### **Combinatorial Auctions with Budgets**

Joint work with Amos Fiat, Jared Saia and Piotr Sankowski Stefano Leonardi Sapienza University of Rome

> Advances in Algorithmic Game Theory CWI Amsterdam - September 2 - 3, 2010



### Outline

### Outline

#### Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

Conclusions

- Introduction
- Multi-unit Auctions with Budgets
- Combinatorial Auctions with Budgets
- Pareto Optimality
- Conclusions



#### Outline

#### Auctions with Budgets

- Auctions with Budgets
- Google TV Ads
- Google TV Ads
- Combinatorial Auctions with Budgets
- Combinatorial Auctions with Budgets
- No Budgets: Vickrey Auction
- Auctions with Budgets
- Multi-unit Auctions with Budgets

Multi-unit Auction

**Combinatorial Auction** 

Conclusions

### **Auctions with Budgets**



## **Auctions with Budgets**

#### Outline

### Auctions with Budgets

### ullet Auctions with Budgets

- Google TV Ads
- Google TV Ads
- Combinatorial Auctions with Budgets
- Combinatorial Auctions with Budgets
- No Budgets: Vickrey Auction
- Auctions with Budgets
- Multi-unit Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

Conclusions

Auctions are run daily from Google and other companies of on-line advertising

- Google sells TV ads through a Web interface Advertisers specify the following parameters:
- Target TV shows
- Daily budget limit
- Valuation per impression



## **Google TV Ads**

#### Outline

| Auctions with Budgets                                                                                                                                                                                                                                 | Network/Daynarte - Select networks and daynarts to add to or block from your echedule                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auctions with Budgets                                                                                                                                                                                                                                 | · network/bayparts - Select networks and dayparts to add to or block notin your schedule                                                                                                                                                                                       |
| ● Google TV Ads                                                                                                                                                                                                                                       | Choose the networks where your ad will run. O Choose dayparts for the networks you have chosen.                                                                                                                                                                                |
| <ul> <li>Google TV Ads</li> <li>Combinatorial Auctions with<br/>Budgets</li> <li>Combinatorial Auctions with<br/>Budgets</li> <li>No Budgets: Vickrey Auction</li> <li>Auctions with Budgets</li> <li>Multi-unit Auctions with<br/>Budgets</li> </ul> | View by Genre:       All         A & E. Network       Select:         ABC, Family       Mon         ABC, Family (West)       Mon         Altitude Sports and Entertainment       Select:         AMC       12:00 AM to 5:00 AM         Animal Planet       7:00 AM to 10:00 AM |
| Multi-unit Auction                                                                                                                                                                                                                                    | Animal Planet (West)                                                                                                                                                                                                                                                           |
| Combinatorial Auction                                                                                                                                                                                                                                 | BBC America       2:00 PM to 5:00 PM         BET - Black Entertainment Television       5:00 PM to 8:00 PM         Biography Channel       8:00 PM to 12:00 AM                                                                                                                 |
|                                                                                                                                                                                                                                                       | Block from schedule » Add to schedule »                                                                                                                                                                                                                                        |

### From Noam Nisan's ICALP talk on Google TV Ads



### **Google TV Ads**

#### Outline

| Auctions | with | Budgets |
|----------|------|---------|
|----------|------|---------|

- Auctions with Budgets
- Google TV Ads

### ● Google TV Ads

| <ul> <li>Combinatorial</li> </ul> | Auctions | with |
|-----------------------------------|----------|------|
| Budgets                           |          |      |

- Combinatorial Auctions with Budgets
- No Budgets: Vickrey Auction
- Auctions with Budgets
- Multi-unit Auctions with Budgets

Multi-unit Auction

**Combinatorial Auction** 

Conclusions

| How long do             | you want your ad to run?           |       |
|-------------------------|------------------------------------|-------|
| Start date:             | 4/6/08                             |       |
| Will run until:         | No end date                        |       |
|                         | 4/13/08                            |       |
| How much d              | you want to spend per day?         |       |
| How much d<br>\$ 500.00 | you want to spend per day?<br>/day |       |
| How much d<br>\$ 500.00 | you want to spend per day?<br>/day | )M\ 2 |

### From Noam Nisan's ICALP talk on Google TV Ads



## **Combinatorial Auctions with Budgets**

#### Outline

- Auctions with Budgets
- Auctions with Budgets
- Google TV Ads
- Google TV Ads
- Combinatorial Auctions with Budgets
- Combinatorial Auctions with Budgets
- No Budgets: Vickrey Auction
- Auctions with Budgets
- Multi-unit Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

Conclusions

### The model:

- There is a set A of n agents (advertisers) and m items (slots)
- Agent *i* is interested in a subset S<sub>i</sub> of the items
- Agent *i* has budget  $b_i$  and valuation  $v_i > 0$  for each item in  $S_i$

Valuations, budgets and sets  $S_i$  are private knowledge of the agents.





## **Combinatorial Auctions with Budgets**

#### Outline

#### Auctions with Budgets

- Auctions with Budgets
- Google TV Ads
- Google TV Ads
- Combinatorial Auctions with Budgets
- Combinatorial Auctions with Budgets
- No Budgets: Vickrey Auction
- Auctions with Budgets
- Multi-unit Auctions with Budgets

Multi-unit Auction

**Combinatorial Auction** 

Conclusions

### The Auctioneer:

- Assign M(i) items from  $S_i$  to agent *i* and payment P(i)
- Utility for agent *i* (Additive Non quasi-linear):

 $\begin{cases} M(i)v_i - P(i) & \text{if } P(i) \le b_i \\ -\infty & \text{if } P(i) > b_i \end{cases}$ 

• The utility for the auctioneer is  $\sum_{j=1}^{n} P(j)$ 





# **No Budgets: Vickrey Auction**

### Outline

Auctions with Budgets

- Auctions with Budgets
- Google TV Ads
- Google TV Ads
- Combinatorial Auctions with Budgets
- Combinatorial Auctions with Budgets
- No Budgets: Vickrey Auction
- Auctions with Budgets
- Multi-unit Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

Conclusions

- Assume identical items and agents with infinite budget
- Vickrey auction allocates item to agent with highest valuation for item
- Item price is second highest valuation
- Properties of Vickrey:

### Maximize

- social welfare = total valuation of the agents
  - = total utility of the agents and of the auctioneer

Truthfulness: bidding real valuation is a dominant strategy



## **Auctions with Budgets**

### Outline

- Auctions with Budgets
- Auctions with Budgets
- Google TV Ads
- Google TV Ads
- Combinatorial Auctions with Budgets
- Combinatorial Auctions with Budgets
- No Budgets: Vickrey AuctionAuctions with Budgets
- Multi-unit Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

Conclusions

### Example: 2 agents, 50 identical units:

- Alice has valuation \$20 and budget \$50
- Bob has valuation \$5 and budget \$150
- Vickrey would sell all 50 items to Alice at price of \$ 250
- Auctions with budgets are not quasi-linear. Therefore maximizing sum of utilities does not correspond to maximizing sum of the valuations
- Indeed, there are no truthful auctions with budgets that maximize social welfare

Maximizing social welfare is not attainable!

A weaker objective is Pareto optimality:

There exist no allocation with all agents better off (including the Auctioneer)



## **Multi-unit Auctions with Budgets**

### Outline

Auctions with Budgets

- Auctions with Budgets
- Google TV Ads
- Google TV Ads
- Combinatorial Auctions with Budgets
- Combinatorial Auctions with Budgets
- No Budgets: Vickrey Auction
- Auctions with Budgets
- Multi-unit Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

Conclusions

Multi-Unit Auctions: for all  $i, j, S_i = S_j$ 

- There are no truthful auctions that are Pareto optimal for multi-unit auctions with budgets [Dobzinski, Lavi, Nisan, FOCS 2008]
- There exists an ascending auction [Ausubel, American Economic Review 2004] that is truthful if budgets are public knowledge [DLN08]
- The ascending auction is Pareto-optimal [DLN08]!
- Lots of follow-up research in the last 2 years

A major open problem posed in [DLN08] was to derive a similar result for combinatorial auctions

There exists a Pareto-optimal truthful combinatorial auction for single-valued agents with private valuations [Fiat, L., Sankowski, Saia, 2010]



#### Outline

#### Auctions with Budgets

#### Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction
- Conditions for Pareto
   Optimality
- Conditions for Pareto
   Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for Multi-unit Auction

### **The Multi-unit Auction with Budgets**



## **The Multi-unit Auction with Budgets**

### Outline

Auctions with Budgets

#### Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction
- Conditions for Pareto Optimality
- Conditions for Pareto Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for Multi-unit Auction

### Denote by $\boldsymbol{m}$ the current number of items.

Demand of *i* at price *p*:  $D_i(p) = \begin{cases} \min\{m, \lfloor b_i/p \rfloor\} & \text{if } p \leq v_i \\ 0 & \text{if } p > v_i \end{cases}$ 

Demand of *i* at price  $p^+$ :  $D_i^+(p) = \lim_{\epsilon \to 0^+} D_i(p+\epsilon)$ 

As price goes up demands go down because

- 1. Budget is limited, Or
- 2. Price hits valuation and demand drops to 0
- The auction sells an item to some agent a at price p if
- (Truthfulness): excluding *a*, all other agents cannot purchase all items at price *p* or higher:  $\sum_{i \in A/a} D_i(p) < m$ , Or,
- (Sell all items): at any higher price some items will never be sold: ∑<sub>i∈A</sub> D<sup>+</sup><sub>i</sub>(p) < m</p>



## **Multi-unit Auction with Budgets**

| • Outline                            | Va  |
|--------------------------------------|-----|
| Auctions with Budgets                |     |
| Multi unit Auction                   | 1.  |
|                                      |     |
| Budaets                              | 2:  |
| Multi-unit Auction with              |     |
| Budgets                              | 3:  |
| Example of Ascending                 |     |
| Auction                              | 4:  |
| Auction                              |     |
| • Example of Ascending               | 5:  |
| Auction                              |     |
| Example of Ascending                 | 6:  |
| Auction                              | _   |
| Auction                              | 1:  |
| • Example of Ascending               | •   |
| Auction                              | 8:  |
| • Example of Ascending               | 0.  |
| Auction<br>Example of Ascending      | 9:  |
| Auction                              | 40. |
| Example of Ascending                 | 10. |
| Auction                              | 44. |
| Conditions for Pareto     Optimolity | 11. |
| Conditions for Pareto                | 12. |
| Optimality                           | 12. |
| Proof of Pareto Optimality for       | 12. |
| Multi-unit Auction                   | 13. |
| Proof of Pareto Optimality for       | 14. |
| Multi-unit Auction                   | 14. |

Valuation limited agents:  $V = \{i : D_i(p) > 0 \text{ and } p = v_i\}$ 

1: procedure MULTI-UNIT AUCTION WITH BUDGETS(v, b) $p \leftarrow 0, \forall i, d_i = D_i(0)$ 2: 3: while  $(A \neq \emptyset)$  do

- Sell(V) 4:
- A = A V5:

### repeat

if  $\exists i : d(A/i) < m$  then Sell(i)

### else

For arbitrarily agent i with  $d_i > D_i^+(p) : d_i \leftarrow D_i^+(p)$ 

### end if

until  $\forall i$ :  $(d_i = D_i^+(p))$  and  $(d(A/i) \ge m)$ 

- Increase p until for some i,  $D_i(p) \neq D_i^+(p)$
- 13: end while

### 14: end procedure



| • Outline                                 |         |
|-------------------------------------------|---------|
| Auctions with Budgets                     | d-3 h-1 |
| Multi-unit Auction                        | u-3 b-1 |
| The Multi-unit Auction with               |         |
| Budgets                                   |         |
| Multi-unit Auction with                   |         |
| Budgets                                   |         |
| Example of Ascending                      |         |
| Auction                                   |         |
| <ul> <li>Example of Ascending</li> </ul>  |         |
| Auction                                   |         |
| Example of Ascending                      |         |
| Auction                                   |         |
| Example of Ascending                      |         |
| Auction                                   |         |
|                                           |         |
| Auction     Example of Ascending          |         |
| Auction                                   |         |
| Example of Ascending                      |         |
| Auction                                   |         |
| • Example of Ascending                    |         |
| Auction                                   |         |
| Example of Ascending                      |         |
| Auction                                   |         |
| <ul> <li>Conditions for Pareto</li> </ul> |         |
| Optimality                                |         |
| <ul> <li>Conditions for Pareto</li> </ul> |         |
| Optimality                                |         |
| Proof of Pareto Optimality for            |         |
| Multi-unit Auction                        |         |
| Proof of Pareto Optimality for            |         |
| Multi-unit Auction                        |         |





| • Outline                                 |         |            |
|-------------------------------------------|---------|------------|
| Auctions with Budgets                     |         |            |
| Multi-unit Auction                        | d=3 b=1 |            |
| The Multi-unit Auction with               |         |            |
| Budgets                                   |         |            |
| Multi-unit Auction with                   |         |            |
| Budgets                                   |         |            |
| Example of Ascending                      |         |            |
| Auction                                   |         |            |
| Example of Ascending                      |         |            |
| Auction                                   |         |            |
| Example of Ascending                      |         |            |
| Auction                                   |         |            |
| Example of Ascending                      |         |            |
| Auction                                   |         |            |
| Example of Ascending                      |         |            |
| Auction                                   |         |            |
|                                           |         |            |
|                                           |         |            |
| Auction                                   |         |            |
| Example of Ascending                      |         |            |
| Auction                                   |         |            |
| • Example of Ascending                    |         | m          |
| Auction                                   |         |            |
| <ul> <li>Conditions for Pareto</li> </ul> |         |            |
| Optimality                                |         |            |
| <ul> <li>Conditions for Pareto</li> </ul> |         | <b>n</b> = |
| Optimality                                |         | M          |
| Proof of Pareto Optimality for            |         |            |
| Multi-unit Auction                        |         |            |





| • Outline                                          |             |
|----------------------------------------------------|-------------|
|                                                    |             |
| Auctions with Budgets                              | <b>イー</b> つ |
|                                                    | u-2         |
| Multi-unit Auction                                 |             |
| The Multi-unit Auction with                        |             |
| Budgets                                            |             |
| <ul> <li>Multi-unit Auction with</li> </ul>        |             |
| Budgets                                            |             |
| Example of Ascending                               |             |
| Auction                                            |             |
| Example of Ascending                               |             |
| Auction                                            |             |
| Example of Ascending                               |             |
| Auction                                            |             |
| Example of Ascending                               |             |
| Auction                                            |             |
| Example of Ascending                               |             |
| Auction                                            |             |
| Example of Ascending                               |             |
| Auction                                            |             |
| Example of Ascending                               |             |
|                                                    |             |
|                                                    |             |
| <ul> <li>Example of Ascending</li> </ul>           |             |
| Auction                                            |             |
| Conditions for Pareto                              |             |
| Optimality                                         |             |
| Conditions for Pareto                              |             |
| Optimality                                         |             |
| Proof of Pareto Optimality for                     |             |
| Multi-unit Auction                                 |             |
| <ul> <li>Proof of Pareto Optimality for</li> </ul> |             |
| Multi-unit Auction                                 |             |







Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction
- Example of Ascending Auction
- Example of Ascending Auction

• Example of Ascending

- Example of Ascending Auction
- Conditions for Pareto
   Optimality
- Conditions for Pareto
   Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for Multi-unit Auction







Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction

• Example of Ascending

- Example of Ascending Auction
- Conditions for Pareto
   Optimality
- Conditions for Pareto
   Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for Multi-unit Auction





Outline

Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction

• Example of Ascending

- Example of Ascending Auction
- Example of Ascending Auction
- Example of Ascending Auction
- Conditions for Pareto
   Optimality
- Conditions for Pareto
   Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for Multi-unit Auction





Outline

Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction

• Example of Ascending

- Example of Ascending Auction
- Example of Ascending Auction
- Conditions for Pareto
   Optimality
- Conditions for Pareto
   Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for Multi-unit Auction





Outline

Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction

 Example of Ascending Auction

- Example of Ascending Auction
- Conditions for Pareto
   Optimality
- Conditions for Pareto
   Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for Multi-unit Auction





Outline

Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction
- Example of Ascending
- Auction
- Conditions for Pareto
   Optimality
- Conditions for Pareto Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for Multi-unit Auction



p=2/3



## **Conditions for Pareto Optimality**

#### Outline

Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction

Conditions for Pareto
 Optimality

Conditions for Pareto
 Optimality

 Proof of Pareto Optimality for Multi-unit Auction

 Proof of Pareto Optimality for Multi-unit Auction Necessary condition for Pareto Optimality: All items are sold....

- 1. Special handling of Value-Limited Agents: if d(V A) < m then first sell to agents of *A*.
- 2. If we set all  $d_i = D_i^+(p)$  it may result in d(A) < m: decrease demand agent by agent in arbitrary order so that mdecreases only by 1 unit at a time.



# **Conditions for Pareto Optimality**

#### Outline

Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction
- Conditions for Pareto
   Optimality
- Conditions for Pareto
   Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for Multi-unit Auction

Sufficient condition for Pareto Optimality (*no trade property*) for Multi-unit Auction.

There exist no two agents i, j, i allocated with at least 1 item, such that:

•  $v_i > v_i$ 

• remaining budget of  $j: b_j \ge v_i$ 

The ascending multi-unit auction is Pareto optimal [DLN08]

Show that the sufficient condition holds.



# **Proof of Pareto Optimality for Multi-unit Auction**

#### Outline

Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction
- Conditions for Pareto
   Optimality
- Conditions for Pareto
   Optimality
- Proof of Pareto Optimality for Multi-unit Auction
- Proof of Pareto Optimality for Multi-unit Auction

### Proof by contradiction.

```
Assume there exists two bidders i, j, such that v_j > v_i and b_j \ge v_i.
```

Consider the last item sold to agent *i*. Agent  $j \notin V$  at this time. Define  $M_k$  to be the number of items allocated to agent *k* at later time. There are two cases:

1. Agent  $i \in V$  when it receives the item. Before Sell(V),

- m = # items to be sold to  $V + \sum_{k \in A/\{V \cup j\}} M_k + M_j$ 
  - < # items to be sold to  $V + \sum_{k \in A/\{V \cup j\}} D_k + D_j$

$$D_j \ge M_j + 1, \forall k, D_k \ge M_k.$$



# **Proof of Pareto Optimality for Multi-unit Auction**

Outline

Auctions with Budgets

Multi-unit Auction

- The Multi-unit Auction with Budgets
- Multi-unit Auction with Budgets
- Example of Ascending Auction
- Conditions for Pareto
   Optimality
- Conditions for Pareto
   Optimality
- Proof of Pareto Optimality for Multi-unit Auction

 Proof of Pareto Optimality for Multi-unit Auction 2. Agent  $i \notin V$  when it receives the item. Before Sell(i|d(A/i) < m),

m = # items to be sold to  $i + \sum_{k \in A/\{i \cup j\}} M_k + M_j$ 

< # items to be sold to  $i + \sum_{k \in A/\{i \cup j\}} d_k + d_j$ 

 $d_j \ge M_j + 1, \forall k, d_k \ge M_k.$ 



#### Outline

Auctions with Budgets

Multi-unit Auction

#### Combinatorial Auction

- The Demand Graph
- Matchings
- *S*-Avoid Matchings and Selling items
- The Combinatorial Auction with Budgets
- The Combinatorial Auction with Budgets
- Trading Paths
- No trading paths <>
   Pareto-Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality

#### Conclusions

### **The Combinatorial Auction with Budgets**



### **The Demand Graph**

Outline

Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

#### The Demand Graph

- Matchings
- *S*-Avoid Matchings and Selling items
- The Combinatorial Auction with Budgets
- The Combinatorial Auction with Budgets
- Trading Paths
- No trading paths Pareto-Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality

Conclusions

**Demand graph**: a bipartite graph *G* with all agents on the left, all items on the right, and edges (i, j) iff  $j \in S_i$ .

*d*-capacitated demand graph: every agent *i* has associated capacity  $d_i$ , every unsold item has capacity 1.





### **Matchings**

Outline

Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

The Demand Graph

#### Matchings

- *S*-Avoid Matchings and Selling items
- The Combinatorial Auction with Budgets
- The Combinatorial Auction with Budgets
- Trading Paths
- No trading paths Pareto-Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality

Proof of Pareto Optimality

Conclusions

Full matching in a *d*-capacitated demand graph: Matching of [possibly multiple] items to agents such that all items are matched and capacities are observed





## $S\operatorname{\textbf{-Avoid}}$ Matchings and Selling items

#### Outline

Auctions with Budgets

Multi-unit Auction

- Combinatorial Auction
- The Demand Graph
- Matchings
- S-Avoid Matchings and Selling items
- The Combinatorial Auction with Budgets
- The Combinatorial Auction with Budgets
- Trading Paths
- No trading paths Pareto-Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality

Conclusions

For a subset of agents S, a full S-avoid matching in a d-capacitated demand graph assigns a minimal number of items to agents in S.

A full *S*-Avoid matching in a *d*-capacitated demand graph can be computed using min-cost max-flow.

Let  $B(\neg S)$  be the number of items assigned to agents not in S in a full S-Avoid matching

Sell(S) computes such an S-Avoid matching and for every (i, j) in this matching,  $i \in S$ , sells item j to agent i at current price.



i-AvoidMatching



# **The Combinatorial Auction with Budgets**

Outline

### Recap:

Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

- The Demand Graph
- Matchings
- S-Avoid Matchings and Selling items
- The Combinatorial Auction with Budgets
   The Combineterial Austion
- The Combinatorial Auction with Budgets
- Trading Paths
- No trading paths <>
   Pareto-Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality

### Conclusions

Demand of *i* at price *p*: 
$$D_i(p) = \begin{cases} \min\{m, \lfloor b_i/p \rfloor\} & \text{if } p \leq v_i \\ 0 & \text{if } p > v_i \end{cases}$$
  
Demand of *i* at price *p*<sup>+</sup>:  $D_i^+(p) = \lim_{\epsilon \to 0^+} D_i(p+\epsilon)$ 



# **The Combinatorial Auction with Budgets**

| Auctions with Budgets                                 | 1:  |
|-------------------------------------------------------|-----|
|                                                       | 2:  |
|                                                       | 3:  |
| The Demand Graph                                      | 4:  |
| S-Avoid Matchings and<br>Selling items                | 5:  |
| The Combinatorial Auction with Budgets                | 6:  |
| The Combinatorial Auction with Budgets                | 7:  |
| ●Trading Paths<br>●No trading paths ⇔                 | 8:  |
| Pareto-Optimality Proof of Pareto Optimality          | 9:  |
| Proof of Pareto Optimality Proof of Pareto Optimality | 10: |
| Conclusions                                           | 11: |
|                                                       | 12: |
|                                                       | 13: |
|                                                       | 11. |

: **procedure** Combinatorial Auction with Budgets( $v, b, \{S_i\}$ ) :  $p \leftarrow 0$ 

- while  $(A \neq \emptyset)$  do
  - Sell(V)
  - A=A-V

### repeat

if  $\exists i | B(\neg \{i\}) < m$  then Sell(*i*)

### else

For arbitrarily agent *i* with  $d_i > D_i^+(p) : d_i \leftarrow D_i^+(p)$ 

### end if

until  $\forall i$ :  $(d_i = D^+(i))$  and  $B(\neg\{i\}) \ge m)$ 

- : Increase p until for some i,  $D_i(p) \neq D_i^+(p)$ )
- 13: end while
- 14: end procedure



### **Trading Paths**

Outline

Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

- The Demand Graph
- Matchings
- *S*-Avoid Matchings and Selling items
- The Combinatorial Auction with Budgets
- The Combinatorial Auction with Budgets

#### Trading Paths

- No trading paths Pareto-Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality

Conclusions

Given an allocation (M, P), an alternating path for matching M: an even length path in the demand graph with all odd edges in M.

A trading path in allocation (M, P) is an alternating path from agent *i* to agent *j* such that:

•  $v_j > v_i$ 

• remaining budget of  $j: b_j \ge v_i$ 





# No trading paths $\Leftrightarrow$ Pareto-Optimality

#### Outline

Auctions with Budgets

Multi-unit Auction

- Combinatorial Auction
- The Demand Graph
- Matchings
- *S*-Avoid Matchings and Selling items
- The Combinatorial Auction with Budgets
- The Combinatorial Auction with Budgets
- Trading Paths
- No trading paths <>
   Pareto-Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality

Conclusions

**Theorem 1** An allocation (M, P) is Pareto-optimal if and only if 1. All items are sold in (M, P), and

2. There are no trading paths in G with respect to (M, P).

**Proof:** (only if) — Assume there exists a trading path in the demand graph G with respect to (M, P):

$$\pi = (a_1, t_1, a_2, t_2, \dots, a_{j-1}, t_{j-1}, a_j)$$

as  $v_{a_j} > v_{a_1}$  and  $b^*_{a_j} \ge v_{a_1}$  then

- decrease payment of  $a_1$  by  $v_{a_1}$
- increase payment of  $a_j$  by  $v_{a_1}$ , and
- move item  $t_i$  from  $a_i$  to  $a_{i+1}$  for  $i = 1, \ldots, j-1$ .
- A contradiction since
- Utility of  $a_j$  increases by  $v_{a_j} v_{a_i} > 0$ , while
- utility of  $a_1, a_2, \ldots, a_{j-1}$  and of the auctioneer is unchanged.



# **Proof of Pareto Optimality**

#### Outline

Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

- The Demand Graph
- Matchings
- *S* -Avoid Matchings and Selling items
- The Combinatorial Auction with Budgets
- The Combinatorial Auction with Budgets
- Trading Paths
- No trading paths <>
   Pareto-Optimality
- Proof of Pareto Optimality
- Proof of Pareto OptimalityProof of Pareto Optimality

Conclusions

Assume for contradiction there exists a forbidden alternating path ending at agent j in the final allocation.

Let e = (i, x) be the earliest edge sold along the path. The edge was sold during some Sell(S) with  $i \in S$ .

e = (i, x) contained in some *S*-AvoidMatching.

**Lemma 2** If there exists an alternating path from e to j in the final allocation (M, P) then there exists an alternating path from e to j in the *S*-Avoid matching when edge e is sold with same number of items sold to i and j.





# **Proof of Pareto Optimality**

#### Outline

Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

- The Demand Graph
- Matchings
- S-Avoid Matchings and Selling items
- The Combinatorial Auction with Budgets
- The Combinatorial Auction with Budgets
- Trading Paths
- No trading paths <>
   Pareto-Optimality
- Proof of Pareto Optimality

Proof of Pareto Optimality

Proof of Pareto Optimality

Conclusions

Derive a contradiction either on the assignment of e = (i, x) or on the existence of a forbidden alternating path.

Let B(j) be the number of items assigned to j in the S-Avoid Matching.

### Two cases:

1.  $i \in V$ . e is the last edge sold to i. Since  $b_j \ge v_i$  we known  $d_j > B(j)$ . There exists an alternating path in the *S*-AvoidMatching formed by e and all edges sold after e that assigns one more item to j and one less item to i.





# **Proof of Pareto Optimality**

#### Outline

#### Auctions with Budgets

Multi-unit Auction

#### Combinatorial Auction

- The Demand Graph
- Matchings
- S-Avoid Matchings and Selling items
- The Combinatorial Auction with Budgets
- The Combinatorial Auction with Budgets
- Trading Paths
- No trading paths Pareto-Optimality
- Proof of Pareto Optimality
- Proof of Pareto Optimality

Proof of Pareto Optimality

Conclusions

### **2.** $i \notin V$ . Three cases

2.1  $d_j > B(j)$ . There exists an *S*-Avoid matching that assigns one more item to *j* and one less item to *i*.

2.2  $d_j = B(j)$  and  $d_j = D_j^+ < D_j$ . The budget of agent j when e is sold is equal to  $b_j = p \times D_j$ . The remaining budget at the end of the auction is  $\leq p < v_i$ . The alternating path is not forbidden. A contradiction.

2.3  $d_j = B(j)$  and  $d_j = D_j^+ = D_j$ . A contradiction follows as in case [2.2].

We conclude that edge e cannot be sold or the alternating path is not forbidden.





Outline

Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

#### Conclusions

- Mapping the frontier
- Conclusion and Open problems

### **Conclusions**



## **Mapping the frontier**

#### Outline

Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

#### Conclusions

• Mapping the frontier

 Conclusion and Open problems

- If the sets of interest are public but budgets and valuations are private then no truthful Pareto-optimal auction is possible.
- If budgets are public but the sets of interest and the valuations are private then no truthful Pareto-optimal auction is possible.
- if budgets are public and private arbitrary valuations are allowed, no truthful and Pareto-optimal auction is possible (irrespective of computation time). This follows by simple reduction to the previous claim on private sets of interest.



### **Conclusion and Open problems**

Outline

Auctions with Budgets

Multi-unit Auction

Combinatorial Auction

Conclusions

 Mapping the frontier
 Conclusion and Open problems We present Pareto-optimal truthful combinatorial auction for single-valued agents with private valuations, public budgets and public interest sets.

- Randomization: Truthful in expectation?
- Envy-free allocations?
- Approximate social welfare
- Other mechanisms with different private/public partition?
- Position auctions with budgets?