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Cooperative Games with Transferable Utility

Cooperative TU-games describe situations in

which a set of players can earn certain pay-

offs by cooperation (i.e. making binding agree-

ments).

A cooperative game with transferable utility

(TU-game) is a pair (N, v) with

N : set of players (finite)

v: 2N → IR: characteristic function satis-

fying v(∅) = 0

The worth v(S) ∈ IR is what the players in

coalition S ⊆ N can earn by cooperation.

GN : collection of all TU-games on N .



Two main questions:

1. Which coalitions will form?

2. How to distribute the earnings over the play-

ers?

A solution is a function f that assigns to

every game (N, v) a payoff distribution f (N, v) ∈
IRN such that fi(N, v) is the payoff for player

i ∈ N in game (N, v).



In a TU-game it is assumed that all coalitions

S ⊆ N are feasible.

Usually we encounter restrictions in coalition

formation, for example communication or hier-

archical restrictions.

Restricted cooperation

F ⊆ 2N : set of feasible coalitions

Two examples:

Communication and hierarchy restrictions

1. Communication

(Myerson 1977)

Only connected coalitions in an undirected (com-

munication) graph are feasible:

F is the set of connected coalitions in a com-

munication graph.



2. Hierarchies

Several models of hierarchies

2A. Games with a permission struc-

ture

Gilles, Owen and van den Brink (1992)

van den Brink and Gilles (1996)

Gilles and Owen (1994)

van den Brink (1997, 1999, 2010)

A game with a permission structure on N de-

scribes a situation where some players in a TU-

game need permission from other players before

they are allowed to cooperate within a coali-

tion.



A permission structure is described by a di-

graph (N, D) with

N = {1, ..., n} a finite set of nodes (players)

D ⊆ N ×N a binary relation on N

DN : collection of all digraphs on N

A tuple (N, v, D) is a game with a permis-

sion structure.



For permission structure D ∈ DN and i ∈ N

we denote:

SD(i) = {j ∈ N | (i, j) ∈ D}: successors

of i in D

PD(i) = {j ∈ N | (j, i) ∈ D}: predeces-

sors of i

ŜD(i): set of successors of i in the transitive

closure of D

i.e., j ∈ ŜD(i) if and only if there exists a se-

quence of players (h1, . . . , ht) such that h1 = i,

hk+1 ∈ SD(hk) for all 1 ≤ k ≤ t − 1, and

ht = j.



D ∈ DN is acyclic if i 6∈ ŜD(i) for all i ∈ N .

DN
A : collection of all acyclic digraphs on N

TD = {i ∈ N | PD(i) = ∅}: set of top

nodes in D.

Note that TD 6= ∅ if D is acyclic.



Conjunctive approach

Each player needs permission from all its pre-

decessors

Disjunctive approach (for acyclic permission struc-

tures)

Each player needs permission from at least one

of its predecessors



Conjunctive feasible coalitions in D

Φc
D = {E ⊆ N |PD(i) ⊆ E for all i ∈ E}

Disjunctive feasible coalitions in D

Φd
D = {E ⊆ N |PD(i) ∩ E 6= ∅ for all i ∈ E \ TD}

Conjunctive sovereign part of E ⊆ N in D

is the largest feasible subset of E in Φc
D, i.e.

σc
D(E) = ∪{F ∈ Φc

D | F ⊆ E}

= E \ Ŝ(N \ E)

Disjunctive sovereign part of E ⊆ N in D

is the largest feasible subset of E in Φd
D, i.e.

σd
D(E) = ∪{F ∈ Φd

D | F ⊆ E}



Conjunctive restriction of v on D

rc
v,D(E) = v(σc

D(E))

Disjunctive restriction of v on D

rd
v,D(E) = v(σd

D(E))

Conjunctive (Shapley) permission value

ϕc(N, v, D) = Sh(rc
N,v,D)

Disjunctive (Shapley) permission value

ϕd(N, v, D) = Sh(rd
N,v,D)



Example

N = {1, 2, 3, 4}

v(E) =

{
1 if E 3 4

0 else,

D = {(1, 2), (1, 3), (2, 4), (3, 4)}

Then

rc
v,D(E) =

{
1 if E = {1, 2, 3, 4}
0 else

ϕc(N, v, D) = (
1

4
,
1

4
,
1

4
,
1

4
)

rd
v,D(E) =

{
1 if E ∈ {{1, 2, 4}, {1, 3, 4}, N}
0 else

ϕd(N, v, D) = (
5

12
,

1

12
,

1

12
,

5

12
)



Results on

Game properties

Harsanyi dividends

Axiomatizations of solutions

Remark: Communication between hierarchies.

Example, a network of hierarchically structured

firms



2B. Games on antimatroids

Algaba, Bilbao, van den Brink and Jiménez-

Losada (2003, 2004)

Definition A set of feasible coalitions A ⊆
2N is an antimatroid on N if it satisfies

1. ∅ ∈ A

2. (Closed under union) If E, F ∈ A then

E ∪ F ∈ A

3. (Accessibility) If E ∈ A, E 6= ∅, then there

exists an i ∈ E such that E \ {i} ∈ A.

An antimatroid A is normal if for every i ∈ N

there is an E ∈ A such that i ∈ E.

Theorem

If S is an acyclic permission structure on N

then Φd
D and Φc

D are antimatroids on N .



Definition

An antimatroid A is a poset antimatroid if

it is closed under intersection

(i.e. E, F ∈ A implies that E ∩ F ∈ A).

Theorem

Let A be an antimatroid. Then there is a D ∈
DN

A such that A = Φc
D if and only if A is a

poset antimatroid.

Remark: Algaba, Bilbao, van den Brink and

Jiménez-Losada (2004) also characterize the class

of antimatroids that can be a collection of dis-

junctive feasible sets of some D ∈ DN
A .



Comparison between communication

and hierarchy

Theorem

A set of feasible coalitions F ⊆ 2N is the set of

connected coalitions in some undirected (com-

munication) graph if and only if it satisfies

1. ∅ ∈ F

2. (Union stability) If E, F ∈ F with E∩F 6=
∅ then E ∪ F ∈ F

3. (2-Accessibility) If E ∈ F , E 6= ∅, then

there exist an i, j ∈ E, i 6= j, such that

E \ {i} , E \ {j} ∈ F

4. (Normality) For every i ∈ N there is an

E ∈ F such that i ∈ E.



2C. Games on union closed systems

van den Brink, Katsev and van der Laan (2010)

A set of feasible coalitions Ω ⊆ 2N is union

closed if

1. ∅ ∈ Ω

2. If E, F ∈ Ω then E ∪ F ∈ Ω.

For a system Ω ∈ CN , define

σΩ(S) =
⋃
{U ∈ Ω | U ⊆ S}

i.e. σΩ(S) is the largest feasible subset of S,

and for the pair (v, Ω),

rv,Ω(S) = v(σΩ(S))

is the restricted game that assigns to each coali-

tion the worth of its largest feasible subset.



2D. Games on union stable systems

Algaba, Bilbao, Borm and López (2000, 2001)

Definition

A collection Ω ⊆ 2N is union stable if

1. ∅ ∈ Ω

2. If E, F ∈ Ω with E ∩ F 6= ∅ then

E ∪ F ∈ Ω.



Upto now we discussed generalizations of games

with a permission structure.

Permission structure

⇒ Antimatroid

⇒ Union closed system

⇒ Union stable system

Now, we go to special classes of games with a

permission structure.



2E. Peer group games

Branzei, Fragnelli and Tijs (2002)

A game with a permission structure (N, v, D)

is a peer group situation if

(N, v) is an inessential (or additive) game,

and

(N, D) is a rooted tree.

Examples: Auction games, Airport games, Pol-

luted river games.

A polynomial time algorithm to compute the

nucleolus for these games is given by Branzei,

Solymosi and Tijs (2005).



Nucleolus (Schmeidler (1959))

The excess e(S, x) of a coalition S ⊆ N in

payoff vector x ∈ IRn is

e(S, x) = v(S)− x(S).

Let E(x) be the (2n − 2)-component vector

that is composed of the excesses of all coalitions

S ⊂ N, S 6= ∅, in a non-increasing order, so

E1(x) ≥ E2(x) ≥ . . . ≥ E2n−2(x).

Then the nucleolus Nuc(N, v) of the game (N, v)

is the unique imputation which lexicographi-

cally minimizes the vector-valued function E(·)
over the imputation set:

Nuc(N, v) = x ∈ I(N, v)

such that E(x) �L E(y) for all y ∈ I(N, v),

where

I(N, v) = {x ∈ Rn|x(N) = v(N) and xi ≥ v(i), i ∈ N},

is the imputation set of (N, v).



Results:

1. I(N, v) is convex, closed and bounded.

2. For given game (N, v), the nucleolus selects

a unique payoff vector from the imputation

set: the set Nuc(N, v) contains precisely one

element.

3. The payoff vector in Nuc(N, v) minimizes

the ‘dissatisfaction’ of the most dissatisfied coali-

tion.

4. The function fNuc:G → IRn such that

fNuc(N, v) = x with {x} = Nuc(N, v) is a

value function that assigns to any game (N, v)

the unique element x in the nucleolus as its

outcome (payoff vector). Usually, fNuc(N, v)

is called the nucleolus of the game.



5. If the Core is non-empty, fNuc(N, v) ∈
C(N, v): in some sense it is in the middle of

the Core.

6. The Nucleolus belongs to the Kernel (set

valued solution). In case n = 3, the Nucleolus

is equal to the Kernel.



2F. Two special classes of (disjunctive) games

with a permission structure that both contain

the class of peer group games:

2F1.

A game with permission structure (N, v, D)

satisfies weak digraph monotonicity if

S ∈ Φd
D ⇒ v(S) ≤ v(N).

A game with permission structure (N, v, D)

satisfies weak digraph concavity if

[S ∪ T = N and S, T ∈ Φd
D] ⇒

v(S) + v(T ) ≥ v(S ∩ T ) + v(N).



van den Brink, Katsev and van der Laan (2008)

provide a polynomial time algortihm to com-

pute the nucleolus if

(N, v, D) is weak digraph monotone and weak

digraph concave,

and

(N, D) is acyclic and quasi-strongly connected.



Algorithm

Step 1 Set k = 0, U0 = N , v0 = v, D0 = D

and r0 = r. Go to Step 2.

Step 2 Find Uk+1 ⊂ Uk satisfying

τ (Uk+1, rk) = τ∗(rk)

and

|Uk+1| = max
{U∈ΩDk|τ (U,rk)=τ∗(rk)}

|U |,

where τ∗(rk) = min
U∈ΩDk

τ (U, rk) with

τ (U, rk) =
rk(Uk)−rk(U)
|Uk\U |+1

.

Assign yj = τ∗(rk) to every player j ∈ Uk\
Uk+1.

Go to Step 3.



Step 3 If Uk+1 = {1} then Go to Step 4. If

Uk+1 6= {1}, let ik+1 be the unique top-

player of the subgraph (Uk \Uk+1, Dk(Uk \
Uk+1) of the digraph (Uk, Dk) restricted to

Uk \ Uk+1. Define game (Uk+1, vk+1) by

vk+1(U) =

{
vk(U) if PDk

(ik+1) ∩ U = ∅
vk(U ∪ (Uk \ Uk+1))− τ (Uk+1, rk)|Uk \ Uk+1| else,

(0.1)

let digraph (Uk+1, Dk+1) be given by

(i, j) ∈ Dk+1 if

{
(i, j) ∈ Dk or

i ∈ PDk
(ik+1) and j ∈ SDk

(Uk \ Uk+1) ∩ Uk+1,
(0.2)

and let rk+1 be the restricted game of (Uk+1, vk+1, Dk+1).

Set k = k + 1. Go to Step 2.

Step 4 Assign y1 = v(N) −
∑

j∈N\{1} yj.

Stop.



Complexity of the algorithm: O(n4).



2F2.

van den Brink, Katsev and van der Laan (2010)

provide a polynomial time algortihm to com-

pute the nucleolus if

(N, v) is an inessential (or additive) game,

and

(N, D) is acyclic.

Let (N, D) be an acyclic permission structure,

t ∈ TD be one of the top players and K =

N \ U t. Then define DK ∈ DK on the set of

players K by

(i, j) ∈ DK if and only if (i, j) ∈ D and PD(j) ∩ U t = ∅.



Algorithm

Step 1 Set k = 1, N1 = N , D1 = D and

t1 = 1. Go to Step 2.

Step 2 Consider the non-negative additive game

with acyclic, quasi-strongly connected per-

mission structure (U tk, vk, Dk(U tk)) with

vk(U) = v(U) for all U ⊆ U tk.

Let rk be the restricted game of (U tk, vk, Dk(U tk)).

Go to Step 3.

Step 3 Apply the (polynomial time) algorithm

of van den Brink et al. (2008) to find the

nucleolus of the restricted game (U tk, rk).

Assign yi = Nuci(U
tk, rk) to every i ∈

U tk. Go to Step 4.

Step 4 If U tk = Nk then Stop. Otherwise, go

to Step 5.



Step 5 Define Nk+1 = Nk \U tk and Dk+1 ∈
DNk+1 by Dk+1 = D

Nk+1
k .

Define tk+1 ∈ TDk+1
as the top player in

Dk+1 with the lowest label (tk+1 ≤ h for

every h ∈ TDk+1
). Consider the set U tk+1

consisting of tk+1 and all its complete sub-

ordinates in the graph (Nk+1, Dk+1). Set

k = k + 1 and return to step 2.



Complexity of the algorithm: O(n4).



Applications of graph games

Line-graph games

Water distribution problems

Sequencing games

Bipartite graph games

Assignment games

Digraph games

Peer group games: Auction games, Airport games,

Polluted river games

Hierarchically structured firms



Concluding remark

After initial results on game properties, Harsanyi

dividends and axiomatizations of solutions, at-

tention now shifts to computation of solutions

on (classes of) games with a permission struc-

ture and other models of restricted coopera-

tion.


