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Introduction

Some questions in multi-dimensional MD

When is monotonicity of the allocation rule sufficient for truthful
implementation?

If not sufficient, what do we have to add?

How much freedom do we have to set incentive compatible
transfers?

This paper

Link between network approach and analytical approaches.

Finite sets of alternatives: (path-)monotonicity is equivalent with
implementability.
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Setting

Single Agent (w.l.o.g)

A set of outcomes

T ⊂ Rk set of types, private information

v : T × A → R

f : T → A allocation rule

truthful implementation

f is called truthfully implementable if there exist transfer π : T → R such
that for all s, t ∈ T

v(f (s), s) + π(s) ≥ v(f (t), s) + π(t)

Berger, Müller, Naeemi ESWC, Shanghai 2010



Introduction
Setting

Characterization
Finite A

Setting

Single Agent (w.l.o.g)

A set of outcomes

T ⊂ Rk set of types, private information

v : T × A → R

f : T → A allocation rule

truthful implementation

f is called truthfully implementable if there exist transfer π : T → R such
that for all s, t ∈ T

v(f (s), s) + π(s) ≥ v(f (t), s) + π(t)

Berger, Müller, Naeemi ESWC, Shanghai 2010



Introduction
Setting

Characterization
Finite A

Network approach

Type-graph

Define a complete, directed graph Tf with node set T .

Define either of the two arc lengths (see Archer and Kleinberg
(2008))

lp(s, t) := v(f (s), s)− v(f (t), s),

lu(s, t) := v(f (t), t)− v(f (t), s).

Truthful transfers are node potentials with respect to p-length:

π(t) ≤ π(s) + v(f (s), s)− v(f (t), s) = π(s) + lp(s, t)

Equilibrium utility is node potential with respect to lu(s, t)

v(f (t), t) + π(t) ≤ π(s) + v(f (s), s) + lu(s, t)

Berger, Müller, Naeemi ESWC, Shanghai 2010
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Rochet’s characterization

Theorem (Rochet (1987),. . . ,Archer and Kleinberg (2008))

The following are equivalent:

1 f is truthfully implementable

2 Tf does not have a negative cycle with respect to p-length

3 Tf does not have a negative cycle with respect to u-length

Proof: (2) ⇔ (3)

lu(s, t) = lp(s, t) + v(f (t), t)− v(f (s), s).

(2) ⇒ (1)

Fix some node x . Define π(t) = inf(lp(P) | P is path from t to x).
Observe

π(t) ≤ +lp(t, s) + π(s).
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Monotonicity

Definition

An allocation rule is called monotone if for all s, t ∈ T :
v(f (t), t)− v(f (s), t) ≥ v(f (t), s)− v(f (s), s)

Observations

Monotonicity is equivalent to no-negative 2-cycle:
lp(s, t) + lp(t, s) ≥ 0.

Monotonicity is necessary for f being implementable.

Suppose v(a, t) = a · t, that is for every a v(a, .) is linear in t, then
v(f (t), t)−v(f (s), t)+v(f (s), s)−v(f (t), s) = (f (t)− f (s))(t−s).

Monotonicity is a natural generalization of 1-dim monotonicity.

Berger, Müller, Naeemi ESWC, Shanghai 2010
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Some literature on monotonicity (not complete)

Jehiel, Moldovanu, Stacchetti (1999), M., Peréa, Wolf (2007)

T convex, v(a, t) linear in t, then an allocation rule f : T → A is
implementable if and only if it is monotone and path-integrals of the
vector field “induced by v and f ” are equal to 0.

Archer and Kleinberg (2008)

T convex, v(a, t) linear in t, then an allocation rule f : T → A is
implementable if and only if it is monotone and path-integrals on “local”
triangles of the vector field “induced by v and f ” are equal to 0.

Saks and Yu (2005), Monderer (2008), Vohra (2008), Archer and
Kleinberg (2008)

T convex, A finite, v(a, t) linear in t, then an allocation rule f : T → A
is implementable if and only if it is monotone.

Berger, Müller, Naeemi ESWC, Shanghai 2010



Introduction
Setting

Characterization
Finite A

Some literature on monotonicity (not complete)

Jehiel, Moldovanu, Stacchetti (1999), M., Peréa, Wolf (2007)
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Path-monotonicity

Revenue Equivalence literature

Krishna and Maenner (2001) and Milgrom and Segal (2002): with
sufficient analytical assumptions we have for every implementable
f , s, t ∈ T :

v(f (t), t) + π(t) = v(f (s), s) + π(s) +

∫
σ

Ψ · σ dσ

for any “smooth” path σ from s to t, “appropriate” vector field Ψ.

Path-integral

Assume σ : [0, 1] → T , then∫
σ

Ψ · σ dσ :=

∫ 1

0
Ψ(σ(x)) · σ′(x) dx .
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Path-monotonicity

Appropriate Ψ

If v(a, .) is convex for all a ∈ A:

Ψ = sub-differential of v(f (t), s) at s = t.

If v(a, .) is differentiable for all a ∈ A:

Ψ = differential of v(f (t), s) at s = t.

Path-monotonicity

Path-integrals of Ψ exist and∫
σ

Ψ · σdσ ≤ v(f (t), t)− v(f (t), s) = lu(s, t).
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Path-monotonicity

Observation

For “RE settings” path monotonicity necessary for implementation.

What to add?

Suppose path-integrals of Ψ on closed paths are equal to 0.
Fix type x , and define transfer π(t) =

∫
σ Ψ · σ dσ − v(f (t), t).

π(t)− π(s) =

∫ t

x
Ψ · σdσ − v(f (t), t)−

∫ s

x
Ψ · σdσ + v(f (s), s)

=

∫ t

s
Ψ · σdσ − v(f (t), t) + v(f (s), s)

≤ lu(s, t)− v(f (t), t) + v(f (s), s)

= v(f (s), s)− v(f (t), s).
Berger, Müller, Naeemi ESWC, Shanghai 2010



Introduction
Setting

Characterization
Finite A

Path-monotonicity

Observation

For “RE settings” path monotonicity necessary for implementation.

What to add?

Suppose path-integrals of Ψ on closed paths are equal to 0.
Fix type x , and define transfer π(t) =

∫
σ Ψ · σ dσ − v(f (t), t).

π(t)− π(s) =

∫ t

x
Ψ · σdσ − v(f (t), t)−

∫ s

x
Ψ · σdσ + v(f (s), s)

=

∫ t

s
Ψ · σdσ − v(f (t), t) + v(f (s), s)

≤ lu(s, t)− v(f (t), t) + v(f (s), s)

= v(f (s), s)− v(f (t), s).
Berger, Müller, Naeemi ESWC, Shanghai 2010



Introduction
Setting

Characterization
Finite A

Path-monotonicity

Observation

For “RE settings” path monotonicity necessary for implementation.

What to add?

Suppose path-integrals of Ψ on closed paths are equal to 0.
Fix type x , and define transfer π(t) =

∫
σ Ψ · σ dσ − v(f (t), t).

π(t)− π(s) =

∫ t

x
Ψ · σdσ − v(f (t), t)−

∫ s

x
Ψ · σdσ + v(f (s), s)

=

∫ t

s
Ψ · σdσ − v(f (t), t) + v(f (s), s)

≤ lu(s, t)− v(f (t), t) + v(f (s), s)

= v(f (s), s)− v(f (t), s).
Berger, Müller, Naeemi ESWC, Shanghai 2010



Introduction
Setting

Characterization
Finite A

Characterization differentiable valuations

Theorem

Let T ⊂ Rk be path-connected, for all a let v(a, .) be differentiable in T ,
and let the norms of the gradients of the functions v(f (t), .) be bounded,
then an allocation rule f : T → A is implementable if and only if

path-monotonicity holds,

path-integrals on closed paths are equal to 0.

Here, Ψ(t) is the gradient of v(f (t), .) at t.

One direction resembles Milgrom and Segal (2002).

Berger, Müller, Naeemi ESWC, Shanghai 2010
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Characterization convex valuations

Theorem

Let T ⊂ Rk be convex, v(a, .) convex in t, with non-empty
subdifferential at all t ∈ T , then an allocation rule f : T → A is
implementable if and only if

path-monotonicity holds on line-segments,

path-integrals on triangles are equal to 0.

Here, Ψ(t) is any vector chosen from the sub-differential of v(f (t), .) at
t.

Elementary, direct proof is given in the paper.

Berger, Müller, Naeemi ESWC, Shanghai 2010



Introduction
Setting

Characterization
Finite A

Local implementability

Local implementation

f is called locally implementable, if for every t ∈ T there exists
some neighborhood U of t such that f is implementable on T ∩U.

Characterization

Let T be path-connected, v(a, .) convex for all a, and let f be
path-monotone. Then f is implementable if and only if it is locally
implementable. (Similar for convex T and convex valuations).

Proof

By Lebesgue Number Lemma (as in Archer and Kleinberg (2008)).

Berger, Müller, Naeemi ESWC, Shanghai 2010
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Finite A

Lemma

Let T ⊆ Rd . Assume that for every a ∈ A the function
v(a, .) : T → R is continuous and f is onto. For all a ∈ A let

Da := f −1(a)

If f : T → A is monotone and T ∩
⋂

a∈A Da 6= ∅ then f is
implementable.

Da

Db

Dc

Berger, Müller, Naeemi ESWC, Shanghai 2010



Introduction
Setting

Characterization
Finite A

Characterization for finite A

Differentiable Case

Let T ⊆ Rd be simply path connected, v(a, .) differentiable for all
a ∈ A and A be finite. f : T → A is implementable if and only if f
is path monotone.

Convex case

Let T ⊆ Rd convex, v(a, .) convex for all a ∈ A and A be finite.
f : T → A is implementable if and only if it is path-monotone on
line segments.

Proof

Using previous Lemma we show that f is locally implementable.
Then apply characterization based on local implementability.

Berger, Müller, Naeemi ESWC, Shanghai 2010
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Monotonicity versus path-monotonicity

Assume path-integrals with respect to Ψ exist

Path-monotonicity implies monotonicity.

v satisfies monotone differences if for all a, b ∈ A,
v(a, .)− v(b, .) is monotone (in the classical sense) when
restricted to line segments.

Note: monotone differences holds if v(a, .) is linear.

monotonicity + monotone differences implies implementability
(no analytical assumptions needed).

For convex valuations v(a, .), we provide T ⊂ R and f that is
monotone but not implementable.

Berger, Müller, Naeemi ESWC, Shanghai 2010
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Conclusions

By replacing monotonicity by path-monotonicity we get
characterizations for convex and differentiable valuation
functions similar to those known for linear valuation functions.

For finite A, path-monotonicity is equivalent to
implementability in those settings.

Monotonicity implies path-monotonicity, if we assume
monotone differences.
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