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Abstract: When routing dynamically randomly arriving messages, the controller of a
high-speed communication network very often gets the information on the congestion state
of down stream nodes only after a considerable delay, making that information irrelevant at
decision epochs. We consider the situation where jobs arrive according to a Poisson process
and must be routed to one of two (parallel) queues with exponential service time distributions

(possibly with di�erent means), without knowing the congestion state in one of the queues.

However, (the conditional) probability distribution of the state of the unobservable queue
can be computed by the router. We derive the joint probability distribution of the congestion
states in both queues as a function of the routing policy. This allows us to identify optimal
routing schemes for two types of frameworks: global optimization, in which the weighted
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sum of average queue lengths is minimized, and individual optimization, in which the goal
is to minimize the expected delay of individual jobs.

Key-words: communication networks, performance optimization, stochastic modeling,
queueing, dynamic routing, partial information, non-cooperative game, Nash equilibrium
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Routage optimal entre �les d'attente �/M/1 avec

information partielle

Résumé : Quand on fait du routage dynamique de messages qui arrivent aléatoirement,
le contrôleur d'un réseau de communication à haut débit obtient l'information sur l'état de
congestion des n÷ds en aval qu'après un délai considerable, ce qui fait que cette information
peut être obsolète aux moments des prises des décisions. Nous considérons la situation où
des tâches arrivent selon un processus de Poisson et elles doivent être envoyées vers une
des deux �les d'attente avec temps de service distribués selon une loi exponentielle (dont la

moyenne peut dépendre de la �le), sans avoir connaîssance de l'état de la congestion dans

l'une des �les d'attente. Néanmoins, la distribution de probabilité (conditionelle) des états
de la �le d'attente qui n'est pas observée peut être calculée dans le routeur. Nous dérivons la
distribution de probabilité jointe des états des deux �le d'attente en fonction de la politique
de routage. Ce calcul nous permet d'identi�er des schémas de routage optimal pour deux
types de contextes: optimisation globale, dans laquelle on minimise la somme pondérée des
longueurs moyennes des �les d'attente, et dans le cadre de l'optimisation individuelle, dans
laquelle le but est de minimiser l'espérance du délai de chaque tâche individuelle.

Mots-clés : réseaux des communication, optimisation de performance, modèles sto-
chastiques, théorie des �les d'attente, routage dynamique, information partielle, jeux non-
cooperatifs, équilibre de Nash
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1 Introduction

In many applications in which routing decisions have to be made, the information relevant
to the decision maker is only partially available. This is true, in particular, in high speed
communication networks in which information about the state of a down stream node may be
subject to a considerable delay, thus making that information irrelevant at decision epochs.
This situation may occur even in case the down stream link is quite close but � links being
unidirectional � the e�ect of routing decisions on the down stream node appears much
quicker than the return of information about that node's congestion state.

We analyze dynamic routing choices between two paths. We model path delays using
two �/M/1 queues, with state dependent arrivals. The latter dependence is due to the fact
that the arrival to any queue depends on the routing decision, which, in turn, depends
on the congestion state of the path. Speci�cally, we consider the problem in which the
controller taking the routing decisions can observe only one of the queues. In spite of lacking
precise information about the second queue, the controller can probabilistically evaluate the
in�uence of its routing strategies on the distribution of the congestion state of the second
queue.

We concentrate on routing strategies of a random threshold type. These are characterized
by two parameters: (n; r). If the number of jobs in the �rst path X1 is less than n at an
instance of arrival, the arriving job is sent to path 1. If X1 = n, then it is routed to path 1
with probability r and to path 2 with the complementary probability. If X1 > n, then it is
routed to path 2.

We study and analyze two types of dynamic routing control methods. In the �rst, we
wish to determine the threshold parameters that minimize the average expected delay in
the system. We call this the Socially optimal routing problem. Secondly, we consider
Individually optimal routing. In this type of dynamic control we wish to obtain a routing

strategy that minimizes the expected delay of each individual job. (The minimization of the
expected delay for a given job does not take into account the impact of the individual routing

decision on the delays that will be experienced by future jobs.) This type of routing approach

has been advocated in the context of ad-hoc networks [2]. Although the routing decisions
may be taken by a single controller, this control problem can be formulated as an equivalent
game-theoretic model in which each job chooses its own route. We shall use the basic game-
theoretic optimality concept of Nash equilibria [3]. Here, a Nash equilibrium is a set of
routing strategies for all jobs such that no single job can decrease its weighted expected
delay by deviating from its routing strategy.

The individual optimization problem was also considered in [3] in a di�erent context:
customers have to make a choice between two gas stations on a highway. Following a game
theoretic analysis, a numerical solution is presented in [3] to obtain the performance for
given candidate solutions. In our paper we provide a veri�able necessary condition to check
whether an equilibrium indeed exists within the class of threshold policies (in fact this is a
condition under which the best response to a pure threshold policy of all other users is also

INRIA



Optimal routing among �/M/1 queues with partial information 5

a threshold policy). When the service rates at the two stations are equal to each other, it

is veri�ed numerically (for n = 1; 2; : : : ; 18) that a threshold equilibrium exists, which is in

agreement with the results in [3]. However, when the service rates at the two stations di�er,
such an equilibrium need no longer exist, as is shown in an example.

The structure of the paper is as follows. In Section 2 we formulate � for a �xed (n; r)
policy � the underlying Quasi Birth and Death process and derive the balance equations for
the two-dimensional steady state probability distribution. The marginal distribution of X2,
the number of jobs in queue 2, is derived in Section 3 for the case when r = 1. In Section
4 we develop expressions for the joint Probability Generating Functions (PGF) of the queue

lengths for any r 2 (0; 1]. These results are then used in the following sections to solve the
routing problems in the two types of frameworks. The �rst, in Section 5, focuses on a global

(social) optimization framework in which the average weighted sum of queue lengths (or

equivalently, waiting times) is to be minimized. Then in Section 6 we study the individual
optimization in a game theoretic setting, in which the weighted expected delay of individual
jobs is minimized. In all that follows, the delay of a job shall be the sum of its waiting time
and its service time, i.e., a job's delay is its response time, which is the total time spent in
the system. From the individual job's perspective it is optimal to join the queue with the
smallest weighted expected delay. From a supervising controller's point of view, the e�ect of
a single routing decision on the delay of future jobs must be taken into account.

We focus on the case r = 1 and use the obtained expressions to show (Lemma 6.1) that
if a job is routed to the second queue, then its expected delay, conditional on the number
of customers in the �rst queue, say i, is convex in i. This implies (Corollary 6.2) that if the

objective is to minimize the expected delay of an individual job, the optimal strategy (for

that individual job) will be a two-threshold policy, the job being routed to queue 2 if the

number of customers in the �rst queue is between the two thresholds (see Figure 5). Still,
such a policy could be a `normal' single-threshold policy, if the larger threshold value is not
smaller than n + 1. Theorem 6.5 gives a condition on the parameters for which there exist
values of the service rates such that no single-threshold policy is optimal in response to a

�xed (n; r) policy.

2 Model description and stability condition

The system is modelled as two queues with exponential service rates �1 and �2, respectively.
Arrivals of jobs to queue 1 occur according to a Poisson process with rate �. The routing

policy is of a random threshold type (n; r), as described in the Introduction.

The model gives rise to a so-called Quasi Birth and Death process. Such models are
known to have a matrix-geometric equilibrium solution [7]. Following the approach in that

monograph, we denote the state of the system by a pair of two integers (i; j), which indicates

RR n° 4985
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that there areX1 = i (i = 0; 1; 2; :::; n+1) jobs in the �rst queue andX2 = j (j = 0; 1; 2; 3; :::)
jobs in the second. A transition rate diagram is depicted in Figure 1, where the horizontal
(resp., vertical) axis represents the number of customers in queue 1 (resp., 2). For the matrix-
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Figure 1: Transition diagram

geometric approach the states are ordered lexicographically, such that (i1; j1) precedes (i2; j2)

if and only if j1 < j2, or fj1 = j2 and i1 < i2g. Using this ordering of the states, the generator
of the process is given by

Q :=

2
66664
Q
(0)
d � 0 . . .
M Qd � 0 . . .
0 M Qd � 0 . . .
...

. . . . . . . . . . . . . . .

3
77775 ;

where �, M , Q
(0)
d and Qd are (n + 2) � (n + 2) matrices. � = [�k;l], k; l = 0; 1; : : : ; n + 1,

is the matrix with �n;n = �(1� r), �n+1;n+1 = �, and all other elements equal to zero. M

is also a diagonal matrix with all diagonal elements equal to �2. Finally, Q
(0)
d = Q(Y ) � �

and Qd = Q(Y ) � ��M , where Q(Y ) is the generator of the Markov process describing the

INRIA



Optimal routing among �/M/1 queues with partial information 7

number of jobs in the �rst queue,

Q(Y ) =

0
BBBBBBBBB@

�� � 0 0 : : : 0 0 0
�1 ��� �1 � 0 : : : 0 0 0
0 �1 ��� �1 � : : : 0 0 0
...

...
...

...
...

...
...

0 0 0 0 : : : �1 ��1 � r� r�
0 0 0 0 : : : 0 �1 ��1

1
CCCCCCCCCA
:

Remark 2.1 The joint steady-state distribution of the numbers of jobs in both queues can

also be derived for the following class of more general policies [8, Ch. 2]. Let ri 2 [0; 1] be the
probability of joining queue 1 if the number of jobs in that queue equals i. Let K < 1 be

the maximum number of jobs in queue 1. The matrices �, Q(Y ) and M become of dimension
K + 1. The diagonal matrix � has diagonal elements (1 � ri)�, i = 0; 1; : : : ; K � 1. The

matrix Q(Y ) has elements ri� just above the diagonal and (as before) all elements just below
the diagonal are equal to �1. The matrix M is still �2 times the identity matrix.

Let Pij = P fX1 = i; X2 = jg be the steady-state probability that the system is in state

(i; j) and let the (n + 2)-dimensional (row) vector P j := (P0j; P1j; : : : ; Pn+1;j) contain the

steady-state probabilities corresponding to level j, i.e., the subset of states in which there

are j jobs in the second queue. Then the sequence P j, j = 0; 1; : : :, satisfying the balance

equations

P 0Q
(0)
d + P 1M = 0; (1)

P j�1� + P jQd + P j+1M = 0; j = 1; 2; : : : ; (2)

(where 0 is the (n+2)-dimensional vector with all elements equal to 0) is known to satisfy
the matrix-geometric relation

P j = P 0R
j (3)

where the rate matrix R is the minimal non-negative solution to the quadratic matrix equa-
tion,

� +RQd +R2M = 0; (4)

cf. [7, Theorem 3.1.1]. Relation (4) is not suitable to determine R in a stable and e�cient

way. Instead, a `dual' quadratic matrix equation can be solved from which R is found, see [4].
Here we follow an alternative approach and determine the steady-state probabilities through
a spectral characterization of the matrix R using generating functions. We refer to [1] for
a general exposition of this method applied to the more general classes of Markov chains of
M/G/1 and G/M/1 types. Computational advantages of the spectral expansion technique

compared to the matrix-geometric solution were mentioned in [5, 6].

RR n° 4985



8 E. ALTMAN , T. JIMÉNEZ, , R. NÚÑEZ-QUEIJA, , U. YECHIALI

First we note that the marginal probabilities of the number of jobs in queue 1 are easily
obtained, since the rates of arrivals into and departures from queue 1 are independent of the
state of queue 2. De�ne, for 0 � i � n+ 1 and j � 0,

Pi�
�
=

1X
j=0

Pij; P�j
�
=

n+1X
i=0

Pij;

and the row vector

p := (P0�; : : : ; Pn+1;�) =
1X
j=0

P j:

We further de�ne �1 = �=�1, which is the tra�c load on the �rst queue if all jobs are to be
routed there. Clearly, the vector p satis�es

pQ(Y ) = 0:

This follows, for instance, by summing the balance equations (1) and (2) over j. The marginal
probabilities Pi� are now easily obtained:

Pi� = �1
iP0�; 0 � i � n (5)

Pn+1;� = r�1
n+1P0�: (6)

Since the entries of p constitute a probability distribution we have the normalization condi-

tion
D
p; 1

E
= 1, where the column vector 1 has all entries equal to 1 and h�; �i denotes the

inner product of a row vector and a column vector. We �nd:

P0� =

"
nX

i=0

�1
i + r�1

n+1

#�1

and when �1 6= 1 this sum is given by

P0� =
1� �1

1� (1� r)�1n+1 � r�1n+2
: (7)

The stability condition (cf. [7, Theorem 3.1.1]) is given byD
p;�1

E
<
D
p;M1

E
;

or, equivalently, by

�(1� r)Pn� + �Pn+1;� < �2: (8)

Evidently, it is the actual arrival rate into the second queue that determines whether the
system is stable or not. Since Pn+1;� = Pn�r�1, the stability condition becomes

�Pn� [(1� r) + r�1] < �2;

i.e.,

� (�1)
n [(1� r) + r�1]

"
1� �1

1� (1� r)(�1)n+1 � r(�1)n+2

#
< �2: (9)

INRIA



Optimal routing among �/M/1 queues with partial information 9

3 Marginal distribution of X2 when r = 1

The detailed analysis that we shall present in Section 4 will allow us to obtain the joint
probability distributions of the two queues. This is in particular important for the application
to the individually optimal routing problem, studied in Section 6. The decision whether a
job should be routed to queue 2 depends on the expected delay of the job in that queue,
conditioned on the state at queue 1. On the other hand, for the socially optimal routing
problem, only the marginal distributions are needed, since the objective will be to minimize

the (weighted) average expected delay in both queues. Thus, in addition to the marginal

distribution of the (number of jobs in the) �rst queue, we need also the marginal distribution
of the second queue. Here we derive it for the case r = 1. For that case, observe that
consecutive times between routing instants to the second queue are i.i.d. This readily implies

that the second queue is a GI/M/1 queue.

The distribution of the inter-arrival times to queue 2 is obtained as follows. Consider

an M/M/1 queue with arrival rate � and service rate �1. For m = 0; 1; 2; :::, let Ym be the

elapsing time from the moment the queue length is m until it is (for the �rst time) m + 1.
Due to the memoryless property, the time between consecutive arrivals to queue 2, given

that all jobs are using policy (n; 1) is distributed like Yn+1.

To obtain the distribution of Ym; m � n, let T denote an inter-arrival time and V a
service time in the �rst queue. Then

Ym
�
= T � 1fT < V g+ (V + Ym�1 + Ym) � 1fV � Tg
�
= minfT; V g+ (Ym�1 + Ym) � 1fV � Tg:

Thus, as T and V are exponentially distributed with means 1=� and 1=�, respectively, the

Laplace transform ~Ym(s) := E[exp(�sYm)] is given by

~Ym(s) =
�+ �1

�+ �1 + s
+ ~Ym�1(s) ~Ym(s)

�1
�+ �1

;

which yields

~Ym(s) =
�+ �1

�+ �1 + s

 
1� �1

�+ �1
~Ym�1(s)

!�1
:

This allows us to compute ~Ym(s) recursively. We have, in particular, Y0
�
=T so that

~Y0(s) =
�

� + s
;

~Y1(s) =
(�+ �1)

2(�+ s)

(�+ �1 + s)[(�+ �1)s + �2]

~Y2(s) =
(�+ �1)[(�+ �1)s+ �2]

(�+ �1)s2 + �(2�+ �1)s+ �(�2 � (�1)2)
:

RR n° 4985



10 E. ALTMAN , T. JIMÉNEZ, , R. NÚÑEZ-QUEIJA, , U. YECHIALI

Thus EY0 = ��1, and EYm, m > 0 satis�es

E[Ym] =
1

�+ �1
+
�
E[Ym�1] + E[Ym]

� �1
�+ �1

:

This gives the recursion E[Ym] = (1 + �1E[Ym�1])=� and, hence,

E[Ym] =
1

�

�
1 +

�1
�

+ ::: +
�
�1
�

�m�
�6=�1=

1

�

 
1� (�1=�)

m+1

1� �1=�

!
: (10)

Remark 3.1 An alternative way to obtain the distribution or expectation of Ym is through
the observation that Ym has the same distribution as the busy period in an M/M/1/m + 1
queue with interchanged arrival and service rates of the �rst queue: the arrival rate is �1
and the service rate is �.

Note that the second queue is stable if and only if E[Yn+1] > 1=�2: This gives

�2
1

�

 
1� (�1=�)

n+2

1� �1=�

!
> 1:

which agrees with (8). For the case n = 0 and �1 = �2 = � the stability condition reads

�

�
<

1 +
p
5

2
;

which is the well known Golden Ratio.

4 The joint Probability Distribution Function

We now derive the joint probability distribution of the numbers of jobs in both queues,
which is needed for the analysis of the individually optimal routing. We de�ne the Partial

Generating Functions (PGFs)

Gi(z) =
1X
j=0

Pijz
j; i = 0; 1; 2; :::; n+ 1:

Multiplying the equation corresponding to j by zj in (1) and (2), and summing over all j,
we obtain:

G(z)A(z) = (1� z)�2G(0); (11)

INRIA



Optimal routing among �/M/1 queues with partial information 11

where G(z) (G(0), respectively) is the row vector whose ith entry (i = 0; :::; n + 1) is Gi(z)

(Pi0, respectively), and A(z) is the matrix

A(z) = z2�+ zQd +M:

More precisely, A(z) is given by

0
BBBBBBBBBBBBB@

�2 � �z �z 0 0 : : : 0 0 0 0

�1z �2 � �z �z 0 : : : 0 0 0 0

0 �1z �2 � �z �z : : : 0 0 0 0

0 0 �1z �2 � �z : : : 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 : : : �1z �2 � �z �z 0

0 0 0 0 : : : 0 �1z �2 � �z + �(1� r)z2 �rz

0 0 0 0 : : : 0 0 �1z �2 � �z + �z2

1
CCCCCCCCCCCCCA

where �
�
=�+ �1 + �2 and �

�
=�+ �2.

The solution of (11) is given by

G(z) =
(1� z)�2
jA(z)j G(0)cof [A(z)] ; jzj < 1; (12)

where, by Cramer's rule, the element (i; k) of the cofactor matrix cof [A(z)] is equal to

(�1)i+k times the determinant of the matrix obtained from A(z) after deleting the k-th row
and the i-th column.

In order to fully determine G(z) it thus remains to determine the n+2 unknowns in the

vector P 0 = G(0). One way to proceed is to note that since G(z) is analytic in the unit disk,

for all jzj < 1 for which jA(z)j = 0, we also have

G(0)cof [A(z)] = 0: (13)

This provides a set of equations for G(0). It can be shown that, up to multiplication by

a scalar (it is clear that multiplying any solution to the above equations by a scalar yields

another solution), the boundary probabilities constituting the vector G(0) are uniquely de-

termined by (13). Without further details we remark that this procedure ultimately would

require solving a (full) set of n + 2 equations to determine G(0). Below (Theorems 4.2 and

4.3) we show that this can be avoided, reducing the problem to a set of 2 (even 1, in case

r = 1) equations. We shall need the following result.

Lemma 4.1 Assume that the stability condition holds and that r 2 (0; 1]. Then all roots
fzkg of the determinant jA(z)j are distinct, real and positive. If r = 1 there is a single root
which is greater than 1, one root equal to 1, and there are n + 1 roots in the interval (0; 1).
That is, 0 < z1 < ::: < zn�1 < zn < zn+1 < zn+2 = 1 < zn+3. If r 2 (0; 1) then there is an
additional root (zn+4) larger than 1.

RR n° 4985



12 E. ALTMAN , T. JIMÉNEZ, , R. NÚÑEZ-QUEIJA, , U. YECHIALI

Proof The proof is based on Theorem 2.4.5 from [8], which is formulated for the more

general case where � and M are arbitrary (non negative) diagonal matrices. For z 6= 0, the

matrix T (z) in that reference satis�es A(z) = z2T (1=z):

We now obtain the steady-state distributions for the cases r 2 (0; 1) and r = 1 in two
separate theorems.

Theorem 4.2 Suppose that r 2 (0; 1). Let �1 < �2 be the two roots of jA(z)j for z 2 (1;1)

and v1 = (v1;0; : : : ; v1;n+1) and v2 = (v2;0; : : : ; v2;n+1) the corresponding left null (row) vectors
of A(�1) and A(�2), respectively. Furthermore, let the constants c1 and c2 be the unique pair
solving

c1
v1;n�1
�1 � 1

+ c2
v2;n�2
�2 � 1

=
�1

nPn
k=0 �1

k + r�n+11

;

c1
v1;n+1�1
�1 � 1

+ c2
v2;n+1�2
�2 � 1

=
r�1

n+1Pn
k=0 �1

k + r�n+11

:

(14)

Then,

P j = c1 (1=�1)
j v1 + c2 (1=�2)

j v2; j � 1; (15)

or, equivalently,

P fX1 = i; X2 = jg = c1v1;i (1=�1)
j + c2v2;i (1=�2)

j ; 0 � i � n+ 1; j � 1: (16)

The probabilities on the boundary j = 0 are given by:

P fX1 = i; X2 = 0g =
�1

iPn
k=0 �1

k + r�n+11

� c1v1;i
�1 � 1

� c2v2;i
�2 � 1

; 0 � i � n� 1; (17)

P fX1 = i; X2 = 0g = c1v1;i + c2v2;i; i = n; n+ 1; (18)

Proof Let 1i be the (row) vector with i-th entry equal to 1 and all other entries equal to 0.

Then the vectors v1; v2; 10; 11; 12; : : : ; 1n�1; are the left eigenvectors of the matrix R (see [8,

Corollary 2.3.3 and Lemma 2.3.4]), and therefore are an independent basis for IRn+2, which
proves that there are unique coe�cients c1; c2; d0; d1; : : : ; dn�1 such that:

P 0 = G(0) = c1v1 + c2v2 +
n�1X
i=0

di1i: (19)

As an immediate consequence we have (18), where we still need to prove that c1 and c2 are

indeed determined by (14). We shall do this at the end of the proof. Now rewrite (12) as:

G(z) =
�2

jA(z)j=(z � 1)
G(0)cof [A(z)] ; jzj < 1:

INRIA
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Note that each entry of the matrix cof [A(z)] is a polynomial in z of degree at most n+3 and,

hence, so is the vector G(0)cof [A(z)]. The degree of jA(z)j=(z�1) is exactly n+3. We know

that each of the n + 1 roots of jA(z)j in (0; 1) is also a root of each entry of G(0)cof [A(z)].

Cancelling these roots, makes all entries of G(z) rational functions with the denominator of

degree 2 with roots zn+3 and zn+4 (both larger than 1), and the numerator of degree at most
2. Now, since for z > 1,

1

z � 1
=

1X
j=1

�
1

z

�j
;

and taking into account (19), we arrive at (15), which by de�nition is equivalent to (16).

If, for i = n, we sum P fX1 = n;X2 = jg over all j � 0, then using the marginal distri-

bution of X1 given in (5) together with (16) and (18) we get the �rst part of (14). Similarly,

using (6) for i = n+ 1, we obtain the second part of (14).

It can be argued that if (14) admits more than 1 solution, then the representation (19) is

not unique, which contradicts the above. Now, for 0 � i � n�1, using Pi� = �i1P0� from (5),

and applying (16) and (18), we obtain, after summing P fX1 = i; X2 = jg over all j � 1, the

desired equation (17).

Theorem 4.3 Assume r = 1. Let �� be the unique singularity point of A(z) which is larger
than 1 and let

v� = (v�0; v
�
1; : : : ; v

�
n+1)

be the corresponding left null row vector of A(��), which is unique up to multiplication by a
scalar. Then for 0 � i � n + 1:

P fX1 = i; X2 = jg =

 
1� 1

��

! 
1

��

!j
�1

n+1v�i =v
�
n+1Pn+1

k=0 �1
k

; j � 1;

P fX1 = i; X2 = 0g =
�1

iPn+1
k=0 �1

k
� 1

��
�1

n+1v�i =v
�
n+1Pn+1

k=0 �1
k

:

In particular

E [X2jX1 = i] =
v�i =v

�
n+1

�� � 1
�1

n+1�i: (20)

Proof The proof proceeds along the same lines as that of Theorem 4.2. If r = 1 then the
term with coe�cient c2 vanishes in both expressions (15) and (19), and in (19) an additional

term dn1n appears. This proves that

P fX1 = i; X2 = jg = cv�i

 
1

��

!j

; 0 � i � n+ 1; j � 1;

P fX1 = n+ 1; X2 = 0g = cv�n+1:
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(In the second expression we use, as before, the fact that the last entry of the 1k in (19)

equals 0.) Summing P fX1 = n+ 1; X2 = jg over all j � 0 we have:

c =

 
1� 1

��

!
P fX1 = n+ 1g

v�n+1
:

Substituting this result for c in the expression for PfX1 = i; X2 = jg above, and using the

value of P (X1 = n+1) = Pn+1;�, as given by (6), we obtain the �rst assertion of the theorem.

Then, using the value of Pi� as given in (5), when r = 1, we obtain the second assertion of
the theorem.

Finally, note that

E [X2jX1 = i] = �
v�i
�1i

; where � := c
��

(�� � 1)2
1� �1

n+2

1� �1
=

1

�� � 1

�1
n+1

v�n+1
:

We indicate that the steady-state joint probabilities in (16) and (18) are computed for

given threshold policies with parameter (n; r). We shall add this parameter explicitly to the
notation in the following sections.

5 Socially optimal routing

In this section we discuss the computation of a threshold policy that minimizes a weighted
sum of the mean queue lengths in both queues. To be speci�c, we consider the optimization

problem of minimizing J (n;r)(a) where

J (n;r)(a) := aE(n;r)[X1] + (1� a)E(n;r)[X2];

for some weight factor a 2 [0; 1]. Let

J�(a) := min
n

J (n;1)(a)

In general, the minimization can be taken over the parameters (n; r) in case we allow for
randomized policies, but we shall restrict ourselves to the case r = 1 and minimize over the
parameter n only.

By (5) and (6), we have

E(n;r)[X1] = P0��1

 
n�1

n(�1 � 1) + 1� �1
n

(1� �1)2
+ r(n+ 1)�1

n

!
;

where P0� is given in (7). When �1 = 1 (where �1 = �=�1) the above expression is de�ned
by its limit.
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Figure 2: The function J (n;1)(a) for di�erent values of a and n
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From Theorem 4.3 we have for r = 1 and j � 1,

P fX2 = jg = C1

 
1

��

!j

where C1 =

 
1� 1

��

! �
�1

n+1Pn+1
i=0 v

�
i

�
=v�n+1Pn+1

k=0 �1
k

:

Thus,

E(n;r)[X2] =
C1�

�

(�� � 1)2
:

For r < 1 and j > 0, we have from Theorem 4.2,

P fX2 = jg = c1

 
n+1X
i=0

v1;i

!
(1=�1)

j + c2

 
n+1X
i=0

v2;i

!
(1=�2)

j :

Thus,

E(n;r)[X2] =
c1
�Pn+1

i=0 v1;i
�
�1

(�1 � 1)2
+
c2
�Pn+1

i=0 v2;i
�
�2

(�2 � 1)2
:

With these formulas we can evaluate the objective function for di�erent choices of n and r
and obtain their optimal values numerically.

To illustrate this approach, we consider a numerical example in which we chose �1 =

�2 = � = 0:05. We plot in Figure 2 the value J (n;1)(a) as a function of the weighting factor

a and the threshold n (without randomization, i.e. for r = 1). We see clearly from the

�gure that for each a, there exists a well de�ned global minimum (as a function of n). The

optimal threshold n is given in Figure 3 as a function of a. (The function R�(a) displayed

in the �gure is de�ned and studied below.) Evidently, the optimal threshold decreases with
increasing values of a, since by increasing a we penalize for joining queue 1. Note that the
optimal threshold is a step function.

We now investigate in more detail the in�uence of a on the di�erent components of

J (n;1)(a), i.e. on the expected length of each of the two queues. We are motivated by the
following question: what is the contribution of the congestion in each queue to the global
cost, when using an optimal threshold? We note that for the non-symmetrical case, the

bene�t of node 1 is aE(n;1)[X1] and the bene�t for node 2 is (1�a)E(n;1)[X2]. We thus de�ne

R(a; n) :=
aE(n;1)[X1]

(1� a)E(n;1)[X2]
;

and we further de�ne R�(a) to be the value of R(a; n) evaluated at the threshold value (n; 1)

that minimizes J (n;1)(a). R�(a) is depicted in Fig. 3 as a function of a (which is increased

at steps of 0.005). We see that R�(1
2
) < 1. We conclude in this example that under

symmetric weighting and symmetric service rates, the node for which the state information
is available at the routing instants obtains a lower bene�t at the socially optimal conditions,

INRIA
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Figure 3: The optimal threshold and the corresponding value R�(a) for di�erent a's

i.e., aE(n;1)[X1] < (1� a)E(n;1)[X2]. Note also that when a tends to zero then R� tends
to 0, and when a tends to 1 then R� tends to 1. Note �nally that R� is not monotone
everywhere: it has irregularities at the points where the optimal threshold jumps. Indeed,
since the optimal policy is piecewise constant, then, in between changes of the optimal policy,

R�(a) can be written as

R�(a) = const� a

1� a
= const

� 1

1� a
� 1

�
;

so in these intervals R�(a) grows like an hyperbola. At the right end-points of those intervals

R�(a) may have negative jumps.

In Fig. 4 we plot the optimal value J�(a) for di�erent values of a. Let us shortly comment

on the behavior of J�(a) for a # 0 and a! 1. We start with a # 0. Clearly, E(n;1)[X1] � n+1.

(If �1 < 1 then E(n;1)[X1] is even uniformly bounded by E(1;1)[X1] = �1=(1� �1).) Choosing

n(a) = b
q
1=ac we have

0 � J�(a) � J (n(a);1)(a) � a(n(a) + 1) + E(n(a);1)E[X2] �! 0 + 0; a # 0:

Now let a ! 1. We choose n0 := min
n
n : E(n;r)[X2] <1

o
. This minimum shall be taken

over n � �1, where the arti�cial choice n = �1 corresponds to the policy where all customers
are routed to queue 2, We then have

J�(a) � J (n
0;1)(a) = aE(n0;1)[X1] + (1� a)E(n0;1)[X2] �! E(n0;1)[X1]; a! 1:
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Figure 4: The optimal value for di�erent a's

It is easy to see that, in the limit as a! 1, this inequality can not be strict: the optimal choice

of n can never be smaller than n0, and for any choice n � n0 we have J (n;1)(a) � aE(n;1)[X1]
and, hence,

J�(a) � min
n�n0

aE(n;1)[X1] = aE(n0;1)[X1]! E(n0;1)[X1]; a! 1:

In particular, if � < �2 and if we allow n = �1 then n0 = �1 and J�(a)! 0 when a! 1.

6 Individually optimal routing

Next we consider the question of individual optimization. An arriving job observes the length
of the �rst queue and on the basis of this observation decides which queue to join, so as to
minimize its sojourn time, possibly giving di�erent weights to waiting in the two queues as
in the global optimization of Section 5.

Suppose that all previous jobs, in an in�nitely long past, followed a common (n; 1) policy.

Hence, in particular, the �rst queue has evolved exactly like a pure M/M/1/K queue with
K = n + 1. Assume further that the system has reached steady state and that the pair of
random variables X1 and X2 are, as before, jointly distributed as the queue lengths in queue
1 and queue 2, respectively. For notational convenience we normalize the time with respect
to the service rate at the �rst queue. Note that the distribution of (X1; X2) and, hence, the
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routing decisions are not a�ected by such a normalization. We de�ne as before �1 = �=�1,
and further de�ne

s :=
�2
�1
; (21)

i.e., s is the relative service speed of the second queue with respect to that of the �rst. The
time-normalized system is now characterized by the parameters n, r, �1 and s. For later
reference we rewrite the stability condition (8) as

�1(1� r)Pn� + �1Pn+1;� < s: (22)

T n;r
�1;s

(i; h) is de�ned as the expected sojourn time (normalized with respect to �1) in case a

new job joins queue h given that the number of jobs in the �rst queue equals i:

T n;r
�1;s

(i; 1) = i + 1;

T n;r
�1;s

(i; 2) = (1 + E[X2jX1 = i])=s:
(23)

(The actual expected sojourn time is T n;r
�1;s

(i; h)=�1.) In the sequel, when r = 1 we commonly

omit this parameter in the notation and write T n
�1;s

(i; h) instead of T n;1
�1;s

(i; h). An individual

job will join queue 1 if aT n;r
�1;s

(i; 1) � (1� a)T n;r
�1;s

(i; 2), where a 2 (0; 1) is a weight parameter

(as in Section 5). When a = 1=2 each individual job just aims at minimizing its sojourn
time.

6.1 Nash equilibria

A set of policies is called a Nash equilibrium if no job can improve his choice by a unilateral
change of policy. Based on numerical results, for the case of two equally fast servers, the
existence of a randomized threshold policy leading to a Nash equilibrium was postulated in

[3]. Our results further support this assertion when n = 1; : : : ; 18, and strongly indicate that

the same is true for n � 19 (more details are given in Section 7). We show, however, that
this is not necessarily true when the servers have di�erent service speeds. In particular, we
show that an individual job's best response to a common non randomized threshold policy

of all other jobs is not always of threshold type. This implies a more intricate (numerical)

investigation of the existence of a Nash equilibrium. (A threshold policy (n; r) can e�ectively

be represented by the single parameter n + r, which is convenient for numerical analysis.)
Such an investigation is beyond the scope of this paper. Our main contribution in that
direction is to establish conditions on the parameters such that, for a given threshold policy

(n; 1), the optimal response is again a threshold policy. Our proof technique is partly analytic

and does not seem to lend itself for a straightforward extension to include randomized (n; r)
policies. If such an extension were realized, this would support the numerical investigation
of the existence of Nash equilibria of threshold type along the lines of [3].
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6.2 Optimality of two-threshold responses for r = 1

Numerical examples in [3] indicate that, when s = 1 (and a = 1=2), T n;r
�1;s

(i; 1)� T n;r
�1;s

(i; 2) is

increasing in i, implying that the optimal response is a threshold policy. Below it is shown
that this is not necessarily true for general s and a. See for instance Figure 5 where, for the

parameter values n = 3, r = 1, �1 = 1 and s = 0:56, we plotted T n;r
�1;s

(i; 1) and T n;r
�1;s

(i; 2) for

i = 0; 1; : : : ; 4. If we take a = 0:5, an individual job will join queue 2 if there are exactly
3 jobs in the �rst queue but it will join queue 1 when the queue length is larger or smaller
than 3.

In the sequel we focus on non-randomized threshold policies by taking r = 1. Our main
interest is in determining structural properties of optimal responses.
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Figure 5: T n;r
�1;s

(i; 1) and T n;r
�1;s

(i; 2)

Lemma 6.1 For �xed n, �1 and s, T n
�1;s

(i; 2) is convex in i.

Proof Let �� and v� be as in Theorem 4.3. From v�A(��) = 0 we have for 0 < i < n + 1:

v�i�1��
� + v�i (�2 � (�+ �1 + �2) �

�) + v�i+1�1�
� = 0:

Hence, if we normalize such that v�0 = 1 we may write:

v�i = Æ(w1)
i + (1� Æ)(w2)

i: (24)
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Here, x = w1 and x = w2 are the two roots of the polynomial

��� + (�2 � (�+ �1 + �2) �
�) x+ �1�

�x2:

We choose w1 and w2 such that

w1 > max f1; �1g � min f1; �1g > w2 > 0:

The coe�cient Æ is given by

Æ =

�2
(��)2

� �+�2
��

+ �1
��
w2

�1
��
(w2 � w1)

=
w2 � �1

w2(w2 � w1)
> 0;

Similarly

1� Æ =
1
w1

� �1
�

1
w1

� 1
w2

> 0:

Hence, 0 < Æ < 1. From (20) and (24) we have:

E [X2jX1 = i] =
(�1)

n+1 =v�n+1
�� � 1

0
@Æ

 
w1

�1

!i

+ (1� Æ)

 
w2

�1

!i
1
A :

Clearly, E [X2jX1 = i] and, hence, T n
�1;s

(i; 2) are convex in i.

For �xed n, �1 and s let us de�ne the set of states of queue 1 for which it is optimal to
join queue 2:

S(n; �1; s) :=
n
i : aT n

�1;s
(i; 1) � (1� a)T n

�1;s
(i; 2)

o
� f0; 1; 2; : : : ; n+ 1g : (25)

Furthermore, let t�(n; �1; s) := inf S(n; �1; s) and t+(n; �1; s) := supS(n; �1; s) (by conven-

tion inf ; = +1 and sup ; = �1). We also de�ne the set of states for which both queues
are equally attractive:

E(n; �1; s) :=
n
i : aT n

�1;s
(i; 1) = (1� a)T n

�1;s
(i; 2)

o
�
n
t�(n; �1; s)

o
[
n
t+(n; �1; s)

o
: (26)

Corollary 6.2 Let �1 and s be �xed. The optimal responses to a non randomized (n; 1)

threshold policy are two-threshold policies characterized by t�(n; �1; s) and t+(n; �1; s) as
follows. It is optimal to route a job to queue 2 if t�(n; �1; s) � X1 � t+(n; �1; s) and to
queue 1 otherwise. If X 2 E(n; �1; s), which may be the case at either threshold value, one
may deviate from the above and route to queue 1 without losing optimality (in that case both
routes are equally attractive).

RR n° 4985



22 E. ALTMAN , T. JIMÉNEZ, , R. NÚÑEZ-QUEIJA, , U. YECHIALI

Proof If S(n; �1; s) = ; it is always optimal to route to the �rst queue. Otherwise we have,

from Lemma 6.1 and the fact that T n
�1;s

(i; 1) is linear in i, that S(n; �1; s) is an uninterrupted

sequence of integers.

Remark 6.1 If t�(n; �1; s) = 0 and t+(n; �1; s) < n + 1, then the optimal response is

e�ectively characterized by a single threshold, namely t+(n; �1; s). However, we shall not
refer to such a policy as being a threshold policy. We reserve that term for the `natural'
threshold policies introduced earlier, in which a new job joins the �rst queue if there is a
`small' number of jobs at that queue and the job joins the second queue otherwise. When

t�(n; �1; s) = 0 and t+(n; �1; s) < n + 1, the opposite happens: a new job should join the
�rst queue if there is a `large' number of jobs at that queue.

Clearly, a non randomized threshold policy (note Remark 6.1 above) is the optimal

response to a non randomized threshold policy if and only if t+(n; �1; s) = n+1. Because of

the convexity of T n
�1;s

(i; 2) (Lemma 6.1) and the linearity of T n
�1;s

(i; 1), a su�cient condition

for t+(n; �1; s) = n+ 1 is (1� a)T n
�1;s

(n + 1; 2) � aT n
�1;s

(n+ 1; 1). From (20) we have that

E [X2jX1 = n + 1] =
1

�� � 1
;

hence, by (23),

T n
�1;s

(n + 1; 2) =

 
1

�� � 1
+ 1

!
1

s
: (27)

The next lemma shows that the condition (1 � a)T n
�1;s

(n + 1; 2) � aT n
�1;s

(n + 1; 1) does not

always hold. The properties mentioned in the lemma play a crucial role in our later analysis.

Lemma 6.3 Let n, �1 and i 2 f0; 1; 2; : : : ; n+ 1g be �xed. Let s(n; �1) > 0 be such that
s = s(n; �1) achieves equality in the stability condition (22). Then T n

�1;s
(i; 2) is continuous

and strictly decreasing in s > s(n; �1). Moreover, if s ! 1 then T n
�1;s

(i; 2) # 0 and if

s # s(n; �1) then T n
�1;s

(i; 2)!1.

Proof The proof can entirely be given using analytic arguments. However, to show the
monotonicity we provide a more instructive proof using a coupling argument. Consider the

system of two queues for two values of s, say s� and s+. Assume that s� < s+. Suppose that
the sequences of inter-arrival times and service times at the �rst servers are identical for both
systems. Note that the �rst queue behaves exactly the same in both systems. We couple
the service times at the second server in the following way. Let U1; U2; U3; : : : ; be an i.i.d.
sequence of exponentially distributed random variables with expectation 1. We construct
the sequence of service times in both systems as follows. In the �rst system we let the service
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time of the k-th job arriving to the second queue be equal to Uk=s
�, while in the second

system we set it equal to Uk=s
+. (Note that, since the �rst queue behaves identically in both

systems, the arrival process at the second queue is also the same in both systems.) Clearly

a job arriving into the second queue will be taken into service earlier or at the same time (if

both second queues are empty) in the system with service rate s+ than in the system with

the lower service rate s�. Hence, at any point in time, the number of jobs in the second

queue is never larger in the s+-system than in the s�-system.

The continuity of T n
�1;s

(i; 2) in s can be proved using arguments as in [8, Section 2.6].

That T n
�1;s

(i; 2) # 0 as s!1 can be seen by noting that the second queue is never larger than

that of the M/M/1 queue that results from routing all jobs to the second queue, i.e., having

arrival rate �1 and service rate s. Finally, the unboundedness of T n
�1;s

(i; 2) as s decreases and

instability is approached, can be proved formally using that 1=�� is larger than �1Pn+1;�=s;

which is the tra�c load on the second queue1.

Corollary 6.4 Let n, �1 and i be �xed. Then t�(n; �1; s) is non increasing and t+(n; �1; s)

is non decreasing in s > s(n; �1). Moreover, for s large enough we have t�(n; �1; s) = 0 and
t+(n; �1; s) = n+1, and for s small enough but larger than s(n; �1) we have t�(n; �1; s) = +1
and t+(n; �1; s) = �1.

Proof Directly implied by Lemmas 6.1 and 6.3.

6.3 Conditions for optimality of (natural) threshold responses

The next theorem essentially provides necessary and su�cient conditions for the optimal

response to a threshold policy to be again a (possible di�erent) threshold policy. Furthermore
it shows that to check optimality of threshold responses for �xed n and �1, it su�ces to
consider a speci�c value of s instead of all s > s(n; �1).

Theorem 6.5 Let n and �1 be �xed and s?(n; �1) > s(n; �1) be the unique solution of

T n
�1;s?(n;�1)

(n+ 1; 2) =
a

1� a
T n
�1;s?(n;�1)

(n + 1; 1): (28)

Then for all s � s?(n; �1) there exists a threshold policy which is an optimal response of an
individual job to the (n; 1) policy. Furthermore, the following are equivalent:

(i) for all values of s > s(n; �1) there exists a threshold policy which is an optimal response,

1This property was shown, in a more general context, in the proof of Lemma 2.6.8 of [8, p. 52]. There

the role of 1=�� is played by  �;N and the load on the second queue of our model equals �=c.
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(ii) T n
�1;s?(n;�1)

(n; 2) � a
1�a

T n
�1;s?(n;�1)

(n; 1) = a
1�a

(n+ 1),

(iii) s?(n; �1) � ŝ(n; �1; a)
def
= (1� a)

�
�1 +

1�a
a(n+2)

�
,

(iv) either �1 � 1
n+2

or

(�1)n+2
�����A
 
1 +

1=a

�1(n+ 2)� 1

!����� � 0;

where we substitute s = ŝ(n; �1; a) into the entries of the matrix A(�).

Proof The existence and uniqueness of s?(n; �1) follows directly from Lemma 6.3 and the

fact that T n
�1;s

(n+ 1; 1) is independent of s. For all s � s?(n; �1) we have that t
+(n; �1; s) =

n+1 (Lemma 6.3 and Corollary 6.4) and, hence, there exists an optimal threshold response.

Let us now prove the equivalence of (i) and (ii). Suppose (ii) holds. For s � s?(n; �1) we

already proved the optimality of threshold policies in general. If s 2 (s(n; �1); s
?(n; �1)) we

have S(n; �1; s) = ; because of Lemmas 6.1 and 6.3. Hence, in this case it is always optimal to

join queue 1. Therefore, (ii) implies (i). As for the converse, suppose that (ii) does not hold,

i.e., (1� a)T n
�1;s?(n;�1)

(n; 2) < aT n
�1;s?(n;�1)

(n; 1). By Lemma 6.3, there exists an s < s?(n; �1)

such that (1� a)T n
�1;s

(n + 1; 2) > aT n
�1;s

(n + 1; 1) while still (1� a)T n
�1;s

(n; 2) < aT n
�1;s

(n; 1).

Therefore it is optimal to join queue 2 if X1 = n and join queue 1 if X1 = n + 1, which
contradicts (i). This proves that (i) implies (ii).

Now we show that (iii) is equivalent with (ii). The following steps are justi�ed below.

(1� a)T n
�1;s?(n;�1)(n; 2) � aT n

�1;s?(n;�1)(n; 1)
1() (1� a)

 
�1
v�n=v

�
n+1

�� � 1
+ 1

!
1

s?(n; �1)
� a(n + 1)

2()
 
(1� ��)�1 + 1 +

1� a

a(n+ 2)

!
1

�� � 1
+ 1 � a

1� a
(n+ 1)s?(n; �1)

3() ��1 + 1 +

 
1 +

1� a

a(n + 2)

! 
a(n+ 2)

1� a
s?(n; �1)� 1

!
� a

1� a
(n + 1)s?(n; �1)

4() s?(n; �1) � (1� a)

 
�1 +

1� a

a(n+ 2)

!
:

In step 1 we use (23) and (20). For step 2 we note that, after choosing s = s?(n; �1), the last

column of the equation v�A(��) = 0 gives:

v�n�
��1 + v�n+1

�
(��)2�1 � ��(�1 + 1 + s?(n; �1)) + s?(n; �1)

�
= 0:

Hence,

�1
v�n
v�n+1

= (1� ��)�1 + 1 +
�� � 1

��
s?(n; �1):
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In the latter we also substitute

�� � 1

��
s?(n; �1) =

1� a

a(n + 2)
; (29)

which follows from (27) and (28). In step 3 we again use (29) and the last step concerns
only elementary operations.

Finally, we show the equivalence of (iii) and (iv). Suppose that (iii) holds and that �1 >
1

n+2
. From ŝ(n; �1; a) � s?(n; �1) and Lemma 6.3 it follows that (1�a)T n

�1;ŝ(n;�1;a)
(n+1; 2) �

a(n + 2) which, using (27), is equivalent with ��a (�1(n+ 2)� 1) � 1 + a (�1(n + 2)� 1).

Since �1 >
1

n+2
it must be that

�� � 1 +
1

a (�1(n+ 2)� 1)
:

Using that z = �� is the unique root of jA(z)j for z > 1 and (�1)n+2jA(z)j > 0 for z 2
(1; ��) � see the proof of Lemma 2.4.4 in [8] � we now have (�1)n+2jA(z)j � 0 for z =

1 + 1
a(�1(n+2)�1)

. Thus, (iii) implies (iv). It remains to show the converse. This can be

done by reversing the order of the previous steps: it follows that ��a (�1(n+ 2)� 1) � 1 +

a (�1(n + 2)� 1) and, hence, T n
�1;ŝ(n;�1;a)

(n+1; 2) � a
1�a

(n+2) so that ŝ(n; �1; a) � s?(n; �1).

Let us brie�y discuss the consequences of Theorem 6.5. Part (ii) allows us to decide the

optimality of threshold responses on the entire 3-dimensional parameter space (n; �1; s) by

computing T n
�1;s

(n; 2) only for values s = s?(n; �1). Part (iii) improves this condition with

respect to computational complexity: it requires a simpler condition on s?(n; �1) to be eval-

uated instead of computing T n
�1;s?(n;�1)

(n; 2). Finally, Part (iv) overcomes the inconvenience

of having to evaluate s?(n; �1) from its implicit de�nition (28). Instead, the determinant of

A(z) needs only to be computed once at a speci�c value of z for each pair (n; �1).

Corollary 6.6 Let a = 1=2. For the cases n = 0, n = 1 and n = 2, and for any values of �1
and s that make the system stable, there is an optimal response threshold policy to an (n; 1)
policy.

Proof The corollary follows by Part (iv) of Theorem 6.5, involving only elementary (but

tediously lengthy) matrix manipulations (which we omit). For the case n = 0, however, we

give a (shorter) proof using Part (iii) of Theorem 6.5. As in the proof of Lemma 6.3 we use

1=�� < �1Pn+1;�=s, cf. [8, p. 52]. The right-hand side of this equation is the tra�c load on

the second queue. Using (6), for r = 1, and (29) we then have:

s?(n; �1) >
�

1

n+ 2

�
�1

n+2Pn+1
i=0 �1

i
: (30)
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When n = 0 it may be veri�ed that for all values of �1:

s?(0; �1) >
1

2

 
�1

2

1 + �1

!
>

1

2

�
�1 +

1

2

�
:

For n = 0 this proves the optimality of threshold responses2 (by Part (iii) of Theorem 6.5).

7 Conclusion

We have studied optimal routing among two queues where the decisions are based on partial
information. We derived the steady-state distributions for our model and identi�ed how
optimal routing strategies can be computed for social optimization. In the case of individual
optimization we showed the structure of optimal responses of an individual customer to

non-randomized threshold strategies (n; 1). Corollary 6.6 shows that for the cases n = 0,

n = 1 and n = 2, the optimal response is always a non-randomized threshold policy (even for

non-identical servers), provided the system is stable. This partly (the optimality of threshold

responses has not been shown for r 6= 1) justi�es a numerical investigation of the existence

of Nash equilibria along the lines of [3] when n � 2. On the other hand, we have used

Part (iv) of Theorem 6.5 in a numerical investigation to determine values of (�1; s) such that
the optimal response is not a threshold policy but necessarily a two-threshold policy when
n = 3; 4; : : : ; 18. The numerical results indicate that this is also the case for larger values of n,
since the set of values of �1 for which there exist choices of s leading to optimal two-threshold
policies turns out to be increasing with n. For values of n between 3 and 18 the interval
grows gradually with increasing n. When n = 3 such examples exist for �1 2 (0:4; 1:2) and

when n = 18 we may take �1 2 (0:2; 1:8). In such cases, (numerical) investigation of the
existence of Nash equilibria of threshold type requires further justi�cation.
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