Reducing (Bayesian) Mechanism Design to Algorithm Design

Bobby Kleinberg

CWI Workshop on Advances in Algorithmic Game Theory September 3, 2010

Joint work with: Jason Hartline, Azarakhsh Malekian

FLEXFIIX

Petra's Queue

I	Into Great Silence	High
2	Lulu \& Jimi	Med.
3	Avatar	Low
4	The White Ribbon	High
5	Signs of Life	Low

FLEXFIDX

Bobby's Queue

Transformers 2 Med.
2 Gl Joe: Rise of Cobra Med.
3 The Secret in Their Eyes Low
Avatar
5 Sherlock Holmes
High

Into Great Silence
Lulu \& Jimi Med.
Avatar Low High

Low
The White Ribbon
Signs of Life

Bobby's Queue

Transformers 2 Med.
GI Joe: Rise of Cobra Med.
The Secret in Their Eyes Low

Into Great Silence
Lulu \& Jimi Med.
Avatar Low
High
Signs of Life Low
The White Ribbon

Bobby's Queue

Transformers 2 Med.
GI Joe: Rise of Cobra Med.
The Secret in Their Eyes Low

Avatar
Sherlock Holmes

High
High

Into Great Silence
Lulu \& Jimi Med.
The White Ribbon
Avatar Low
Signs of Life Low

Bobby's Queue

Transformers 2 Med.
GI Joe: Rise of Cobra Med.
Avatar
The Secret in Their Eyes Low
Sherlock Holmes
High

Into Great Silence
Lulu \& Jimi Med.
The White Ribbon
Avatar Low
Signs of Life Low

Bobby's Queue

Transformers 2 Med.
GI Joe: Rise of Cobra Med.
Avatar
High
The Secret in Their Eyes Low
Sherlock Holmes
High

The White Ribbon

Avatar

Speed Racer
Signs of Life
Transformers 2

High
Low
Low High

Low

Avatar
The Secret in Their Eyes Sherlock Holmes

Iron Man 2
Inception

High
Low
High
High
High

The White Ribbon
Avatar Low
Loed Racer
Signs of Life High
Transformers 2
Low

Bobby's Queue

High
The Secret in Their Eyes Low Sherlock Holmes

Iron Man 2
Inception

Our Guiding Question

Is there a reduction that makes an arbitrary algorithm incentive compatible, with little or no loss in social welfare?

Preliminaries

$X_{i}=$ type space $\quad v_{i}: X_{i} \times Y \rightarrow \mathbf{R} \quad$ (valuation)
$X=X_{1} \times \cdots \times X_{n} \quad f: X \rightarrow Y \quad$ (allocation)
$\mathrm{Y}=$ outcomes $\quad \mathrm{p}_{\mathrm{i}}: \mathrm{X} \rightarrow \mathrm{R} \quad$ (payment)
Objective: $\max _{y}\left\{\sum \mathrm{v}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{y}\right)\right\}$ "social welfare"
Truthfulness: Two different notions...

Preliminaries

$X_{i}=$ type space $\quad v_{i}: X_{i} \times Y \rightarrow \mathbf{R} \quad$ (valuation)
$X=X_{1} \times \cdots \times X_{n} \quad f: X \rightarrow Y$ (allocation)
$\mathrm{Y}=$ outcomes $\quad \mathrm{pi}_{\mathrm{i}}: \mathrm{X} \rightarrow \mathrm{R}$ (payment)
Objective: $\max _{y}\left\{\sum \mathrm{v}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{y}\right)\right\}$ "social welfare"
Truthfulness: Two different notions...
Dominant Strategy $\forall i \quad \forall X_{-i} \quad v_{i}\left(x_{i}, f\left(\cdot, x_{i}\right)\right)$-pi($\left.\cdot\right) \max @ x_{i}$
Bayesian $\quad \forall i \quad E\left[v_{i}\left(x_{i}, f\left(\cdot, x_{i}\right)\right)\right]-p_{i}(\cdot) \max @ x_{i}$

Cyclic Monotonicity

$y_{l}=f\left(x_{1}\right)$
Truthfulness of single-player mechanism (f,p) implies "max matching property" of f .

Converse: ヨp making (f,p) truthful if f satisfies the max matching property, a.k.a.
$y_{4}=f\left(x_{4}\right)$ cyclic monotonicity (CMON).

X5
$\mathbf{y}_{5}=f\left(\mathbf{X}_{5}\right) \quad$ Mechanism design is algorithm design with a cyclic monotonicity constraint.

Cyclic Monotonicity

$$
\begin{array}{ll}
x_{1} & y_{1}=f\left(x_{1}\right) \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} & v\left(x_{1} y_{1}\right) \\
y_{2}=f\left(x_{2}\right) \\
y_{3}=f\left(x_{3}\right) \\
y_{4}=f\left(x_{4}\right) \\
y_{5}=f\left(x_{5}\right)
\end{array}
$$

Truthfulness of single-player mechanism (f, p) implies "max matching property" of f.

Converse: ヨp making (f,p) truthful if f satisfies the max matching property, a.k.a. cyclic monotonicity (CMON).

Mechanism design is algorithm design with a cyclic monotonicity constraint.

Cyclic Monotonicity

Truthfulness of single-player mechanism (f, p) implies "max matching property" of f.

Converse: ヨp making (f,p) truthful if f satisfies the max matching property, a.k.a. cyclic monotonicity (CMON).

Mechanism design is algorithm design with a cyclic monotonicity constraint.

Our Guiding Question

Is there a reduction that makes an arbitrary algorithm incentive compatible, with little or no loss in social welfare?

Our Guiding Question

Is there a reduction that makes an arbitrary algorithm incentive compatible, with little or no loss in social welfare?

> YES, VCG.

Our Guiding Question

Is there an efficient reduction that makes an arbitrary algorithm incentive compatible, with little or no loss in social welfare?

Our Guiding Question

Is there an efficient reduction that makes an arbitrary algorithm incentive compatible, with little or no loss in social welfare?

Dominant Strategy No

[work of Dobzinski, Lavi, Mu'alem, Nisan,
Papadimitriou, Schapira, Singer, many others]
Bayesian
Yes!
[Hartline-Lucier STOC'10, this talk]

Assumptions

How are players' bid distributions specified?

1. General oracles for sampling x_{i}, evaluating v_{i}
2. Single-parameter $X_{i} \subseteq \mathbf{R}, Y \subseteq \mathbf{R}^{n}, v_{i}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{y}\right)=\mathrm{X}_{\mathrm{i}} \cdot \mathrm{y}_{\mathrm{i}}$
3. Discrete sample space $\Omega \quad$ input size $=|\Omega|$

How is the algorithm f specified?

1. Black box model oracle for evaluating f
2. Ideal model additional oracle for $\mathrm{E}\left[\mathrm{f}\left(\mathrm{x}, \mathrm{x}_{\mathrm{i}}\right)\right]$

Summary of Results

Assume $\mathrm{v}_{\mathrm{i}}: \mathrm{X}_{\mathrm{i}} \times \mathrm{Y} \rightarrow[0,1]$, and seek ε-additive approximation to social welfare of f .

	Discrete	1-Param.	General
Ideal	$\|\Omega\|$	$O\left(\varepsilon^{-1}\right)$	$O\left(\varepsilon^{-\Delta-2}\right)^{*}$
Black Box	$\tilde{O}\left(n^{3}\|\Omega\|^{7} \varepsilon^{-3}\right)$	$\tilde{O}\left(\varepsilon^{-3}\right)$	$\tilde{O}\left(\varepsilon^{-3 \Delta-6}\right)^{* *}$

Table gives sample complexity s.
Running time is $\mathrm{O}\left(\mathrm{ns}^{3}\right)$.

The Fine Print

Assume $\mathrm{v}_{\mathrm{i}}: \mathrm{X}_{\mathrm{i}} \times \mathrm{Y} \rightarrow[0,1]$, and seek ε-additive approximation to social welfare of f.

	Discrete	1-Param.	General
Ideal	$\|\Omega\|$	$O\left(\varepsilon^{-1}\right)$	$O\left(\varepsilon^{-\Delta-2}\right)^{*}$
Black Box	$\tilde{O}\left(n^{3}\|\Omega\|^{7} \varepsilon^{-3}\right)$	$\tilde{O}\left(\varepsilon^{-3}\right)$	$\tilde{O}\left(\varepsilon^{-3 \Delta-6}\right)^{* *}$

* $\Delta=$ "number of parameters to specify a type or outcome"
** Mechanism is only ε-truthful, not truthful.

The Fine Print

Assume $\mathrm{v}_{\mathrm{i}}: \mathrm{X}_{\mathrm{i}} \times \mathrm{Y} \rightarrow[0,1]$, and seek ε-additive approximation to social welfare of f .

Discrete 1-Param. General

\forall sufficiently large k, each X_{i} can be covered by $O\left(k^{\Delta}\right)$ sets of $O\left(\varepsilon^{-\Delta-2}\right)^{*}$
diameter I / k in the L_{∞} metric. (Distance between types is
max. difference of values they assign to the same outcome.)

* $\Delta=$ "number of parameters to specify a type or outcome"
** Mechanism is only ε-truthful, not truthful.

The Fine Print

Assume $\mathrm{v}_{\mathrm{i}}: \mathrm{X}_{\mathrm{i}} \times \mathrm{Y} \rightarrow[0,1]$, and seek ε-additive approximation to social welfare of f.

	Discrete	1-Param.	General
Ideal	$\|\Omega\|$	$O\left(\varepsilon^{-1}\right)$	$O\left(\varepsilon^{-\Delta-2}\right)^{*}$
Black Box	$\tilde{O}\left(n^{3}\|\Omega\|^{7} \varepsilon^{-3}\right)$	$\tilde{O}\left(\varepsilon^{-3}\right)$	$\tilde{O}\left(\varepsilon^{-3 \Delta-6}\right)^{* *}$

* $\Delta=$ "number of parameters to specify a type or outcome"
** Mechanism is only ε-truthful, not truthful.

The Fine Print

Assume $\mathrm{v}_{\mathrm{i}}: \mathrm{X}_{\mathrm{i}} \times \mathrm{Y} \rightarrow[0,1]$, and seek ε-additive approximation to social welfare of f.

	Discrete	1-Param.	General
Ideal	$\|\Omega\|$	$O\left(\varepsilon^{-1}\right)$	$O\left(\varepsilon^{-\Delta-2}\right)^{*}$
Black Box	$\tilde{O}\left(n^{3}\|\Omega\|^{7} \varepsilon^{-3}\right)$	$\tilde{O}\left(\varepsilon^{-3}\right)$	$\tilde{O}\left(\varepsilon^{-3 \Delta-6}\right)^{* *}$

* $\Delta=$ "number of parameters to specify a type or outcome"
** Mechanism is only ε-truthful, not truthful.

Idea \#1: Surrogates

- Replace each bid x_{i} with a random surrogate $\sigma\left(x_{i}\right)$.
- Choose outcome $y=f\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right)$.

We require two properties of the sampling process $\sigma(\cdot)$.

Stationarity: stationary distrib. is the type distrib. of player i.

Monotonicity: the function $x \rightarrow \sigma(x)$ is CMON.

Idea \#1: Surrogates

- Replace each bid x_{i} with a random surrogate $\sigma\left(x_{i}\right)$.
- Choose outcome $y=f\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right)$.

We require two properties of the sampling process $\sigma(\cdot)$.

Stationarity: stationary distrib. is the type distrib. of player i.

Monotonicity: the function $x \rightarrow \sigma(x)$ is CMON.

Idea \#1: Surrogates

- Replace each bid x_{i} with a random_surrooate_a $\left(x_{i}\right)$
- Choose outcome y =f(o(x w.r.t. valuation function

$$
\mathcal{V}(\mathrm{x}, \mathrm{y}):=\mathrm{E}\left[\mathrm{v}\left(\mathrm{x}, \mathrm{f}\left(\mathrm{y}, \mathrm{x}_{\mathrm{-}}\right)\right)\right]
$$

The expected value that type x assigns to the random outcome obtained using surrogate y.
\rightarrow Allocation rule $\operatorname{RS}(\sigma) \rightarrow \mathrm{y}$ is the type distrib. f player i.
Monotonicity: the function $x \rightarrow \sigma(x)$ is CMON.

Idea \#1: Surrogates

Stationarity: stationary distrib. is type distrib. of player i.
Monotonicity: the function $x \rightarrow \sigma(x)$ is CMON.
Theorem: If σ satisfies these two properties, then the allocation rule $\mathrm{RS}(\sigma)$ is CMON.

Proof:

Idea \#1: Surrogates

Stationarity: stationary distrib. is type distrib. of player i.
Monotonicity: the function $x \rightarrow \sigma(x)$ is CMON.
Theorem: If σ satisfies these two properties, then the allocation rule $\mathrm{RS}(\sigma)$ is CMON.

Idea \#1: Surrogates

Stationarity: stationary distrib. is type distrib. of player i.
Monotonicity: the function $x \rightarrow \sigma(x)$ is CMON.
Theorem: If σ satisfies these two properties, then the allocation rule $\mathrm{RS}(\sigma)$ is CMON.

Remark: Easy to compute payments for RS(б), but won't discuss the issue further in this talk.

Examples

1. $\sigma=$ Id satisfies stationary, but not monotonicity unless f is monotone.
2. $\sigma=$ Resample satisfies both properties, but has lousy social welfare.

Idea \#2: Replicas

1. Sample replicas r_{1}, \ldots, r_{m} and surrogates $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}$ i.i.d. from type distribution on X_{i}.

2. Choose random k, set $\mathrm{r}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}$.
3. Set edge weights $w_{i j}=\mathcal{v}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$.

4. Let $\mu=$ max-weight matching.
5. Declare surrogate $\sigma\left(\mathrm{x}_{\mathrm{i}}\right)=\mu\left(\mathrm{r}_{\mathrm{k}}\right)$.

Idea \#2: Replicas

1. Sample replicas r_{1}, \ldots, r_{m} and surrogates $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}$ i.i.d. from type distribution on X_{i}.

2. Choose random k, set $\mathrm{r}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}$.
3. Set edge weights $w_{i j}=\mathcal{v}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$.
4. Let $\mu=$ max-weight matching.
5. Declare surrogate $\sigma\left(x_{i}\right)=\mu\left(r_{k}\right)$.

Idea \#2: Replicas

1. Sample replicas r_{1}, \ldots, r_{m} and surrogates s_{1}, \ldots, sm i.i.d. from type distribution on X_{i}.
2. Choose random k, set $\mathrm{r}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}$.
3. Set edge weights $\mathrm{w}_{\mathrm{ij}}=\mathcal{\nu}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$.
4. Let $\mu=$ max-weight matching.
5. Declare surrogate $\sigma\left(\mathrm{x}_{\mathrm{i}}\right)=\mu\left(\mathrm{r}_{\mathrm{k}}\right)$.

Idea \#2: Replicas

1. Sample replicas r_{1}, \ldots, r_{m} and surrogates s_{1}, \ldots, sm i.i.d. from type distribution on X_{i}.
2. Choose random k, set $\mathrm{r}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}$.
3. Set edge weights $w_{i j}=\mathcal{v}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$.
4. Let $\mu=$ max-weight matching.
5. Declare surrogate $\sigma\left(x_{i}\right)=\mu\left(r_{k}\right)$.

Idea \#2: Replicas

1. Sample replicas r_{1}, \ldots, r_{m} and surrogates s_{1}, \ldots, sm i.i.d. from type distribution on X_{i}.
2. Choose random k, set $\mathrm{r}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}$.
3. Set edge weights $w_{i j}=\mathcal{v}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$.
4. Let $\mu=$ max-weight matching.
5. Declare surrogate $\sigma\left(x_{i}\right)=\mu\left(r_{k}\right)$.

Idea \#2: Replicas

1. Sample replicas r_{1}, \ldots, r_{m} and surrogates s_{1}, \ldots, sm i.i.d. from type distribution on X_{i}.
2. Choose random k, set $\mathrm{r}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}$.
3. Set edge weights $\mathrm{w}_{\mathrm{ij}}=\mathcal{v}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$.
4. Let $\mu=$ max-weight matching.
5. Declare surrogate $\sigma\left(\mathrm{x}_{\mathrm{i}}\right)=\mu\left(\mathrm{r}_{\mathrm{k}}\right)$.

Stationarity: Distrib. of $\mu\left(r_{k}\right)$ unchanged if step 2 omitted.

Idea \#2: Replicas

1. Sample replicas r_{1}, \ldots, r_{m} and surrogates S_{1}, \ldots, , sm i.i.d. from type distribution on X_{i}.
2. Choose random k, set $r_{k}=x_{i}$.
3. Set edge weights $\mathrm{w}_{\mathrm{ij}}=\mathcal{v}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)$.
4. Let $\mu=$ max-weight matching.
5. Declare surrogate $\sigma\left(x_{i}\right)=\mu\left(r_{k}\right)$.

Monotonicity: Conditional on replicas, surrogates, and k, the mapping from x_{i} to $\sigma\left(x_{i}\right)$ is monotone. (in fact, max'l in range)

Welfare Approximation

Welfare loss of bidder i is

$$
\nu\left(r_{k}, r_{k}\right)-\nu\left(r_{k}, \mu\left(r_{k}\right)\right)
$$

Expectation is
$(1 / m)^{*}\left[\Sigma_{k} \nu\left(r_{k}, r_{k}\right)-\Sigma_{k} \mathcal{\nu}\left(r_{k}, \mu\left(r_{k}\right)\right)\right]$
This is no greater than
$(1 / m)^{*}\left[\Sigma_{k} \mathcal{\nu}\left(r_{k}, r_{k}\right)-\Sigma_{k} \mathcal{\nu}\left(r_{k}, \lambda\left(r_{k}\right)\right)\right]$
for any other matching λ.
Bound this from above by
$(1 / m)^{*}\left[\Sigma_{k}\left\|r_{k}-\lambda\left(r_{k}\right)\right\|_{\infty}\right]$

Choose λ to minimize the RHS.

Transportation Cost

X a metric space.
Transportation cost between two m-point subsets of X is length of min-cost matching.

Transportation Cost

X a metric space.
Transportation cost between two m-point subsets of X is length of min-cost matching.

Transportation Cost

X a metric space.
Transportation cost between two m-point subsets of X is length of min-cost matching.

Theorem: If $\operatorname{Diam}(X)=1$ and X partitions into k^{Δ} sets of diameter $1 / k$, the expected transportation cost of two random m-point subsets is $O\left(m / k+(m k \Delta)^{1 / 2}\right)$.

Proof Sketch: Match as many points as possible to partners in same piece of partition. Bound expected number of unmatched points by $\left(m k^{\Delta}\right)^{1 / 2}$.

Transportation Cost

X a metric space.
Transportation cost between two m-point subsets of X is length of min-cost matching.

Theorem: If $\operatorname{Diam}(X)=1$ and X partitions into k^{Δ} sets of diameter $1 / k$, the expected transportation cost of two random m-point subsets is $O\left(m / k+(m k \Delta)^{1 / 2}\right)$.

Corollary: Replica-surrogate matching mechanism achieves $O(\varepsilon)$ welfare loss when $\mathrm{k}=\varepsilon^{-1}, \mathrm{~m}=\varepsilon^{-\Delta-2}$.

Transportation Cost

X a metric space.
Transportation cost between two m-point subsets of X is length of min-cost matching.

Theorem: If $\operatorname{Diam}(X)=1$ and X partitions into k^{Δ} sets of diameter $1 / k$, the expected transportation cost of two random m-point subsets is $O\left(m / k+(m k \Delta)^{1 / 2}\right)$.

Corollary: Replica-surrogate matching mechanism achieves $O(\varepsilon)$ welfare loss when $\mathrm{k}=\varepsilon^{-1}, \mathrm{~m}=\varepsilon^{-\Delta-2}$.

Remark: More careful analysis gives $m=\varepsilon^{-\Delta-1}$ in doubling dimension Δ. This is tight except for $\Delta \leq 2$.

Extensions

- Improved mechanism for single-parameter case. \{Replicas\} = \{Surrogates\}

- Mechanisms for the black box model. (Can evaluate f but can't query its exact expectation.)
- Single-parameter case
- Discrete type space

Extensions

- Improved mechanism for single-parameter case. \{Replicas\} = \{Surrogates\}

- Mechanisms for the black box model. (Can evaluate f but can't query its exact expectation.)
- Single-parameter case
- Discrete type space

Extensions

- Improved mechanism for single-parameter case. \{Replicas\} = \{Surrogates\}
- Mechanisms for the black box model. (Can evaluate f but can't query its exact expectation.)
- Single-parameter case
- Discrete type space

Extensions

- Improved mechanism for single-parameter case. \{Replicas\} = \{Surrogates\}
- Mechanisms for the black box model. (Can evaluate f but can't query its exact expectation.)
- Single-parameter case
- Discrete type space

Extensions

- Improved mechanism for single-parameter case. \{Replicas\} = \{Surrogates\}
- Mechanisms for the black box model. (Can evaluate f but can't query its exact expectation.)
- Single-parameter case
- Discrete type space

Open Questions

	Discrete	1-Param.	General
Ideal	$\|\Omega\|$	$O\left(\varepsilon^{-1}\right)$	$O\left(\varepsilon^{-\Delta-2}\right)^{*}$
Black Box	$\tilde{O}\left(n^{3}\|\Omega\|^{7} \varepsilon^{-3}\right)$	$\tilde{O}\left(\varepsilon^{-3}\right)$	$\tilde{O}\left(\varepsilon^{-3 \Delta-6}\right)^{* *}$
$\Delta=$ covering dimension		$\varepsilon^{* * \text {-truthful, but not truthful }}$	

- Exponential dependence on Δ necessary?
- Remove the double-asterisk ... please!!
- Achieve ε-approximation pointwise, not in expectation.
- Approximate other objectives, e.g. fairness.

