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Abstract: We study the parametric perturbation of Markov chains with denumerable state
space. We consider both regular and singular perturbations. By the latter we mean that
transition probabilities of a Markov chain, which has several ergodic classes, is perturbed in
a way that allows rare transitions between the di�erent ergodic classes of the unperturbed
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restrictive assumptions such as strong recurrence ergodicity or Doeblin conditions. Our goal
is to relax these by conditions that can be applied to queueing models (where the condi-
tions mentioned above typically fail to hold). With the help of the �-geometric ergodicity
approach, we are able to express explicitly the steady state distribution of the perturbed
Markov chain as a Taylor series in the perturbation parameter. We apply our tools to quasi
birth and death processes and provide queueing examples.

Key-words: Denumerable Markov Chains, Perturbation Analysis, Geometric Ergodicity,
Quasi Birth and Death Processes, Queueing Models

� INRIA Sophia Antipolis, e-mail: altman@sophia.inria.fr
y INRIA Sophia Antipolis, e-mail: k.avrachenkov@sophia.inria.fr
z CWI and Eindhoven University of Technology, The Netherlands, e-mails: sindo@cwi.nl, r.nunez@tue.nl



Analyse de Perturbation pour les Chaînes de Markov

Dénombrables et application aux modèles de �les

d'attentes

Résumé : Nous étudions les perturbations paramétriques des chaînes de Markov à espace
dénombrable d'états. Nous considérons les cas de perturbations régulières et singulières.
Une perturbation singulière signi�e que la chaîne de Markov constituée de plusieurs classes
ergodiques, est perturbée dans le sens ou il existe des transitions rares entre les di�érentes
classes. Dans les travaux précédents, les perturbations singulières étaient étudiées sous
des hypothèses fortes telles que l'ergodicité uniforme ou les conditions de Doeblin. Ici,
nous relaxons ces hypothèses en utilisant le concept de "�-geometric ergocity" ce qui va
nous permettre d'appliquer nos résultats aux modèles de �les d'attente. Nous obtenons
notamment l'expression de la distribution stationnaire pour la chaîne de Markov perturbée
sous forme de série de Taylor en fonction du paramètre de perturbation.

Mots-clés : Chaînes de Markov Dénombrables, Analyse de Perturbation, Ergodicité
Géométrique, Quasi Birth and Death Processes, Modèles de �les d'attentes



Perturbation Analysis for Denumerable Markov Chains 3

1 Introduction

Let us consider a Markov chain on the denumerable state space E = f1; 2; :::g, whose
generator depends on a small parameter ", that is

G(") = G(0) + "G(1); 0 � " � �": (1)

The generator will in general correspond to a discrete-time Markov chain, in which case the
transition matrix of the chain is given by P (") = I + G("). It could also correspond to a
continuous time Markov chain, in which case we shall assume that the transition rates are
uniformly bounded by r; in that case we shall focus on the uniformized discrete-time chain

P (") = I +�G(") (2)

with � < r�1 [39]. We call G(") and G(0) the perturbed generator and the unperturbed gen-
erator, respectively. From now on, we assume that there exists a non-zero �" such that G(")
is an irreducible Markov chain generator for " 2 [0; �"]. There are two types of perturbation:
the perturbation is said to be regular if the unperturbed generator G(0) is also irreducible,
otherwise, if the unperturbed Markov chain has several ergodic classes, the perturbation is
said to be singular. We treat both cases in the present paper. Let us note that the irre-
ducibility of the perturbed Markov chain implies that if the invariant probability measure
denoted by �(") exists it is unique and satis�es

X
i2E

�i(")Gij(") = 0; j 2 E; (3)

X
i2E

�i(") = 1; (4)

for 0 < " � �". We give conditions for its existence in terms of the characteristics of
the unperturbed Markov chain (e.g. probability measure(s), deviation matrix) and the
perturbation term G(1). Furthermore, we show that under non-restrictive conditions the
invariant probability measure of the perturbed chain �(") is analytic in " in the punctured
neighborhood of zero. Namely,

�(") = �(0) + "�(1) + :::; 0 < " � �": (5)

Note that �(0), the invariant probability measure of the unperturbed chain, is not well
de�ned if the perturbation is singular. We shall show that the coe�cients of power series
(5) form a geometric sequence and, hence, there exists a computationally stable updating
formula for �(").

Before proceeding, let us discuss the existing results on perturbation analysis of Markov
chains and Markov Processes. There is a signi�cant amount of literature on perturbation
analysis of �nite Markov chains and Markov processes, see [1, 3, 6, 7, 8, 10, 13, 15, 16, 19,
28, 33, 35, 36, 37, 38, 41] and references therein. However, there are only few references
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4 Altman, Avrachenkov & Núñez-Queija

available on perturbation analysis of Markov chains with an in�nite state space. Singularly
perturbed Markov chains on general measurable state spaces have been analyzed in the
book of Korolyuk and Turbin [25] and in the paper of Bielecki and Stettner [9]. We would
like to note that in [25, 9] the authors impose Doeblin type conditions for the unperturbed
Markov chain. These conditions are quite restrictive. For instance, even a simple M/M/1
queueing model does not satisfy them. Furthermore, the case of in�nite number of the
ergodic classes in the unperturbed Markov chain cannot be considered under the Doeblin
conditions. Cao and Chen [10] have analyzed the regularly perturbed Markov chain on the
countable state space under a strong ergodicity assumption. This assumption also excludes
such simple models as an M/M/1 queue. In [42] Yin and Zhang analyze singularly perturbed
continuous-time Markov processes on denumerable state space under conditions equivalent
to the Doeblin conditions. The authors mistakenly stated that the M/M/1 model satis�es
the Doeblin conditions (see for instance Section 7.1 of [23] for explanations why the M/M/1
model does not satisfy the Doeblin conditions). In the present work, we use the concepts
of Lyapunov functions and �-geometric ergodicity [14, 23, 29, 39, 40], that allows us to
treat the cases that satisfy neither Doeblin conditions nor strong ergodicity condition. We
would also like to mention a number of works on the application of singularly perturbed
Markov chains to Quasi Birth and Death models, Queueing models and Reliability Theory
[2, 4, 5, 12, 17, 27, 32]. In particular, the singular perturbation techniques allow to solve
models with signi�cantly larger state space than in the case of direct application of standard
tools. At the end of the paper we consider some of these models as examples of application
of our general results.

2 Preliminaries

Let us recall facts on �-geometric ergodicity, Lyapunov functions and the relation between
these two important concepts. For any denumerable vector x the �-norm is de�ned as
follows:

jjxjj� = sup
i

jxij
�i

:

The corresponding induced �-norm for any operator A is given by

jjAjj� = sup
i

��1i

X
j

jAij j�j :

A Markov chain on a denumerable state space with transition operator P is said to be
�-geometrically ergodic if

jjP k ��jj� � c�k; k = 0; 1; 2; ::: (6)

where � is the ergodic projection, and c, � < 1 are some constants. The notion of �-
geometric ergodicity is a very e�cient theoretical tool. However, in practice the condition
(6) is di�cult to check. On contrary, the following stability conditions based on Lyapunov

INRIA



Perturbation Analysis for Denumerable Markov Chains 5

functions can be easily veri�ed: There exist a strongly aperiodic state � 2 E (P�� > p0)
and constants Æ < 1, b <1 and a Lyapunov function V , Vi � 1;8i 2 E, such that

PV � ÆV + b1I�: (7)

The following theorem [30] shows the relation between Lyapunov function based stability
condition and �-geometric ergodicity.

Theorem 1 Let the Lyapunov function based stability condition (7) hold for a Markov
chain. Then the chain is V-geometrically ergodic;

jjP k ��jjV � c�k; k = 0; 1; 2; :::

for any � > � and c = �=(� � �), where � = 1�M�1
� ,

M� =
1

(1� Æ)2
[1� Æ + b+ b2 + ��(b(1� Æ) + b2)];

and where �� is some positive constant satisfying

�� � 32� 8p20
p30

�
b

1� Æ

�2
:

We note that the above theorem demonstrates the Lyapunov function V can be used as
a bounding function for the �-norm.

3 Regular Perturbation

Let us make several non-restrictive assumptions. The �rst assumption guarantees that the
perturbation is regular.

Assumption (R1): The unperturbed Markov chain is irreducible.

Assumption (R2): The unperturbed Markov chain satis�es the stability condition based
on Lyapunov function. Namely, there exist a strongly aperiodic state � 2 E (P�� > p0) and
constants Æ < 1, b <1 and a Lyapunov function V , Vi � 1;8i 2 E, such that

P (0)V � ÆV + b1I�:

Assumption (R3): The perturbation matrix G(1) is V-bounded, that is, jjG(1)jjV � g1.

Assumptions (R1) and (R2) imply that the unperturbed Markov chain has a unique
invariant probability measure, which is a solution of the following system

X
i2E

�iG
(0)
ij = 0; j 2 E;

RR n° 4713



6 Altman, Avrachenkov & Núñez-Queija

X
i2E

�i = 1:

Furthermore from Assumption (R2) and Theorem 1 we conclude that there exist constants
c and � (c > 0, 0 < � < 1) such that

jjP (0)k ��jjV � c�k; k = 0; 1; 2; ::: ;

where � = 1� is the ergodic projection of the unperturbed Markov chain (here, 1 is a column
vector of 1's and � is a row vector). Hence, by Lemma 4.1 from [39] there exists a V-bounded
deviation matrix H which is the unique solution of the following equations

HG(0) = G(0)H = �� I; (8)

H� = �H = 0: (9)

and the following estimation for the V-norm of the deviation matrix takes place

jjH jjV � c

1� �
: (10)

Now we are able to formulate and to prove the main result of this section.

Theorem 2 Let Assumptions (R1), (R2) and (R3) be satis�ed. Then the perturbed Markov
chain has a unique invariant probability measure �("), which is an analytic function of "

�(") = �(0) + "�(1) + "2�(2) + :::; 0 � " � minf�"; 1� �

g1c
g;

with �(k) = �(G(1)H)k, where � is the invariant probability measure of the unperturbed
Markov chain. Moreover, the invariant probability measure of the perturbed chain can be
calculated by the updating formula

�(") = �[I � "G(1)H ]�1; 0 � " � minf�"; 1� �

g1c
g: (11)

Proof: Recall that G(") is an irreducible generator. Hence, if a solution of (3) and (4)
exists, it is unique. Next, we show constructively that �(") can be represented by a power
series (5) with non-zero radius of convergence. Towards this end, let us substitute (1) and
(5) into (3) and collect terms with the same powers of ". This leads to the following system
of equations

�(0)G(0) = 0; (12)

�(k)G(0) + �(k�1)G(1) = 0; k = 1; 2; ::: (13)

Normalization condition (4) leads to the next conditions on �(k); k = 0; 1; 2; :::

�(0)1 = 1; (14)

INRIA



Perturbation Analysis for Denumerable Markov Chains 7

�(k)1 = 0; k = 1; 2; ::: (15)

Since the unperturbed Markov chain has a unique invariant probability measure, from (12)
and (14) we conclude that the �rst term in power series (5) is equal to the invariant prob-
ability measure of the unperturbed Markov chain, that is �(0) = �. Next let us consider
equation (13). As H is the generalized inverse of �G(0) (see equations (8) and (9)), we can
write the general solution of (13) in the form

�(k) = c(k)� + �(k�1)G(1)H;

where c(k) is some constant (it is the sum of components of �(k)). Now we use condition
(15).

�(k)1 = c(k) + �(k�1)G(1)H1 = 0

Note that it follows from (9) that H1 = 0, hence c(k) = 0; k = 1; 2; ::: and

�(k) = �(k�1)G(1)H; k = 1; 2; :::

Since the matrices G(1) and H are V-bounded, the power series (5) is absolutely conver-
gent with non-zero radius of convergence (the radius of convergence is equal or greater than
jjG(1)jj�1V jjH jj�1V ). This justi�es the substitution of (5) into (3) and (4). Finally, the updating
formula (11) is an immediate consequence of the fact that the coe�cients of power series (5)
form a geometric sequence. 2

Remark 1 The updating formula (11) can alternatively be expressed as

�(") = � + "�(")G(1)H:

Thus, new approximations of �(") can be computed recursively (hence, the term `updating'
formula).

4 Singular Perturbation

Here we treat singularly perturbed Markov chains. In the case of singular perturbation,
several ergodic classes are united in a single Markov chain by �small� transition probabilities.
Let us �rst introduce several non-restrictive assumptions.

Assumption (S1): The unperturbed Markov chain consists of several ergodic classes and
there are no transient states. Denote the ergodic classes by EI ; I 2 �E, where �E is either
a �nite or denumerable set. Each EI itself is either �nite or denumerable. We denote a
transition operator of each ergodic class by AI ; I 2 �E. Thus, the transition operator of the
unperturbed Markov chain can be written in the form

P (0) =

2
64
A1 0 � � �
0 A2 � � �
...

...
. . .

3
75 :

RR n° 4713



8 Altman, Avrachenkov & Núñez-Queija

Assumption (S2): The Markov chains corresponding to ergodic classes of the unperturbed
Markov chain are uniformly Lyapunov stable. That is, for each ergodic class there exist a
strongly aperiodic state �(I) 2 EI , P�(I)�(I) > p0 (without loss of generality we can take
� = (I; 1)) and constants Æ < 1, b < 1 and a Lyapunov function V , Vi � 1;8i 2 EI , such
that

AIV � ÆV + b1I�(I); I 2 �E: (16)

We would like to emphasize that the Lyapunov function V as well as the constants Æ and b
are the same for all ergodic classes.

The above Assumption (S2) together with Theorem 1 imply that the Markov chains cor-
responding to ergodic classes of the unperturbed Markov chain are uniform V-geometrically
ergodic. Namely, there exist constants c and � (c > 0, 0 < � < 1) such that

jjAn
I ��I jjV � c�n; k = 0; 1; 2; ::: ;

where �I is the ergodic projection for the I-th ergodic class.

Next let us introduce the aggregated Markov chain [13, 16, 25, 33]. De�ne V 2 R
�E�E

to be a matrix whose I-th row corresponds to the invariant probability measure of the un-
perturbed Markov chain given that the process starts in the I-th ergodic class. Also we
introduce a matrixW 2 RE� �E, whose J-th column has ones in the components correspond-
ing to the J-th ergodic class and zeros in the other components. Note that matrix V forms
a basis for the left null space of G(0) and matrix W forms a basis for the right null space of
G(0). Now de�ne the generator of the aggregated Markov chain by � = V G(1)W 2 R

�E� �E ,
or in the component form

�IJ = �IG
(1)
IJ 1J ; I; J 2 �E;

where �I is the invariant probability measure of the I-th ergodic class before perturbation,

G
(1)
IJ is the block I; J of the perturbation matrix and 1J is a vector of ones whose length is

equal to jEJ j.

Assumption (S3): The aggregated Markov chain is irreducible and Lyapunov stable.
Namely, there exist a strongly aperiodic state �� 2 �E, P���� > �p0 and constants �Æ < 1, �b <1
and a Lyapunov function �V , �VI � 1;8I 2 �E, such that

(I + �)�V � �Æ �V +�b1I��:

Again invoking Theorem 1 we conclude from Assumption (S3) that the aggregated
Markov chain is �V-geometrically ergodic, that is,

jj(I + �)k � ��jj�V � �c��k ; k = 0; 1; 2; :::

INRIA



Perturbation Analysis for Denumerable Markov Chains 9

where �� = 1�� is the ergodic projection and �� is the invariant probability measure of the
aggregated Markov chain. Using again Lemma 4.1 from [39], we conclude that there exists
a �V-bounded deviation matrix of the aggregated Markov chain. Let us denote it by �.

Note that in the above we de�ne �-norms for the ergodic classes of the unperturbed
Markov chain and the aggregated Markov chain using Lyapunov functions. We can also
de�ne a �-norm for the whole state space E =

S
EI . Namely, for a pair of I 2 �E; i 2 EI let

us de�ne �Ii = �VIVi. Since

jjP (0)k ��jj� = sup
I2 �E;i2EI

1

�Ii

X
j2EI

j(Ak
I ��I )ij j�VIVj

= sup
I2 �E;i2EI

1

Vi
X
j2EI

j(Ak
I ��I )ij jVj

= sup
I2 �E

jjAk
I ��I jjV

� c�k; k = 0; 1; 2; ::: :

there exists a �-bounded deviation matrixH of the unperturbed Markov chain. Furthermore,
we have the following norm bound

jjH jj� � c

1� �
:

It follows from Assumption (S1) that H has a block-diagonal structure

H =

2
64
H1 0 � � �
0 H2 � � �
...

...
. . .

3
75 ;

where HI ; I 2 �E is the deviation matrix of each ergodic class of the unperturbed Markov
chain. And �nally, as in the case of regular perturbation, we make an assumption on the
perturbation matrix.

Assumption (S4): The perturbation matrix G(1) is �-bounded (for �Ii = �VIVi, I 2 �E; i 2
EI). Namely, jjG(1)jj� � g1.

Remark 2 Fix some "1; "2 2 (0; �") and "1 6= "2. Since G
(1) = (P ("1)� P ("2))=("1 � "2), a

su�cient condition for (S4) to hold is that jjP ("1)jj� and jjP ("2)jj� are �nite.

Now we are able to formulate and to prove the main result of this section.

RR n° 4713



10 Altman, Avrachenkov & Núñez-Queija

Theorem 3 Let Assumptions (S1) � (S4) hold. Then, the perturbed Markov chain has a
unique invariant probability measure �("), which is an analytic function of "

�(") = �(0) + "�(1) + "2�(2) + :::;

for 0 < " � minf�"; 1��
g1c

�
1 + g1�c(c+1)

1���

��1
g, where

�(k) = �(0)Uk; �(0) = ��V; (17)

and the �-bounded matrix U is given by

U = G(1)H(I +G(1)W�V ): (18)

Moreover, the invariant probability measure of the perturbed Markov chain can be calculated
by the updating formula

�(") = �(0)[I � "U ]�1; 0 < " � minf�"; 1� �

g1c

�
1 +

g1�c(c+ 1)

1� ��

��1
g: (19)

Proof: From the construction of the aggregated Markov chain, one can see that the irre-
ducibility of the perturbed Markov chain is equivalent to the irreducibility of the aggregated
Markov chain. Hence, from Assumption (S3) we conclude that if there exists an invariant
probability measure of the perturbed Markov chain (0 < " � �"), it is unique. As in the
proof of Theorem 2, let us formally construct a power series for �("), which satis�es (3),(4),
and then show that it is absolutely convergent in some non-empty region. As in the case of
regular perturbation, we have to solve the following in�nite system of matrix equations

�(0)G(0) = 0; (20)

�(k)G(0) + �(k�1)G(1) = 0; k = 1; 2; ::: (21)

and normalization conditions
�(0)1 = 1; (22)

�(k)1 = 0; k = 1; 2; ::: (23)

The di�erence with the regular case is that the equations (20),(22) do not have a unique
solution. From (20),(22) we can only conclude that �(0) is a linear combination of the
stationary distributions corresponding to the ergodic classes of the unperturbed Markov
chain. Namely,

�(0) = c(0)V; (24)

for some vector c(0) 2 R1� �E. In order the equation (21) for k = 1 to be feasible, c(0) should
be chosen to satisfy the following condition

(��(0)G(1))W = 0:

INRIA



Perturbation Analysis for Denumerable Markov Chains 11

This condition is known as the Fredholm alternative in operator theory (see e.g., [22]).
Substituting into the above condition the expression (24), we get

c(0)V G(1)W = 0

or, equivalently,
c(0)� = 0: (25)

We also substitute (24) into the normalization condition (22).

c(0)V 1 = 1

Since each row of V is probability measure, we have

c(0)1 = 1: (26)

Since, according to Assumption (S3), the aggregated Markov process has a unique invariant
probability measure ��, the equations (25) and (26) imply that c(0) = ��. Thus, we obtain
the second formula in (17).

Now we show that �(k) = �(k�1)U for k = 1; 2; :::. One can write the general solution of
equation (21) in the following form

�(k) = c(k)V + �(k�1)G(1)H; (27)

where c(k) 2 R1� �E is an arbitrary vector. The vector c(k) is determined from the feasibility
condition of the next equation in (21). Namely,

(��(k)G(1))W = 0;

c(k)V G(1)W + �(k�1)G(1)HG(1)W = 0:

From the normalization condition (23) and the property (9) of the deviation matrix H , we
obtain

c(k)V 1 = c(k)1 = 0:

Thus, we get a system of equations for c(k)

c(k)� = ��(k�1)G(1)HG(1)W;

c(k)1 = 0:

Since the aggregated Markov chain is irreducible and �-geometrically ergodic, the above
system has a unique solution which is given by the following explicit expression

c(k) = �(k�1)G(1)HG(1)W�:

where � is the deviation matrix of the aggregated Markov chain. Combining the above
expression with (27), we obtain the recursion �(k+1) = �(k)U for k = 1; 2; ::: with

U = G(1)H(I +G(1)W�V ):

RR n° 4713



12 Altman, Avrachenkov & Núñez-Queija

Next let us show that the matrix U is �-bounded, and consequently, the power series for
�(") has a non-zero radius of convergence. First we note that

jj�J jjV = jj�J � I + I jjV � jj�J � I jjV + jjI jjV � c+ 1:

Next we give a bound for the �-norm ofW�V . The matrixW�V has the following structure

W�V =

2
64
'11�1 '12�2 � � �
'21�1 '22�2 � � �

...
...

. . .

3
75 :

Hence, we can write

jjW�V jj� = sup
I2 �E;i2EI

1

�Ii

X
J2 �E

j'IJ j(
X
j2EJ

�Jj �VJVj)

� sup
I2 �E;i2EI

1
�VI
X
J2 �E

j'IJ j�VJ jj�J jjV

� sup
I2 �E;i2EI

1
�VI
X
J2 �E

j'IJ j�VJ(c+ 1)

� jj�jj�V (c+ 1)

� �c(c+ 1)

1� ��
:

Thus, the radius of convergence for the power series (5) is greater or equal to

1� �

g1c

�
1 +

g1�c(c+ 1)

1� ��

��1
:

Finally, the updating formula (19) immediately follows from the fact that the coe�cients
�(k); k = 0; 1; 2; ::: form a geometric sequence.

In addition, we would like to note that for the computational purposes it is more conve-
nient to write the matrix U in terms of blocks that correspond to the ergodic classes of the
unperturbed Markov chain. Namely, we have U = fUIJgI;J2 �E , where UIJ is given by

UIJ = G
(1)
IJHJ +

X
L2 �E

G
(1)
ILHL

X
K2 �E

G
(1)
LK'KJ�J ; I; J 2 �E: (28)

5 Applications to QBD processes and Queueing

To illustrate our results on singular perturbation1 we now specialize them for Quasi Birth
and Death (QBD) processes; we refer to [31, 26] for general discussions on QBDs. After

1The results on regular perturbation can also be used for In�nitesimal Perturbation Analysis [10, 11, 18,
20, 21, 34].

INRIA



Perturbation Analysis for Denumerable Markov Chains 13

introducing some notation we develop our results in Section 5.1 without assuming a further
particular structure for so-called phase transitions. Then, in Section 5.2 we elaborate on a
particular queueing example.

An (inhomogeneous) QBD process is a Markov chain whose generator has the following
structure

Q =

2
6666664

A01 �A
(d)
02 A02 0 0 � � �

A10 A11 �A
(d)
1 A12 0 � � �

0 A20 A21 �A
(d)
2 A22 � � �

0 0 A30 A31 �A
(d)
3 � � �

...
...

...
...

. . .

3
7777775
;

where Ak := Ak0 +Ak2 and, for any matrix M , we use M (d) to denote the square diagonal
matrix with ith diagonal element equal to the i-th row sum of M . The QBD is called
homogeneous if, for k � 1, Ak1 � A11 and Ak2 � A12, and for k � 2 Ak0 � A10. In that case
the A20, A11 and A12 are square matrices of the same dimension (not necessarily �nite). The
square matrix A01 may have a di�erent dimension, while A02 and A10 need not be square.

The structure corresponds to a partition of states into so-called levels. The i-th block row
of Q corresponds to transitions originating from states in the i-th level. The states within
a given level are commonly called phases. The rates of transitions that do not involve a
change of level are contained by the matrices Ak1 (transitions take place within level k).
Transitions between levels are only possible from level k to either level k � 1 or level k + 1,
the rates of which are gathered in Ak0 and Ak2, respectively. Note that Ak contains all rates
corresponding to a transition out of a particular level k � 1. We emphasize that we allow
an in�nite number of phases within a level.

We shall be interested in the case where transitions between levels are much less frequent
than transitions between the states inside the same level. Instead of Q we will therefore
consider the generator G(") = G(0) + "G(1), where

G
(0)

=

2
666664

A01 0 0 0 � � �

0 A11 0 0 � � �

0 0 A21 0 � � �

0 0 0 A31 � � �

...
...

...
...

. . .

3
777775
; G

(1)
=

2
6666664

�A
(d)
02 A02 0 0 � � �

A10 �A
(d)
1 A12 0 � � �

0 A20 �A
(d)
2 A22 � � �

0 0 A30 �A
(d)
3 � � �

...
...

...
...

. . .

3
7777775
:

(29)

Remark 3 Note that, alternatively, it would also be natural to investigate the case when
transitions inside the levels are much less frequent than between levels, i.e., when G(") =
"G(0)+G(1) for the same matrices G(0) and G(1). However, in that case the unperturbed chain
is again a QBD process itself (with no transitions within levels), making the analysis of the
unperturbed chain as involved as the (original) perturbed chain, unless a special structure
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14 Altman, Avrachenkov & Núñez-Queija

within levels is assumed. A special structure arising in many applications is that where
the matrices Ak0 and Ak2 are (square) diagonal matrices, which corresponds to transitions
between levels not involving a change in phase. For instance, in a two-queue system studied
in [2, 32] the level index counts the number of customers in the �rst queue and the phase
index that in the second queue. However, interchanging the role of the levels and phases
(the �rst and the second queue), the same structure as in (29) can be obtained again. We
elaborate on this example in Section 5.2

5.1 General phase transitions

For the unperturbed chain, the ergodic classes correspond to the levels of the QBD process.
We assume that all states inside the same level are communicating. Hence, Assumption (S1)
is satis�ed. Let Assumption (S2) hold as well. As before, denote the stationary distribution
of the I-th ergodic class (level) with the vector �I , I = 0; 1; : : :. In particular, if G(0) is
homogeneous beyond level 1, the uniform Lyapunov stability assumption is equivalent to
the (regular) Lyapunov stability. In that case we also have that �I � �1 for all levels I � 1.
In general, the structure of the matrix V is given by

V =

2
666664

�0 0 0 0 � � �
0 �1 0 0 � � �
0 0 �2 0 � � �
0 0 0 �3 � � �
...

...
...

...
. . .

3
777775
;

which gives

� =

2
6666664

��0A(d)
02 1 �0A021 0 0 � � �

�1A101 ��1A(d)
1 1 �1A121 0 � � �

0 �2A201 ��2A(d)
2 1 �2A221 � � �

0 0 �3A301 ��3A(d)
3 1 � � �

...
...

...
...

. . .

3
7777775
: (30)

We note that � is the generator of an ordinary (one dimensional, inhomogeneous) birth and
death process on states I 2 f0; 1; 2; : : :g with birth rate ��I := �IAI21, for I � 0, and death
rate ��I := �IAI01 for I � 1. We have that the invariant distribution of the aggregated
chain is given by

��I =

QI�1
J=0

��J
��JP1

K=0

QK�1
J=0

��J
��J

; I � 0;

whenever the numerator is well de�ned (the empty product is set equal to 1). This inho-
mogeneous birth and death process can be shown to be Lyapunov stable if there exists �r
such that

��I
��I+1

< �r < 1, for all I � 0. It is beyond the scope in this paper to work out
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all details for this general case; instead we shall focus on homogeneous QBD processes. It
is worthwhile to note that in Section 5.2 below we analyze an inhomogeneous QBD process
that gives rise to an aggregated process that is a homogeneous birth and death process.

Homogeneous QBD

If the underlying QBD process is homogeneous and in addition ��I � �� (also for I = 0)
and ��I � �� (also for I = 1) � which is the case in the examples of the next section � the
generator of the aggregated chain coincides with that of the M/M/1 queue with arrival rate ��
and service rate ��. We have that the aggregated chain is ergodic if and only if �� := ��=�� < 1.
In this case veri�cation of Assumption (S3) is also straightforward. Let us choose �� = 0.
We need to �nd a Lyapunov function �V and constants �Æ 2 (0; 1) and �b � 0 such that

���VI�1 + (1� ��� ��)�VI + ���VI+1 � �Æ �VI ; I � 1;

(1� ��)�V0 + ���V1 � �Æ �V0 +�b:

We aim at solving these equations with equality. Introducing the generating function �V(z) =P1
I=0 z

I �VI (later we verify that this can be justi�ed) the above equations translate into

(��z2 + (1� �Æ � ��� ��)z + ��)�V(z) = �bz + (��� ��z)�V0:
Concentrating on the kernel (��z2 + (1� �Æ� ��� ��)z+ ��, we see that we have two real roots
for z if �Æ � 1� (��� ��)2; this quantity is indeed in the interval (0; 1). It is convenient to take
�Æ = 1� (��� ��)2. The corresponding root (with multiplicity 2) is z =

p
�� and if we choose

�b = ��(1�p��) one of the two roots cancels out, leaving us with

�V(z) =
�V0

1� z=
p
��
:

Finally, choosing �V0 = 1 we have that Assumption (S3) is satis�ed with �VI =
�q

1
��

�I
.

Note also that, in this case, if jjA02jjV , jjA10jjV , jjA12jjV andmaxif(A(d)
02 )iig,maxif(A(d)

1 )iig
are �nite, the Assumption (S4) is satis�ed. This follows from the following norm bound

jjG(1)jj� � max

�
max
i
f(A(d)

02 )iig+
r

1

��
jjA02jjV ;

p
��jjA10jjV +max

i
f(A(d)

1 )iig+
r

1

��
jjA12jjV

�
:

The deviation matrix for the M/M/1 queue was determined in [24]:

�I;J = D(I; J; ��; ��) :=
��maxfJ�I;0g � (I + J + 1)(1� ��)��J

��(1� ��)
: (31)

The above enables us to apply Theorem 3 once the invariant distributions and the deviation
matrices of the levels I = 0 and I � 1 have been determined. This is the task of the following
section where we elaborate on our results for a particular example.
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16 Altman, Avrachenkov & Núñez-Queija

5.2 Queueing example

We now focus on a particular queueing model and study two cases, one giving rise to a
homogeneous QBD process and the other corresponding to an inhomogeneous QBD process.

Priority queue with fast dynamics

Let us study a system of two M/M/1 queues with strict priorities. Customers arrive at the
�rst queue according to a Poisson process with rate � and are served at rate �. The arrival
rate and service rate in the second queue may both depend on the number of customers in
the �rst queue (denoted by X(t)). If X(t) = i then customers arrive at the second queue as
a Poisson proces of intensity "�i and customers depart from queue 2 (if not empty) at rate
"�i. We denote the number of customers in the second queue with Y (t). The generator of
(X(t); Y (t)) can be written as a QBD process by letting X(t) correspond to the phase of the
process and Y (t) be the level. Letting " ! 0 corresponds to slow dynamics in the second
queue, i.e., with slow transitions between levels.

The blocks of (29) are given by Aj0 = diagf�0; �1; : : :g, Aj2 = diagf�0; �1; : : :g and Aj1

is the generator of an ordinary M/M/1 queue with arrival rate � and service rate �. Since
this corresponds to a homogeneous QBD, in view of the results in Section 5.1 we can apply
Theorem 3 once we have determined the invariant distributions and deviation matrices of
the levels (ergodic classes), which all correspond to the ordinary M/M/1 queue describing
X(t). The invariant distribution is well known: �I;i � (1� �)�i, for all levels I and phases
i, with � = �=�. As for (31) we can use the results of [24], giving the deviation matrix
Hi;j = D(i; j; �; �). We emphasize that in this case the aggregated chain and the ergodic
classes of the unperturbed chain correspond to ordinary M/M/1 queues.

Priority queue with slow dynamics

Alternatively, the dynamics of the �rst queue could be slow. Let the arrival rate and service
rate at the �rst queue be "� and "�, respectively, and the arrival and service rates in queue 2
be �i and �i, respectively, when X(t) = i. As in the above example, X(t) is the number
of customers in the �rst queue. We again have a QBD process if we let X(t) correspond to
the level and Y (t) be the phase of the process. The block matrices in (29) are now given by
Ak0 = diagf�; �; : : :g, Ak2 = diagf�; �; : : :g and Ak1 is the generator of an ordinary M/M/1
queue with arrival rate �k and service rate �k. Thus, the QBD process is not homogeneous.

In the unperturbed chain we have in�nitely many classes, each (again) corresponding with
a level of the QBD process. In the I-th level the dynamics is that of the ordinary M/M/1
queue with arrival rate �I and service rate �I . We assume2 that �I := �I=�I < r < 1, for

some r 2 (0; 1). This implies that Assumption (S2) is satis�ed with �I = 0, Vj =
�q

1
r

�j
,

2Here we concentrate on the case where all classes of the unperturbed chain are ergodic. In this particular
example it makes sense in some cases to allow �I > 1 for some I, i.e., when the phase-process requires level
transitions (however infrequent) to guarantee ergodicity; see for instance [32].
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Æ = 1 � �p�I �p�I�2 and b �
q

1
r
. The deviation matrix of the ergodic classes is again

that of an M/M/1 queue: H
(I)
i;j = D(i; j; �I ; �I).

Note that G(1) has an extremely regular structure, since Ak0 = �I and Ak2 = �I .
Assumption S4 is always satis�ed, since in this example we have jjG(1)jj� � �+ �+ 2

p
��.

Finally, the deviation matrix of the aggregated chain is again that of the M/M/1 queue with
arrival rate � and service rate �: �I;J = D(I; J; �; �), where as before � = �=�.

We again note that both the aggregated chain and the ergodic classes of the unperturbed
chain correspond to ordinary M/M/1 queues. Di�erent from the case when queue 2 has slow
dynamics, however, the ergodic classes of the unperturbed chain are not identical.
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