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Our Guiding Question

Is there a reduction that makes an arbitrary 
algorithm incentive compatible, with little or no 
loss in social welfare?
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Preliminaries
Xi = type space        vi : Xi × Y → R   (valuation)
X = X1 ×⋅⋅⋅× Xn           f : X→Y      (allocation) 
Y = outcomes           pi : X → R         (payment)

Objective:  maxy { ∑ vi(xi,y) }  “social welfare”

Truthfulness:  Two different notions...
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Preliminaries
Xi = type space        vi : Xi × Y → R   (valuation)
X = X1 ×⋅⋅⋅× Xn           f : X→Y  (allocation) 
Y = outcomes           pi : X → R      (payment)

Objective:  maxy { ∑ vi(xi,y) }  “social welfare”

Truthfulness:  Two different notions...

Dominant Strategy ∀i ∀x-i  vi(xi,f(⋅,x-i))-pi(⋅) max@xi

Bayesian              ∀i     E[vi(xi,f(⋅,x-i))]-pi(⋅) max@xi
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Cyclic Monotonicity
Truthfulness of single-player 
mechanism (f,p) implies “max 
matching property” of f.

Converse:  ∃p making (f,p) 
truthful if f satisfies the max 
matching property, a.k.a. 
cyclic monotonicity (CMON).

Mechanism design is 
algorithm design with a cyclic 
monotonicity constraint.

x1

x2

x3

x4

x5

y1=f(x1)

y2=f(x2)

y3=f(x3)

y4=f(x4)

y5=f(x5)
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Our Guiding Question

Is there a reduction that makes an arbitrary 
algorithm incentive compatible, with little or no 
loss in social welfare?

YES, VCG.
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Our Guiding Question

Is there an efficient reduction that makes an 
arbitrary algorithm incentive compatible, with 
little or no loss in social welfare?
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Our Guiding Question

Is there an efficient reduction that makes an 
arbitrary algorithm incentive compatible, with 
little or no loss in social welfare?

Dominant Strategy   NO
[work of Dobzinski, Lavi, Muʼalem, Nisan,  
Papadimitriou, Schapira, Singer, many others]

Bayesian                  YES!
[Hartline-Lucier STOCʼ10,  this talk]
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Assumptions
How are playersʼ bid distributions specified?

1. General  oracles for sampling xi, evaluating vi

2. Single-parameter  Xi⊆R, Y⊆Rn, vi(xi,y) = xi⋅yi

3. Discrete sample space Ω        input size = |Ω|

How is the algorithm f specified?

1. Black box model           oracle for evaluating f

2. Ideal model        additional oracle for E[f(x,x-i)]
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Summary of Results
Assume vi : Xi × Y → [0,1], and seek ε-additive 
approximation to social welfare of f.

Table gives sample complexity s.  
Running time is O(ns3).

Discrete 1-Param. General

Ideal |Ω| O(ε-1) O(ε-Δ-2)*

Black Box Õ(n3|Ω|7ε-3) Õ(ε-3) Õ(ε-3Δ-6)**
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The Fine Print
Assume vi : Xi × Y → [0,1], and seek ε-additive 
approximation to social welfare of f.

*   ∆ = “number of parameters to specify a type or outcome” 
**  Mechanism is only ε-truthful, not truthful.

Discrete 1-Param. General

Ideal |Ω| O(ε-1) O(ε-Δ-2)*

Black Box Õ(n3|Ω|7ε-3) Õ(ε-3) Õ(ε-3Δ-6)**
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The Fine Print
Assume vi : Xi × Y → [0,1], and seek ε-additive 
approximation to social welfare of f.

*   ∆ = “number of parameters to specify a type or outcome” 
**  Mechanism is only ε-truthful, not truthful.

Discrete 1-Param. General

Ideal |Ω| O(ε-1) O(ε-Δ-2)*

Black Box Õ(n3|Ω|7ε-3) Õ(ε-3) Õ(ε-3Δ-6)**

∀ sufficiently large k, each Xi can be covered by O(k∆) sets of 
diameter 1/k in the L∞ metric.  (Distance between types is 
max. difference of values they assign to the same outcome.)
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• Replace each bid xi with a random surrogate σ(xi).

• Choose outcome y = f(σ(x1),...,σ(xn)).

Idea #1: Surrogates

We require two properties of 
the sampling process σ(⋅).

Stationarity:  stationary distrib. 
is the type distrib. of player i.

Monotonicity:  the function         
x → σ(x) is CMON.

σ

σ

σ

f y
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• Replace each bid xi with a random surrogate σ(xi).

• Choose outcome y = f(σ(x1),...,σ(xn)).

Idea #1: Surrogates

We require two properties of 
the sampling process σ(⋅).

Stationarity:  stationary distrib. 
is the type distrib. of player i.

Monotonicity:  the function         
x → σ(x) is CMON.

σ

σ

σ

f yAllocation rule RS(σ)

w.r.t. valuation function 
v(x,y):=E[v(x,f(y,x-i))] 

The expected value that type x 
assigns to the random outcome 
obtained using surrogate y.
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Idea #1:  Surrogates
Stationarity:  stationary distrib. is type distrib. of player i.

Monotonicity:  the function x→σ(x) is CMON.

Theorem:  If σ satisfies these two properties, then the allocation 
rule RS(σ) is CMON.

Proof:
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Idea #1:  Surrogates
Stationarity:  stationary distrib. is type distrib. of player i.

Monotonicity:  the function x→σ(x) is CMON.

Theorem:  If σ satisfies these two properties, then the allocation 
rule RS(σ) is CMON.

σ

σ

σ

f

σ

f≈
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Idea #1:  Surrogates
Stationarity:  stationary distrib. is type distrib. of player i.

Monotonicity:  the function x→σ(x) is CMON.

Theorem:  If σ satisfies these two properties, then the allocation 
rule RS(σ) is CMON.

Remark:  Easy to compute payments for RS(σ), but wonʼt 
discuss the issue further in this talk.

Examples

1. σ = Id satisfies stationary, but not monotonicity unless f is monotone.

2. σ = Resample satisfies both properties, but has lousy social welfare.
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Idea #2:  Replicas
1. Sample replicas r1,...,rm and 

surrogates s1,...,sm i.i.d. from 
type distribution on Xi.

2. Choose random k, set rk=xi. 

3. Set edge weights wij = v(ri, sj).

4. Let μ = max-weight matching.

5. Declare surrogate σ(xi) = μ(rk).
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Idea #2:  Replicas
1. Sample replicas r1,...,rm and 

surrogates s1,...,sm i.i.d. from 
type distribution on Xi.

2. Choose random k, set rk=xi. 

3. Set edge weights wij = v(ri, sj).

4. Let μ = max-weight matching.

5. Declare surrogate σ(xi) = μ(rk).

Stationarity:  Distrib. of μ(rk) unchanged if step 2 omitted.
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Idea #2:  Replicas
1. Sample replicas r1,...,rm and 

surrogates s1,...,sm i.i.d. from 
type distribution on Xi.

2. Choose random k, set rk=xi. 

3. Set edge weights wij = v(ri, sj).

4. Let μ = max-weight matching.

5. Declare surrogate σ(xi) = μ(rk).

Monotonicity:  Conditional on replicas, surrogates, and k, the 
mapping from xi to σ(xi) is monotone.  (in fact, maxʼl in range)
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Welfare Approximation
Welfare loss of bidder i is

v(rk,rk) - v(rk,μ(rk))

Expectation is 
(1/m)*[Σk v(rk,rk) - Σk v(rk,μ(rk))]

This is no greater than
(1/m)*[Σk v(rk,rk) - Σk v(rk,λ(rk))]

for any other matching λ.

Bound this from above by
(1/m)*[Σk ||rk - λ(rk)||∞]

Choose λ to minimize the RHS.
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Transportation Cost
X a metric space.

Transportation cost between 
two m-point subsets of X is 
length of min-cost matching.
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Transportation Cost
X a metric space.

Transportation cost between 
two m-point subsets of X is 
length of min-cost matching.

Theorem:  If Diam(X)=1 and 
X partitions into kΔ sets of 
diameter 1/k, the expected 
transportation cost of two 
random m-point subsets is 
O(m/k + (mkΔ)1/2).

Proof Sketch:  Match as 
many points as possible to 
partners in same piece of 
partition.  Bound expected 
number of unmatched points 
by (mkΔ)1/2.
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Transportation Cost
X a metric space.

Transportation cost between 
two m-point subsets of X is 
length of min-cost matching.

Theorem:  If Diam(X)=1 and 
X partitions into kΔ sets of 
diameter 1/k, the expected 
transportation cost of two 
random m-point subsets is 
O(m/k + (mkΔ)1/2).

Corollary:  Replica-surrogate 
matching mechanism 
achieves O(ε) welfare loss 
when k = ε-1, m= ε-Δ-2.

Remark:  More careful analysis gives m=ε-Δ-1 in 
doubling dimension Δ.  This is tight except for Δ ≤ 2.
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• Improved mechanism for 
single-parameter case. 
{Replicas} = {Surrogates}

• Mechanisms for the black 
box model. (Can evaluate 
f but canʼt query its exact 
expectation.)

• Single-parameter case

• Discrete type space

Extensions
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Open Questions

• Exponential dependence on ∆ necessary?

• Remove the double-asterisk ... please!!

• Achieve ε-approximation pointwise, not in expectation.

• Approximate other objectives, e.g. fairness.

Discrete 1-Param. General

Ideal |Ω| O(ε-1) O(ε-Δ-2)*

Black Box Õ(n3|Ω|7ε-3) Õ(ε-3) Õ(ε-3Δ-6)**

**  ε-truthful, but not truthful*  Δ=covering dimension
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