Combinatorial Auctions with Budgets

Joint work with Amos Fiat, Jared Saia and Piotr Sankowski Stefano Leonardi
Sapienza University of Rome

Advances in Algorithmic Game Theory
CWI Amsterdam - September 2-3, 2010

Outline

- Introduction
- Multi-unit Auctions with Budgets
- Combinatorial Auctions with Budgets
- Pareto Optimality

■ Conclusions

- Outline

Auctions with Budgets

- Auctions with Budgets
- Google TV Ads
- Google TV Ads
- Combinatorial Auctions with Budgets
- Combinatorial Auctions with Budgets
- No Budgets: Vickrey Auction
- Auctions with Budgets
- Multi-unit Auctions with

Budgets
Multi-unit Auction
Combinatorial Auction

Conclusions \qquad

Auctions with Budgets

Auctions with Budgets

- Google TV Ads
- Combinatorial Auctions with Budgets
- Combinatorial Auctions with Budgets
- No Budgets: Vickrey Auction
- Auctions with Budgets
- Multi-unit Auctions with Budgets

■ Auctions are run daily from Google and other companies of on-line advertising
■ Google sells TV ads through a Web interface Advertisers specify the following parameters:
■ Target TV shows

- Daily budget limit
- Valuation per impression

Google TV Ads

- Outline

Auctions with Budgets

- Auctions with Budgets
- Google TV Ads
- Google TV Ads
- Combinatorial Auctions with Budgets
- Combinatorial Auctions with Budgets
- No Budgets: Vickrey Auction
- Auctions with Budgets
- Multi-unit Auctions with

Budgets
Multi-unit Auction
Combinatorial Auction
Conclusions

From Noam Nisan's ICALP talk on Google TV Ads

Google TV Ads

Set pricing

How long do you want your ad to run?
Start date:
4/6/08
Will run until: © No end date
O 4/13/08

How much do you want to spend per day?
\$ 500.00
/day

How much are you willing to bid per thousand impressions (CPM) ?
Maximum CPM: $\$ 3.00$ (Minimum \$1.00)
Calculate Weekly Estimates

From Noam Nisan's ICALP talk on Google TV Ads

Combinatorial Auctions with Budgets

The model:

- There is a set A of n agents (advertisers) and m items (slots)
- Agent i is interested in a subset S_{i} of the items
■ Agent i has budget b_{i} and valuation $v_{i}>0$ for each item in S_{i}
Valuations, budgets and sets S_{i} are private knowledge of the agents.

Combinatorial Auctions with Budgets

The Auctioneer:

- Assign $M(i)$ items from S_{i} to agent i and payment $P(i)$
- Utility for agent i (Additive - Non quasi-linear):

$$
\left\{\begin{array}{cl}
M(i) v_{i}-P(i) & \text { if } P(i) \leq b_{i} \\
-\infty & \text { if } P(i)>b_{i}
\end{array}\right.
$$

■ The utility for the auctioneer is
$\sum_{j=1}^{n} P(j)$

No Budgets: Vickrey Auction

■ Assume identical items and agents with infinite budget

- Vickrey auction allocates item to agent with highest valuation for item
- Item price is second highest valuation

Properties of Vickrey:
Maximize

$$
\begin{aligned}
\text { social welfare } & =\text { total valuation of the agents } \\
& =\text { total utility of the agents and of the auctioneer }
\end{aligned}
$$

Truthfulness: bidding real valuation is a dominant strategy

Auctions with Budgets

- Outline

- Google TV Ads
- Google TV Ads
- Combinatorial Auctions with Budgets
- Combinatorial Auctions with Budgets - No Budgets: Vickrey Auction - Auctions with Budgets - Multi-unit Auctions with Budgets

Example: 2 agents, 50 identical units:

- Alice has valuation \$20 and budget \$50
- Bob has valuation \$5 and budget \$150

■ Vickrey would sell all 50 items to Alice at price of \$ 250

- Auctions with budgets are not quasi-linear. Therefore maximizing sum of utilities does not correspond to maximizing sum of the valuations
■ Indeed, there are no truthful auctions with budgets that maximize social welfare

Maximizing social welfare is not attainable!
A weaker objective is Pareto optimality:
There exist no allocation with all agents better off (including the Auctioneer)

Multi-unit Auctions with Budgets

Multi-Unit Auctions: for all $i, j, S_{i}=S_{j}$
■ There are no truthful auctions that are Pareto optimal for multi-unit auctions with budgets [Dobzinski, Lavi, Nisan, FOCS 2008]
■ There exists an ascending auction [Ausubel, American Economic Review 2004] that is truthful if budgets are public knowledge [DLN08]
■ The ascending auction is Pareto-optimal [DLN08]!

- Lots of follow-up research in the last 2 years

A major open problem posed in [DLN08] was to derive a similar result for combinatorial auctions

There exists a Pareto-optimal truthful combinatorial auction for single-valued agents with private valuations [Fiat, L., Sankowski, Saia, 2010]

Multi-unit Auction

- The Multi-unit Auction with

Budgets

- Multi-unit Auction with

Budgets

- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Conditions for Pareto Optimality
- Conditions for Pareto Optimality
- Proof of Pareto Optimality for

Multi-unit Auction

- Proof of Pareto Optimality for

Multi-unit Auction

The Multi-unit Auction with Budgets

The Multi-unit Auction with Budgets

Multi-unit Auction

- The Multi-unit Auction with

Denote by m the current number of items.

$$
\text { Demand of } i \text { at price } p: D_{i}(p)=\left\{\begin{array}{cl}
\min \left\{m,\left\lfloor b_{i} / p\right\rfloor\right\} & \text { if } p \leq v_{i} \\
0 & \text { if } p>v_{i}
\end{array}\right.
$$

Demand of i at price $p^{+}: D_{i}^{+}(p)=\lim _{\epsilon \rightarrow 0^{+}} D_{i}(p+\epsilon)$
As price goes up demands go down because

1. Budget is limited, Or
2. Price hits valuation and demand drops to 0

The auction sells an item to some agent a at price p if

- (Truthfulness): excluding a, all other agents cannot purchase all items at price p or higher: $\sum_{i \in A / a} D_{i}(p)<m$, Or,
■ (Sell all items): at any higher price some items will never be sold: $\sum_{i \in A} D_{i}^{+}(p)<m$

Multi-unit Auction with Budgets

- Outline

Auctions with Budgets

Multi-unit Auction

The Multi-unit Auction with

Budgets O Multi-unit Auction with Budgets

- Example of Ascending

Valuation limited agents: $V=\left\{i: D_{i}(p)>0\right.$ and $\left.p=v_{i}\right\}$
1: procedure Multi-unit Auction with Budgets (v, b)
2: $\quad p \leftarrow 0, \forall i, d_{i}=D_{i}(0)$
3: \quad while $(A \neq \emptyset)$ do
4: \quad Sell(V)
5: $\quad A=A-V$
6: repeat
if $\exists i: d(A / i)<m$ then Sell (i)
else
For arbitrarily agent i with $d_{i}>D_{i}^{+}(p): d_{i} \leftarrow D_{i}^{+}(p)$
end if
until $\forall i:\left(d_{i}=D_{i}^{+}(p)\right)$ and $(d(A / i) \geq m)$
Increase p until for some $i, D_{i}(p) \neq D_{i}^{+}(p)$
end while
end procedure

Example of Ascending Auction

Multi-unit Auction

- The Multi-unit Auction with

Budgets

- Multi-unit Auction with Budgets

```
- Example of Ascending
```

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending

Auction

- Conditions for Pareto

Optimality

- Conditions for Pareto Optimality
- Proof of Pareto Optimality for

Multi-unit Auction

- Proof of Pareto Optimality for

Multi-unit Auction

$$
d=3 b=1 \quad d=3 b=1
$$

\square

$$
m=3
$$

$$
p=0
$$

Example of Ascending Auction

- Outline

Auctions with Budgets
$\frac{\text { Multi-unit Auction }}{\text { The Multi-unit Auction with }}$
Budgets

- Multi-unit Auction with

Budgets

- Example of Ascending

Auction

- Example of Ascending

$\mathrm{d}=3 \mathrm{~b}=1$

 $$
d=3 b=1
$$

\square

\square

$$
p=1 / 3
$$

Example of Ascending Auction

Multi-unit Auction

- The Multi-unit Auction with

Budgets

- Multi-unit Auction with

Budgets

- Example of Ascending

Auction

- Example of Ascending Auction - Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

$$
d=2 b=1
$$

$d=3 b=1$
\square
\square

Example of Ascending Auction

- Outline

$$
d=2 b=1 \quad d=2 b=2 / 3
$$

Multi-unit Auction

- The Multi-unit Auction with

Budgets

- Multi-unit Auction with

Budgets

- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending

Auction

- Conditions for Pareto

Optimality

- Conditions for Pareto

Optimality

- Proof of Pareto Optimality for

Multi-unit Auction

- Proof of Pareto Optimality for

Multi-unit Auction

$$
m=2
$$

$$
p=1 / 3
$$

Example of Ascending Auction

- Outline

$$
d=2 b=1 \quad d=1 \quad b=2 / 3
$$

$$
m=2
$$

$$
p=1 / 3
$$

Example of Ascending Auction

Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with

Budgets

- Multi-unit Auction with

Budgets

- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Conditions for Pareto Optimality
- Conditions for Pareto Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for

Multi-unit Auction

$$
d=1 b=2 / 3 \quad d=1 b=2 / 3
$$

Example of Ascending Auction

Auctions with Budgets
Multi-unit Auction

- The Multi-unit Auction with

Budgets

- Multi-unit Auction with

Budgets

- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Conditions for Pareto Optimality
- Conditions for Pareto Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for

Multi-unit Auction

$$
d=1 b=2 / 3 \quad d=1 b=2 / 3
$$

$$
p=2 / 3
$$

Example of Ascending Auction

Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with

Budgets

- Multi-unit Auction with

Budgets

- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending Auction - Example of Ascending

Auction
Example of Ascending
Auction

- Conditions for Pareto Optimality
- Conditions for Pareto Optimality
- Proof of Pareto Optimality for Multi-unit Auction - Proof of Pareto Optimality for Multi-unit Auction

$$
d=0 \quad b=2 / 3 \quad d=1 b=2 / 3
$$

Example of Ascending Auction

Auctions with Budgets
$\frac{\text { Multi-unit Auction }}{\text { The Multi-unit Auction with }}$
Budgets

- Multi-unit Auction with

Budgets

- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending

Auction

- Example of Ascending Auction

- Example of Ascending

Auction

- Conditions for Pareto

Optimality

- Conditions for Pareto

Optimality

- Proof of Pareto Optimality for

Multi-unit Auction

- Proof of Pareto Optimality for

Multi-unit Auction

Conditions for Pareto Optimality

Multi-unit Auction

- The Multi-unit Auction with

Budgets

- Multi-unit Auction with Budgets
- Example of Ascending Auction
- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending Auction
- Example of Ascending

Auction

- Conditions for Pareto

Optimality

Conditions for Pareto

Necessary condition for Pareto Optimality: All items are sold....

1. Special handling of Value-Limited Agents: if $d(V-A)<m$ then first sell to agents of A.
2. If we set all $d_{i}=D_{i}^{+}(p)$ it may result in $d(A)<m$: decrease demand agent by agent in arbitrary order so that m decreases only by 1 unit at a time.

Conditions for Pareto Optimality

Sufficient condition for Pareto Optimality (no trade property) for Multi-unit Auction.

There exist no two agents i, j, i allocated with at least 1 item, such that:

- $v_{j}>v_{i}$
- remaining budget of $j: b_{j} \geq v_{i}$

The ascending multi-unit auction is Pareto optimal [DLN08]
Show that the sufficient condition holds.

Proof of Pareto Optimality for Multi-unit Auction

Proof by contradiction.
Assume there exists two bidders i, j, such that $v_{j}>v_{i}$ and $b_{j} \geq v_{i}$.
Consider the last item sold to agent i. Agent $j \notin V$ at this time. Define M_{k} to be the number of items allocated to agent k at later time. There are two cases:

1. Agent $i \in V$ when it receives the item. Before $\operatorname{Sell}(V)$,

$$
\begin{aligned}
m= & \# \text { items to be sold to } V+\sum_{k \in A /\{V \cup j\}} M_{k}+M_{j} \\
< & \# \text { items to be sold to } V+\sum_{k \in A /\{V \cup j\}} D_{k}+D_{j} \\
& D_{j} \geq M_{j}+1, \forall k, D_{k} \geq M_{k} .
\end{aligned}
$$

Proof of Pareto Optimality for Multi-unit Auction

- Outline

Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction
- Example of Ascending
- Example of Ascending

Auction

- Example of Ascending Auction
- Example of Ascending Auction
- Example of Ascending

Auction

- Conditions for Pareto Optimality
- Conditions for Pareto Optimality - Proof of Pareto Optimality for Multi-unit Auction

2. Agent $i \notin V$ when it receives the item. Before Sell $(i \mid d(A / i)<m)$,

$$
\begin{aligned}
m= & \# \text { items to be sold to } i+\sum_{k \in A /\{i \cup j\}} M_{k}+M_{j} \\
< & \# \text { items to be sold to } i+\sum_{k \in A /\{i \cup j\}} d_{k}+d_{j} \\
& d_{j} \geq M_{j}+1, \forall k, d_{k} \geq M_{k} .
\end{aligned}
$$ with Budgets

- The Combinatorial Auction

 with Budgets- Trading Paths
- No trading paths \Leftrightarrow

Pareto-Optimality

- Proof of Pareto Optimality
- Proof of Pareto Optimality - Proof of Pareto Optimality

Conclusions

The Combinatorial Auction with Budgets

The Demand Graph

Matchings

- Outline

Auctions with Budgets
Multi-unit Auction

Combinatorial Auction

- The Demand Graph

O Matchings

- S-Avoid Matchings and

Selling items

- The Combinatorial Auction with Budgets
- The Combinatorial Auction with Budgets
- Trading Paths
- No trading paths \Leftrightarrow

Pareto-Optimality

- Proof of Pareto Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality

Conclusions

Full matching in a d-capacitated demand graph: Matching of [possibly multiple] items to agents such that all items are matched and capacities are observed

S-Avoid Matchings and Selling items

- Outline

Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

- The Demand Graph
- Matchings
- S-Avoid Matchings and

Selling items

- The Combinatorial Auction
with Budgets
- The Combinatorial Auction with Budgets
- Trading Paths
- No trading paths \Leftrightarrow

Pareto-Optimality

For a subset of agents S, a full S-avoid matching in a d-capacitated demand graph assigns a minimal number of items to agents in S.

A full S-Avoid matching in a d capacitated demand graph can be computed using min-cost max-flow.

Let $B(\neg S)$ be the number of items assigned to agents not in S in a full S Avoid matching

Sell (S) computes such an S-Avoid matching and for every (i, j) in this matching, $i \in S$, sells item j to agent i at current price.

i-AvoidMatching

The Combinatorial Auction with Budgets

Recap:

$$
\text { Demand of } i \text { at price } p: D_{i}(p)=\left\{\begin{array}{cl}
\min \left\{m,\left\lfloor b_{i} / p\right\rfloor\right\} & \text { if } p \leq v_{i} \\
0 & \text { if } p>v_{i}
\end{array}\right.
$$

$$
\text { Demand of } i \text { at price } p^{+}: D_{i}^{+}(p)=\lim _{\epsilon \rightarrow 0^{+}} D_{i}(p+\epsilon)
$$

The Combinatorial Auction with Budgets

procedure Combinatorial Auction with Budgets $\left(v, b,\left\{S_{i}\right\}\right)$
$p \leftarrow 0$
while $(A \neq \emptyset)$ do
Sell(V)
A=A-V
repeat
if $\exists i \mid B(\neg\{i\})<m$ then Sell (i)
else
For arbitrarily agent i with $d_{i}>D_{i}^{+}(p): d_{i} \leftarrow D_{i}^{+}(p)$
end if
until $\forall i$: $\left(d_{i}=D^{+}(i)\right)$ and $\left.B(\neg\{i\}) \geq m\right)$
Increase p until for some $\left.i, D_{i}(p) \neq D_{i}^{+}(p)\right)$
end while
end procedure

Trading Paths

Given an allocation (M, P), an alternating path for matching M : an even length path in the demand graph with all odd edges in M.

A trading path in allocation (M, P) is an alternating path from agent i to agent j such that:

- $v_{j}>v_{i}$
- remaining budget of $j: b_{j} \geq v_{i}$

No trading paths \Leftrightarrow Pareto-Optimality

Auctions with Budgets
Multi-unit Auction

Theorem 1 An allocation (M, P) is Pareto-optimal if and only if 1. All items are sold in (M, P), and
2. There are no trading paths in G with respect to (M, P).

Proof: (only if) - Assume there exists a trading path in the demand graph G with respect to (M, P) :

$$
\pi=\left(a_{1}, t_{1}, a_{2}, t_{2}, \ldots, a_{j-1}, t_{j-1}, a_{j}\right)
$$

as $v_{a_{j}}>v_{a_{1}}$ and $b_{a_{j}}^{*} \geq v_{a_{1}}$ then

- decrease payment of a_{1} by $v_{a_{1}}$
- increase payment of a_{j} by $v_{a_{1}}$, and
- move item t_{i} from a_{i} to a_{i+1} for $i=1, \ldots, j-1$.

A contradiction since

- Utility of a_{j} increases by $v_{a_{j}}-v_{a_{i}}>0$, while
\square utility of $a_{1}, a_{2}, \ldots, a_{j-1}$ and of the auctioneer is unchanged.

Proof of Pareto Optimality

Assume for contradiction there exists a forbidden alternating path ending at agent j in the final allocation.

Let $e=(i, x)$ be the earliest edge sold along the path. The edge was sold during some $\operatorname{Sell}(S)$ with $i \in S$.
$e=(i, x)$ contained in some S-AvoidMatching.

Lemma 2 If there exists an alternating path from e to j in the final allocation (M, P) then there exists an alternating path from e to j in the S-Avoid matching when edge e is sold with
 same number of items sold to i and j.

Proof of Pareto Optimality

Derive a contradiction either on the assignment of $e=(i, x)$ or on the existence of a forbidden alternating path.

Let $B(j)$ be the number of items assigned to j in the S-Avoid Matching.

Two cases:

1. $i \in V . e$ is the last edge sold to i. Since $b_{j} \geq v_{i}$ we known $d_{j}>B(j)$. There exists an alternating path in the S-AvoidMatching formed by e and all edges sold after e that assigns one more
 item to j and one less item to i.

Proof of Pareto Optimality

2. $i \notin V$. Three cases
$2.1 d_{j}>B(j)$. There exists an S-Avoid matching that assigns one more item to j and one less item to i.
$2.2 d_{j}=B(j)$ and $d_{j}=D_{j}^{+}<D_{j}$. The budget of agent j when e is sold is equal to $b_{j}=p \times D_{j}$. The remaining budget at the end of the auction is $\leq p<v_{i}$. The alternating path is not forbidden. A contradiction.
$2.3 d_{j}=B(j)$ and $d_{j}=D_{j}^{+}=D_{j}$. A contradiction follows as in case [2.2].

We conclude that edge e cannot be sold or the alternating path is not forbidden.

- Outline

Auctions with Budgets
Multi-unit Auction
Combinatorial Auction

Conclusions

Mapping the frontier

■ If the sets of interest are public but budgets and valuations are private then no truthful Pareto-optimal auction is possible.

- If budgets are public but the sets of interest and the valuations are private then no truthful Pareto-optimal auction is possible.
- if budgets are public and private arbitrary valuations are allowed, no truthful and Pareto-optimal auction is possible (irrespective of computation time). This follows by simple reduction to the previous claim on private sets of interest.

Conclusion and Open problems

We present Pareto-optimal truthful combinatorial auction for single-valued agents with private valuations, public budgets and public interest sets.

- Randomization: Truthful in expectation?

■ Envy-free allocations?

- Approximate social welfare

■ Other mechanisms with different private/public partition?
■ Position auctions with budgets?

