted by S2) is stochastically dominated by S(x). The next proposition
shows that the exact sojourn time asymptotics of So depend on the assumptions on Cs(s,t)
in case Bi(s,t) < Ci(s,t). Similar delay asymptotics were obtained in [7, 9, 15, 21].

Proposition 3.1. If B(-) e R_, and (K +1)r > 1—p or Ca(t) = K1-|\-T§\tf)(t)’ or both, then

P{S2 > .’IJ}NP{S(K) >.’E} NP{B > %}

In contrast, if (K 4+ 1)r <1 — p and Ca(s,t) =t — s — Bi(s,t), then
P{Sy >z} ~P{B>(1—p—Kr)z}.

Proof. The asymptotics for S(x) (and, thus, for S in the permanent-customer scenario) follow

from [15]. As noted above, the service rate of a customer is f(n) = ﬁ when there are n

non-permanent customers in the system. We can therefore apply [15, Theorem 3] to obtain

v = T}z__ﬁ and the desired result follows.



For the remainder of the proof we only provide an intuitive sketch. (We refer to [2] for a
detailed proof.) A large delay of an elastic flow is due to a large service requirement of the
flow itself, and the ratio between the two quantities is simply the average service rate received
by the large flow. Over the duration of the large flow, the other elastic flows receive service
roughly equal to their average input rate p. The remaining service capacity is shared among
the large elastic flow and the streaming users, each entitled to a fair share (1 —p)/(K +1). In
case (K +1)r < 1 — p, the streaming users will only claim an average service rate Kr, leaving
and average service rate of 1 — p — Kr for the large elastic flow. Otherwise, the large elastic
flow is provided exactly with its fair share. O

Finally, we turn to the workload of the elastic class which is also stochastically dominated by
the corresponding quantity in the model with permanent customers. We state a result for the
M/G/1 PS queue with permanent customers and refer to [2] for a proof.

Proposition 3.2. If B(-) € R, then V), the workload in the M/G/1 PS queue with
m permanent customers, satisfies

(m—+1)

B{Vim) > &} ~ ENwy P{B" > a} = = EP{B" >a}.

4 Workload asymptotics of the streaming traffic

In this section we turn the attention to the workload distribution of class 1. For convenience,
we assume that each class-1 source generates traffic at a constant rate . The latter assump-
tion is however not essential for the asymptotic results to hold, and in Section 7 we extend
the results to the case of variable-rate class-1 traffic.

The next theorem provides the main result of the paper.

Theorem 4.1. If B(-) e R_, and Kr <1—p < (K + 1)r, then

14 lll{Jrl
P{iVi>z}~ ———P{B" > —=- % 1

The proof of the above theorem involves asymptotic lower and upper bounds which will be
provided in Sections 5 and 6, respectively. In this section, we sketch a heuristic derivation of
the result, which may also serve as an outline for the construction of the lower bound, see [2]
for details. In addition, we give an alternative interpretation, which provides the basis for the
the lower bound in Section 5 and the upper bound in Section 6. First, however, we give some
basic relations between traffic processes, amounts of service and workloads, and state a few
preliminary results.

Preliminary results
The amounts of service satisfy the following simple inequality

Bi(s,t) + Ba(s,t) <t —s. (2)
For the workloads, the following obvious identity relation holds for ¢ = 1,2 and s < ¢,

Vi(t) = Vi(s) + Ai(s, t) — Bi(s, ). (3)



As mentioned in Section 2, in the work-conserving scenario, i.e., Ca(s,t) =t — s — By(s, t), the
system is equivalent in terms of the total workload to a single queue of unit rate fed by the
aggregate class-1 and class-2 traffic processes,

Vi(t) + Va(t) = ng{Al(s, t) + As(s,t) — (t—9)}-

In particular, in the constant-rate case,
Vi(t) +Va(t) = sup{Kr(t—s)+ Aa(s,t) - (- 5)}
s<t
= sup{Aa(s,t) — (1 — Kr)(t —s)}
s<t

_ V21—Kr (t), (4)

with Vi (t) the workload at time ¢ in an isolated queue with service rate ¢ fed by class 2 only.
For any p < c, let V5 be its steady-state version. The asymptotic tail distribution of the latter
quantity is given by the next theorem, which is originally due to Cohen [10], and has been
extended to subexponential distributions by Pakes [24].

Theorem 4.2. Assume that p < c. Then, B(-) € R, iff P{VS < -} € Ri_,, and then
P{Vs§ >z} ~ ﬁP{BT >z}

The same relation holds when Vi represents the workload distribution at arrival epochs of
class 2.

Relation (4) plays a central role in the proof of Theorem 4.1. In the sequel we will consider
several extensions of the basic model, allowing the system to be non-work-conserving (e.g., the
permanent-customer scenario) and having variable-rate streaming traffic (with mean Kr). In
those cases, (4) does not hold as a sample-path identity, but (under some assumptions) V; + V2
and V217K" are asymptotically equivalent in the following sense (similar reduced-load type of
equivalences may be found in, e.g., [1, 16, 26]):

IP’{V1+V2>x}~IP’{V21_KT>:c}. (5)

The intuitive idea is that a large total workload is most likely due to the arrival of a large class-
2 user. Since the system is critically loaded, the class-1 workload builds up in the presence
of the large class-2 user, so that the full service capacity is used and the system behaves as if
it were work-conserving. The detailed proof of (5) is deferred to Appendix A (Proposition A.1).

Heuristic arguments

In queueing systems with heavy-tailed characteristics, rare events tend to occur as a conse-
quence of a single most-probable cause. We will specifically show that in the present context
the most likely way for a large class-1 workload V;j to occur arises from the arrival of a class-2
user with a large service requirement Byag, while the system shows average behavior otherwise.
We will refer to the class-2 user as the “tagged” user.

Define Biag(s,t) as the amount of service received by the tagged user in (s,t]. In addition,
denote by B, (s,t) the amount of service received by class-2 users in the time interval (s,t],
except for the tagged user. Then (2) may be rewritten as follows

Bi(s,t) + Biag(s,t) + By (s,t) <t —s. (6)



Suppose that the tagged user arrives at time —y — 2o, with zp = Biag > x +

K(r—735)’
(1—p—Kr)(y+ 20), and y > 0. The amount of class-2 traffic generated durlng the time
interval [—y — 20, 0] is close to average, i.e., A2(—y — 20,0) = p(y + 20). Since class 2 is stable,
regardless of the presence of the tagged user, the amount of service received roughly equals the
amount of class-2 traffic generated during the time interval [—y — 2o, 0], i.e., B; (—y — 20,0) =
p(y+ 20). The cumulative amount of service received by the tagged user up to time 0 is either
Bi(—y — 20,0)/ K or Biag, depending on whether the user is still present at time 0 or not.
Using the inequality (6), the amount of service received by class 1 is approximately

Bl(_y — 20, 0) < y+z— Btag(_y — 20, 0) - B;(—y — 20, 0)
~ (1-p)(y + 20) — min{Bag, Bi(—y — 20,0)/K}.

Thus,

Bi(-y —20,0) < max{(1-p)(y+20) ~ Biag, = (1= p)(y + 20)}

K
K+1

< max{Kr(y+20)—z,——(1—p)(y+20)}

K
"K+1
Using the above inequality and the identity relation (3), the class-1 workload at time 0 is

V1(0) > Ai(—y—20,0) — B1(—y — 20,0)

> Kr(y+ z0) — max{Kr(y + 20) — KI—(; . (1—p)(y+2)}
= min{z, K(r — Ilf;-l—pl)(y + 20)} > min{z, K(r — Ilg,;pl)zo} =z.

In the case of Poisson arrivals of class 2, we obtain (by integrating with respect to y and
neglecting the asymptotically small probability of two or more “large” users)

[e.o]

P{W; >x}2/

AP { Biag >
y=0

e+ (1= p= Kn)y | du

which agrees with the right-hand side of (1).

Of course, there are alternative scenarios that could potentially lead to a large class-1 workload.
Theorem 4.1 thus indirectly indicates that these are extremely unlikely compared to the one
described above, as will be rigorously shown in Section 6.

A formal proof based on the above heuristics (in case of renewal arrivals of class 2) may be
found in [2]. The arrival of a class-2 user with a large service requirement in fact also results
in a large total amount of work in the system after its arrival. We will use this alternative
interpretation of the dominant scenario in Section 5 to derive a lower bound in case of renewal
class-2 arrivals and in Section 6 to obtain an upper bound. In particular we will show that
the event Vi(—t1) + Va(—t1) > =+ (1 — p — Kr)ty, with ¢; := e K+1), corresponds to the

dominant scenario described above. Using Proposition A.1 and Theorem 4.2, we then obtain
that the probability of the latter event coincides with the right-hand side of (1).

Finally, note that the dominant scenario crucially depends on the critical load, i.e., 1 — p <
(K + 1)r. Section 8 briefly discusses the case of a non-critically loaded system.



5 Lower bound

In this section we obtain an asymptotic lower bound for P{V; > x}. We start by deriving a
sufficient sample-path condition for the event V;(0) > = to occur, based on the alternative
characterization of the dominant scenario in Section 4 (Lemma 5.1). Next, we translate the
sample-path statement into a probabilistic lower bound which can be used to determine the
asymptotic tail behavior of P{V; > z} (Proposition 5.2).

We first introduce some additional notation and terminology. In the proof we frequently use
the notion of “small” users. A user is called “small” if its (initial) service requirement does
not exceed sz, for some k > 0 independent of 2. Denote by N(*l(¢) the number of class-2
users in the system at time ¢ that arrived during (u,v|, and add the subscript < kz when

. 14y + M,
only “small” class-2 users are considered. Define tg := %, and fix Lo > %ﬁ and
T K1

My > max{Ly, p(%tfo)}. In the proof, users arriving before time —tg are referred to as “old”
users, while users arriving after time —tg are called “new”. Let —ug, up := sup{0 < ¢ < tp :

N —tl(_t) < Ly}, be the first epoch after time —tq that there are less than Ly “old” class-2
users. Similarly, let —sg, sp :=inf{0 <t <tp: Né;io’ft](—t) < My}, be the last epoch before
time O that there are less than M, “new small” class-2 users.

Now, for fixed 4, €, k, My > 0, consider the following two events.

1. At time —tg, the total amount of work in the system satisfies

Vl(—to)-l-VQ(—to) > Jt(l-i—’y-l—MoH) — (Kr+p— 1—5)t0 (7)

2. For the amount of “small” class-2 traffic arriving in (—tg, —so| it holds that
Az, <ra(—t0, —50) = (p — 6)(to — s0) — 7 (8)

We first prove the next sample-path relation.
Lemma 5.1. If the events (7) and (8) occur simultaneously, then V1(0) > x.

Proof. We distinguish between two cases, depending on whether ug < sg or ug > sg. First, we
consider the ‘easy’ case ug < sg (or equivalently —uy > —sg). Observe that during the entire
interval (—tg, 0] there are at least Lo class-2 users in the system (either “old” or “new”). Thus,
Bs(—t9,0) > 22 By (—t0,0), so that By(—tp,0) < %Loto. Using the above in addition to (3),
we obtain

K

K+ Ly

V1(0) > Al(—to,O) — Bl(—to, 0) > Krty — to

1 (1 + v+ Mok)

- ) -
K+ 5527 K(r— 57

> K(r

)

where we used the definition of ¢y and the fact that Ly > %ﬁ in the third step.

Now consider the ‘hard’ case ug > sg (or —ug < —sgp). Denote by Béu’”](s,t) the amount
of service received during (s,t] by class-2 users arriving in the interval (u,v] (again, add the



subscript < kz when only “small” class-2 users are considered). Using (3), the amount of
service received during (—tg, —so] by the “new” class-2 users is bounded from below by

Bé_to’o](—to,—so) > Bé,_gt%’z_%](_to’_%)

> AQ,SME(_th _30) - %(,;Z)a,c_SO](_SO)
> (p—0)(to — so) — vy — Mok,
where VQ(,?Z]J: (t) denotes the workload at time ¢ associated with “small” class-2 users arriving in

(u,v]. Note that the final step follows from (8) and the definition of sg. Since My > ”(Il{ftfo),
we also have

- M
B _g0.0)> 70 50> (p—8)so.
2 (%0 )—M0+K+L00_(p )50
Hence,
By % (~10,0) > (p = 8)to 12 — Moz @

Next, denote by n > 0 the number of “o0ld” class-2 users present at time 0. We distinguish
between two cases: (i) n = 0; and (ii) n > 1.
First, consider case (i). Note that Bé_oo’_to](—to,O) = Va(—to) and rewrite (2) into

By (—to,0) < to — B{70l(—t4,0) — BS0% (—¢, 0). (10)

Using (3), (7), (9), and (10), we deduce
V1(0) = Va(—to) + A1(—to,0) — B1(—to,0)
Vi(—to) + Va(—to) + Krtg — to + (p — d)to — (v + Mok)z
z(1+~v+ Mor) — (Kr+p—1—38)tg+ Krtg — (1 — p+0)to — (v + Mor)x

Z.

>
>

Second, consider case (ii). Because of the PS discipline, it follows from (2)

K

o glo =By (=10, 0)]. (11)

Bl(_th 0) S

Now, combining (3), (9), and (11) yields
‘/1(0) > Al(_t07 0) - Bl(_t(], 0)

K
> Krtg— ——[(1— o)t M
> Krtg — 2= [(1 = p+0)to + (7 + Mor)z]
K z(1+ v+ Myk) K
= [Kr— —(1-— é — M,
(KT K+1( p+9)] K(r— 1210 K+1(’Y+ 0K)T
R+1
>,
where we used that v, k, My > 0. This completes the proof. O

We now exploit the sample-path relation in Lemma 5.1 to establish the next asymptotic lower
bound for the class-1 workload distribution.
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Proposition 5.2. (lower bound) If B(-) € R_, and Kr <1 —p < (K + 1)r, then

P
lim inf >z 5
T p r TRT1
1—p—Kr]P{B > K(T—Il{_i_pl)}

Proof. First observe that the events (7) and (8) are not independent. However, Vi(—Tp) +
Vo(—Tp) and Ag <xx(—to, —So) are independent, with —Tp representing the last arrival epoch
of class 2 before time —t3. Note that

Vi(—=to) + Va(—to) > Vi(=To) + Va(—To) — 70,

where 79 represents the backward recurrence time of the class-2 arrival process at time —tg,
which is independent of Vi (—Tp)+ Va(—Tp) as well. Using Lemma 5.1 and the above, we obtain

P{Vi(0) > z}

> P{Vi(=To) + Vo(—Tp) > (1 +v + Mok) — (Kr + p — 1 — 8)to + 70;
Az <ka(—to, —50) = (p — 0)(to — s0) — vz}

> P{Vi(=Tb) + Va(=Tp) > 2(1 + v+ Mok + €) — (K7 + p— 1 — 6)t}

X [P{oég)to{(p —0)(tg — t) — Az <pa(—to, —t)} < 7:0} —P{r > ea:}] .

Now, first invoking Proposition A.1 in Appendix A and then Theorem 4.2 yields
P{Vi(=Tb) + Va(=T0) > z(1 + v+ Mok +¢€) — (Kr+p—1—90)to}

1-p+6
~ —P _p Br>w(1+7+MM) Rl €x (12)
1-p—K 1—p+9 ’
p r K(r— K—I—l)

Because 79 has a proper distribution, we have lim,_,o, P{79 > ez} = 0. For z sufficiently large,
sup;>o{(p — 0)t — A2, <xz(0,t)} also has a non-defective distribution yielding

lim ]P’{ sup {(p — 5)(t0 — t) - AQ’Snz(—tO, —t)} < 'yx} =1.

—00 OStStO
Combining the above arguments and applying (12), we obtain

P
lim inf (Vi > =}

> 1.
1-p+s =
z—00 : IP’{ s 2(1+y+Mok) Kl—)l-l 6:1:}

1-Kr—p K(r—12210)

Use the fact that B"(-) € Ri_, and let 7,4, €,k | 0 to complete the proof. O

6 Upper bound

In this section we derive an asymptotic upper bound for P{V; > z}. In the proof we frequently
use the notion of a “large” user. A user is called “large” if its (initial) service requirement
exceeds the value kz, for some fixed k > 0 independent of z. Also, let N-p(s,t) be the number
of class-2 users arriving during the time interval (s, t] whose service requirement exceeds the

11



value b. In particular, let N(s,t) := Nx¢(s,t) be the total number of class-2 users arriving in
the interval (s, ¢].

To handle scenarios in which the system is not work-conserving, we introduce the epoch
s* :=inf{t > 0 : Vi(—t) = 0}, which represents the last epoch before time 0 that the class-1
workload was zero. Note that Vi(t) > 0 for ¢ € (—s*,0], and the system thus uses the full
service rate during the given interval. For epochs at which Vj(¢) = 0, we make the following
observation.

Observation 6.1. If Vi (¢) = 0, then the available service rate for class 1 at time ¢ is at least
Kr, hence %N(t) > Kr. Rewriting the inequality gives that N(t) < M, with M := L%J - K.
o

We are now ready to prove the upper bound for P{V; > x}.

Proposition 6.1. (upper bound) If B(-) € R_, and Kr <1—p < (K + 1)r, then

lim sup P{Vi > 2} - <1
r—00 P r Tri1
1—,0—K7']P){B > K(r—jl;:_l)}
Proof. Let t1 := % Then, for § > 0,0 < e < 1,
T K1
P{V1(0) > =}
< P{Vi(—t1)+ Va(—t1) >z(l—¢€)— (Kr+p+ 6 —1)t1} (13)
+P{Vi(—t1) + Va(—t1) < z(1 —€¢) — (K 4+ p+ 6 — 1)t1;V1(0) > . (14)

First, we determine the asymptotic behavior of (13). Then we show that (14) is negligible
compared to (13) as £ — oco. This way, we prove that the scenario described in Section 4 is
indeed the dominant one.

Let us start with the former. First use Proposition A.1 and then Theorem 4.2 to obtain that
(13) behaves as

P{Vi(—t1) + Va(—t1) > x(1 —€) = (KT + p+ 6 — 1)t1}
1—p—46
PN PRTESt 24
1—p—4 .
1—p—Kr K(r— 75)
Using the fact that B"(-) € Ri1_, (and letting §, € | 0), it easily follows that

]P){Vl(—tl) + VQ(—tl) > .73(1 — 6) — (Kr +p+ o — 1)t1}

lim su <1.
z—)oop =l B
P{ Br > — &4
{ K(T—}(#’l)}

To prove that any alternative scenario is highly unlikely compared to the dominant one, we
show that, for 0 <d<1—p— Krand 0 <e< 1,

P{Vl(—tl) + VQ(—t]_) < :U(l — 6) — (Kr +p+6— 1)t1;V1(0) > x} _

lim sup — = 0.
r—00 s
P> it )

12



To do so, we split (14) by distinguishing between 0, 1, and 2 or more large user arrivals during
(—t1,0], respectively. More specifically, write
P{Vi(—t1) + Va(—t1) < z(1—¢€) — (KT + p+ 6 — 1)t1;V1(0) > =}
= P{Vi(—t1) + Va(—t1) < z(1 —€) — (KT + p+ 0 — 1)t1; N5 o(—t1,0) = 0; V1(0) > z}
+P{Vi(—t1) + Va(—t1) <z(l—€) — (Kr+ p+ 0 — 1)t1; Nsya(—1t1,0) = 1;V1(0) > z}
+P{Vi(—t1) + Va(—t1) <z(l—€) — (Kr+ p+ 0 — 1)t1; Nsz(—1t1,0) > 2; V1(0) > z}
= I+II+1II

In the remainder of the proof we show that each of the three terms is negligible compared to
the dominant scenario.

Term 1
To bound term I, we consider the total workload at time 0. Recall that s* represents the last
epoch before time 0 that the class-1 workload was zero, and define s’ := min{s*,#;}, so that
Vi(t) > 0 for t € (—s',0]. Then, using (3) and the fact that the system is work-conserving
during (-, 0], we have

V1(0) + V2(0) = Vi(=s§') + Va(=s') + Krs' + As(—s',0) — &'
Vi(=8') + Vo(=8") — (1 — Kr — p—6)s' + Aa(—5',0) — (p + 9)s
max{Vi(—t1) + Va(—t1) — (1 = Kr — p — §)t1, Va(—s")}

+ sup {As(—s,0) — (p+8)s},
0<s<t;

IN

where we choose 0 < § < 1 — Kr — p. Moreover, take k > 0 such that Mk < 1. Then,
combining the above and using Observation 6.1 yields
I < P{max{Vi(—t1)+ Va(—t1) — (1 — Kr — p — §)t1, Va(—s")}
+ sup {As(=s,0) — (p+)s} > =;

0<s<ts
Vi(—t1) + Va(—t1) <z(l—€) — (KT + p+ 6 — 1)t1; N> pa(—11,0) = 0}

P{max{(l —€e)z, Mkz} + oilgt {A2(—5,0) — (p+96)s} >z | Nopz(—t1,0) = 0}

IN

< P{ sup {A2(—s,0) — (p+9)s} > &z | Nsya(—1t1,0) = 0} ,

0<s<ty
where £ := min{e,1 — M«k}. Lemma B.4 in Appendix B implies that I = o(P{B" > z}).
Term I
By conditioning on Vi(—t1) + Va(—t1), we obtain that term II equals
P{nz < Vi(—t1) + Va(—t1) < z(1 —€) — (K7 + p+ § — 1)t1; N>z (—t1,0) = 1;V1(0) > =}
+P{Vi(—t1) + Va(—t1) < nz; Nswz(—t1,0) = 1;V1(0) > z}. (15)

Again by Theorem 4.2 and Proposition A.1, in addition to Lemma B.3 with ¢t; = vz, we can
control the first term of (15) as a “combination of two unlikely events”. Specifically, the term
is bounded by

P{Vi(=t1) + Va(~t1) > m:}]P’{I(B > k) + Noo(—t1,0) > 1} = o(P{B" > z}),
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with I(-) the indicator function, and N . (—t1, 0) having the same distribution as Nx . (—t1,0),
but independent of Vi(—t1) + Va(—t1).

For the second term, we use s’ = min{s*,¢;} (as in term I), so that V4(¢) > 0 for ¢t € (—¢',0].
Also, we tag the user with service requirement larger than sz, and let V, (t) be the class-2
workload at time ¢, excluding the tagged class-2 user. As in Section 4, denote by Bj (s,t) the
amount of service received by class 2 in the interval (s, ], except for the tagged user. Then,
using (3) in the first step and Observation 6.1 in the second, we find

Bz_(—s',O) = V2_(_3,) + A2_(_SI’ 0) — V2(0) < ¢z + AQ_(_Slao)’

where A; (—s',0) denotes the amount of class-2 traffic generated during (—s’, 0] excluding the
tagged user, and ¢ := max{n, Mx}. The large user together with the class-1 users receive the
remaining amount of service: By (—s',0) > s’ — A5 (—s',0) — {x. Because of the PS discipline,

Bi(—¢',0) > LB (—s,0). Thus, using the above and applying (3),
K+1P1

Vl(O) = Vl(—Sl) + Al(—sl, 0) — Bl(—sl, 0)
K(s' — A5 (—5',0) — (z)
K+1

K(s— A, (—s,0) — () }
< (x+ su Krs — 2 .
¢ ogsgtl { K+1

< max{Vi(—t1),Vi(—s")} + Krs' —

Thus,

IISIP’{Cw—i- sup K1

0<s<ty

{Krs _Kls=4(=5,0) = Cx)} > x| Nogz(—t1,0) = 1}+O(P{BT > z}).

Choose 7, k such that max{n, Mx} < g—iée. Then, using r > % in the second inequality
o K (r—1223%)
and substituting x = ————"*— yields
K(s— A5 (~s,0) —
P{Cw-i- sup {Krs— (s 2(=%,0) Cx)} + (x> x| Nogz(—t1,0) = 1}
0<s<t1 K+1
K(s— Ay (—s 0))} 3K +1 K }
= P! su Krs — 2 2 > (1l — + 2| Nowz(—11,0) =1
K(s— A5 (—s,0)) 1—p—9¢ K
< P Krs — 22 —t1K(r — Nsya(—t1,0) =1
< {02131%1{ rs Kol 1K (r K+1)>K+1Cw| >rz(—11,0)

< P{ sw {45 (-5.0) = (04 8)5} > o | Noal-01,0) = 1]
0<s<t;

< P{ sup {Az(—5,0) — (p+8)s} > (& | Nana(—t1,0) = o} ,
0<s<t1
which can be controlled using Lemma B.4. This completes the estimation of term II.

Term IIT
It follows directly from Lemma B.3 that I1] = o(P{B" > z}).

The proof is now completed by first letting x — oo, then 1,k | 0, and finally §, ¢ | 0. O
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7 Generalization to variable-rate streaming traffic

As mentioned earlier, the assumption that class 1 generates traffic at a constant rate Kr is
actually not crucial. In this section, we show that our results remain valid in case class 1
generates traffic according to a general stationary process with mean rate E[A1(¢,t+1)] = K,
provided that significant deviations from the mean are sufficiently unlikely. In such a scenario,
the variations in class-1 traffic do not matter asymptotically, because they average out. More
specifically, we assume that the class-1 traffic satisfies the following assumption:

Assumption 7.1. For all ¢ >0 and b > 0,

P{st;l}g{Al(—t, 0) — K(r+¢)t} > ¢w} =o(P{B" > z}), as & — 00.

Assumption 7.1 serves to ensure that the likelihood that rate variations in class-1 traffic cause
a large workload is asymptotically negligible compared to scenarios with a large class-2 user
described earlier. Also, observe that it may be equivalently expressed as

P{VEC) > gol = o®(B >2}), asz oo,

where V{° denotes the steady-state workload in a system with service rate c fed by class 1 only.
Assumption 7.1 is satisfied by a wide range of traffic processes, such as instantaneous bursts
and On-Off sources (see [2] for details).

In the remainder of the section, we show that our results remain valid under Assumption 7.1.
In particular, we prove that Theorem 4.1 still holds. We add the superscript ‘var’ to indicate
that the class-1 workload corresponds to the scenario with variable-rate streaming sources.

Theorem 7.1. Suppose that the process {A1(—t,0),t > 0} satisfies Assumption 7.1. If B(-) €
R_, and Kr <1—p< (K + 1)r, then

]P) Vval' p ]P) BT wll{_z’ﬂl
{1 > x} 1—p—Kr >K(r—%}1) .

As before, the proof of Theorem 7.1 involves lower and upper bounds. In fact, the lower bound
only concerns modifications of the proof of Proposition 5.2 (in Section 5), and is hardly affected
by the variable rate of class 1. Informally speaking, the idea is to replace Ai(s,t) by K(r —
¥)(t — s) — ¢z, and then use E[A;(¢,t+ 1)] = Kr to show that the correction terms K (t — s)
and ¢z can be asymptotically neglected. A slightly more substantial modification is needed
to show the asymptotic equivalence between V;"*" + V5 and V21_KT. This is done in [2,
Proposition D.1], where we extend relation (5) to the case of variable-rate class-1 traffic.

For the upper bound, the proof is based on a comparison with a leaky-bucket system. More
specifically, we make the following comparison between the class-1 workload in the variable-rate
scenario and that in the constant-rate scenario. Suppose we feed the variable-rate streaming
traffic into a system (the leaky bucket) that drains at constant rate K(r + 1) into a second
resource that is shared with the elastic class according to Ca(t) = N(x)(t)/(N(k)(t) + K) (see
Section 3). Because the drain rate of the first resource never exceeds K(r + 1), the class-
1 workload at the second resource is then bounded by VlcSt’¢(t) = sups< {K(r +¢)(t — 5) —

fst Wdu}, which corresponds to the permanent-customer scenario when the ‘target rate’
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per streaming user is constant and equal to r + . V{"?"(¢) is then bounded by VlK(TH)) (t) +

VfSt’w(t). This sample-path relation combined with Assumption 7.1, Theorem 4.1, and the
fact that B"(-) € Ri_,, serves as the basis for a rigorous proof (see [2]).

8 Concluding remarks

We considered a bottleneck link shared by heavy-tailed TCP-controlled elastic flows and
streaming sessions regulated by a TCP-friendly rate control protocol. We determined the
asymptotic tail distribution of the possible shortfall in service received by the streaming users
compared to a nominal service target. We showed that the distribution inherits the heavy-
tailed behavior of the residual service requirements of the elastic flows. We also determined
the exact delay asymptotics of the elastic flows, suggesting a certain dichotomy in the tail
asymptotics, depending on whether the system is critically loaded or not.

The service deficit distribution of the streaming users was derived for critical load, i.e., an
additional ‘persistent’ elastic flow would cause instability of the streaming class. In general, the
most likely scenario for the class-1 workload to grow large involves the simultaneous presence

of [ > 1 large class-2 users, where [ := min {a : 11(—:_% < r} is the number of ‘persistent’ elastic

flows required to cause instability of the streaming class (class 1). This gives rise to the
following conjecture:

Conjecture 8.1. If B(-) e R_, and p+ Kr < 1, then
P{Vi >z} = O(P{B" > z}}).

Guillemin et al. [15] obtained similar asymptotics for the available amount of service during
(0,z) in PS queues. However, obtaining exact asymptotics is a difficult task in this case as
witnessed by [26].

Several other interesting issues remain for further research, e.g., transient performance mea-
sures, scenarios with finite buffers and/or dynamic populations of streaming sessions, and
the performance impact of oscillations, inaccuracies, and delays in the estimation of the fair
bandwidth share.

A Proof of (5)

The asymptotic relation (5) plays a key role in our proofs, and is valid for several model
extensions. To keep the presentation transparent, we only prove this relation here for the
case of constant-rate streaming traffic, assuming the system is critically loaded, i.e., 1 — p <
(K +1)r. Proposition D.1 in [2] extends this result to variable-rate streaming traffic satisfying
Assumption 7.1 when either (i) the system is critically loaded, or (ii) the system is work-
conserving.

Proposition A.1. Suppose that B(-) € R_, and Kr <1 —p. If A1(0,t) = Krt and 1 —p <
(K + 17, then

P{Vi+Va >z}~ P{V;—K" > :c}

This asymptotic relation also holds when Vi +Va and Vzl_KT represent the workloads embedded

at class-2 arrival epochs rather than at arbitrary instants.
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Proof. First observe that

P{V4(0) + V3(0) > z} > P{igg{Al(—t,O) + Ay(—t,0) — t} > :c} - P{V;—m . m} _

It remains to be shown that

P{Vi + Vo >z} <

1.

lim sup

—00 P{V’ZI_KT > SL‘}

As defined in Section 6, s* = inf{t > 0 : Vi(—t) = 0} is the last epoch before time 0 that
the class-1 workload was zero. Hence, Vi(t) > 0 for t € (—s*,0], implying that the system
operates at the full service rate during that interval. Now, as described in Section 4, the idea
of the proof is that a large total workload is most likely caused by the arrival of a large class-2
user. In particular, the class-1 workload starts to build in the presence of a persistent class-2
user, and it may be shown that time s* is close to the arrival epoch of the large user.

More formally, we split the class-2 workload at time ¢ into workloads contributed by users
with initial service requirements smaller than (or equal to) ex (V2,<ez(t)), and those with
initial service requirements larger than ex (V3,>e:(t)). Moreover, let Vi, (t), V5, (t) be the
workloads in an isolated queue fed by class-2 traffic of users with service requirements smaller
than, larger than ez, respectively. Then, use (3), apply Observation 6.1 to bound V3 <z (—s*)
and Lemma B.1 (stated below) to bound Vo 5 (—s*):

V1(0) + V2(0)
Vi(=5") + Va,cca(=5") + Vo mea(=8") + A1(=5",0) + A2, <ca(—5",0) + Ao 5ea(—57,0) — 5"

< 0+ Mez + Az cen(—5%,0) — (p+8)s* + Voo 57770 (=8") + Ap sea(—5%,0)
—(1-Kr—p-4)s*
< Mex+VLLL(0)+ Vol 7 °(0).

Converting this sample-path relation into a probabilistic upper bound gives (take € < 1/M)
P{Vi+Vs>z} < P{I@fgfz(o) + VR K0y > (1 Me)x}

N

< B{VEEL0) > €0 - Mo} +B{VTE70(0) > (1 - )1~ Me)a}

The first term can be made sufficiently small for any fixed 4, €, £, using similar arguments as
in [8]. For the second term, we first apply Lemma B.2 (given below) and Theorem 4.2, and
then use the fact that B"(-) € R1_,, and let 6, £, € | 0.

Note that the above proof applies regardless of whether 0 is an arbitrary instant or a class-2
arrival epoch. O

B Technical lemmas
Lemma B.1. For1—p< (K +1)r,e>0, and 6 >0

Vasea(—5") < Visu(—5") S Voo it P70 (=s").
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Proof. Denote by u* := inf{u > s* : Vo 5 (—u) = 0} the last epoch before time —s* that
no large class-2 user was present. Hence, N, (t) > 1 for t € (—u*, —s*]. Observe that the
amount of service received by the large users during (—u*, —s*] then satisfies

—8* —8*

By sez(—u”, —s%) > Ns ez (t)er(t)dt > / ci(t)dt > r(s* —u*),

—u* —u*

where c;(t) is the service rate of an individual streaming user at time ¢. Here, the final step
follows from the fact that Vi(—s*) = 0 and the service received during (—u*, —s*] exceeds the
amount of traffic generated. Using the above in the second step and (3) in the first and final
one, gives

V2,>ex(—5") Vo, sen(—u*) + Ao sea(—u™, —5%) — By sea(—u™, —s%)
A seo(—u®, —s*) —r(s" —u¥)

Vaser(—U") + A2 s e (—u®, —s%) —r(s* —u®)
V3 sea(=5")-

Finally, V5 . ,(=s*) <V, 1 ZKT=p=0(_¢*) follows directly from § > 0and 1 —p < (K + 1)r. O

ININ IN

2 >ex

Due to space limitations, we refer to [2] for the proofs of the following three lemmas.

Lemma B.2. For any c,e > 0

P{Visee >z} <(1+ o(l))%]P’{BT >}~ IP’{VQCH’ > ac} as T — oo.
Lemma B.3. Foranyk €N, k >0, and v > 0,

P{ Nsro(—yz,0) > k} = O(P{B" > z}*), as T — oo.

Lemma B.4. There ezxists a k* > 0 such that for all k € (0,k*], as z — oo,

P{Osyfvm{Ag(—s,O) —(p+90)s} > ex | Nsya(—7z,0) = 0} =o(P{B" > z}).
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