Reducing (Bayesian) Mechanism Design to Algorithm Design

Bobby Kleinberg CWI Workshop on Advances in Algorithmic Game Theory September 3, 2010

Joint work with: Jason Hartline, Azarakhsh Malekian

FLEXFUX

Petra's Queue

2

3

4

5

- Into Great Silence High
 - Lulu & Jimi Med.
 - Avatar Low
- The White Ribbon High
 - Signs of Life Low

FLEXFUX

3

Bobby's Queue

Transformers 2 Med. 2 GI Joe: Rise of Cobra Med. The Secret in Their Eyes Low 4 High Avatar 5 Sherlock Holmes High

Into Great Silence	High	Transformers 2	Med.
Lulu & Jimi	Med.	GI Joe: Rise of Cobra	Med.
Avatar	Low	The Secret in Their Eyes	Low
The White Ribbon	High	Avatar	High
Signs of Life	Low	Sherlock Holmes	High

Into Great Silence	High	Transformers 2	Med.
Lulu & Jimi	Med.	GI Joe: Rise of Cobra	Med.
Avatar	Low	The Secret in Their Eyes	Low
The White Ribbon	High	Avatar	High
Signs of Life	Low	Sherlock Holmes	High

Into Great Silence	High	Transformers 2	Med.
Lulu & Jimi	Med.	GI Joe: Rise of Cobra	Med.
The White Ribbon	High	Avatar	High
Avatar	Low	The Secret in Their Eyes	Low
Signs of Life	Low	Sherlock Holmes	High

Into Great Silence	High	Transformers 2	Med.
Lulu & Jimi	Med.	GI Joe: Rise of Cobra	Med.
The White Ribbon	High	Avatar	High
Avatar	Low	The Secret in Their Eyes	Low
Signs of Life	Low	Sherlock Holmes	High

The White Ribbon	High	Avatar	High
Avatar	Low	The Secret in Their Eyes	Low
Speed Racer	Low	Sherlock Holmes	High
Signs of Life	High	Iron Man 2	High
Transformers 2	Low	Inception	High

The White Ribbon	High	Avatar	High
Avatar	Low	The Secret in Their Eyes	Low
Speed Racer	Low	Sherlock Holmes	High
Signs of Life	High	Iron Man 2	High
Transformers 2	Low	Inception	High

Is there a reduction that makes an arbitrary algorithm incentive compatible, with little or no loss in social welfare?

Preliminaries

Objective: $\max_{y} \{ \sum v_i(x_i, y) \}$ "social welfare" Truthfulness: Two different notions...

Preliminaries

 $X_i = type space$ $v_i : X_i \times Y \rightarrow \mathbb{R}$ (valuation) $X = X_1 \times \cdots \times X_n$ $f : X \rightarrow Y$ (allocation)Y = outcomes $p_i : X \rightarrow \mathbb{R}(payment)$ Objective: $max_y \{ \sum v_i(x_i, y) \}$ "social welfare"Truthfulness:Two different notions...Dominant Strategy $\forall i \forall x_{-i} \ v_i(x_i, f(\cdot, x_{-i})) - p_i(\cdot) \ max@x_i$

Bayesian $\forall i \quad E[v_i(x_i, f(\cdot, x_{-i}))] - p_i(\cdot) \max@x_i$

Cyclic Monotonicity

XI	\rangle	/ =f((XI	

- $x_2 \qquad y_2 = f(x_2)$
- $x_3 \qquad y_3 = f(x_3)$

 $x_4 \qquad y_4 = f(x_4)$

 $x_5 \qquad y_5 = f(x_5)$

Truthfulness of single-player mechanism (f,p) implies "max matching property" of f.

Converse: ∃p making (f,p) truthful if f satisfies the max matching property, a.k.a. cyclic monotonicity (CMON).

Mechanism design is algorithm design with a cyclic monotonicity constraint.

Cyclic Monotonicity

\mathbf{x} \mathbf{y} $-\mathbf{i}(\mathbf{x})$	XI			y _l =f	(X)	
---	----	--	--	-------------------	-----	--

 $x_5 \qquad y_5 = f(x_5)$

Truthfulness of single-player mechanism (f,p) implies "max matching property" of f.

Converse: ∃p making (f,p) truthful if f satisfies the max matching property, a.k.a. cyclic monotonicity (CMON).

Mechanism design is algorithm design with a cyclic monotonicity constraint.

Cyclic Monotonicity

Truthfulness of single-player mechanism (f,p) implies "max matching property" of f.

Converse: ∃p making (f,p) truthful if f satisfies the max matching property, a.k.a. cyclic monotonicity (CMON).

Mechanism design is algorithm design with a cyclic monotonicity constraint.

Is there a reduction that makes an arbitrary algorithm incentive compatible, with little or no loss in social welfare?

Is there a reduction that makes an arbitrary algorithm incentive compatible, with little or no loss in social welfare?

YES, VCG.

Is there an **efficient** reduction that makes an arbitrary algorithm incentive compatible, with little or no loss in social welfare?

Is there an **efficient** reduction that makes an arbitrary algorithm incentive compatible, with little or no loss in social welfare?

Dominant Strategy NO

[work of Dobzinski, Lavi, Mu'alem, Nisan, Papadimitriou, Schapira, Singer, many others]

Bayesian

YES!

[Hartline-Lucier STOC'10, this talk]

Assumptions

How are players' bid distributions specified?

- 1. General oracles for sampling x_i, evaluating v_i
- 2. Single-parameter $X_i \subseteq \mathbb{R}$, $Y \subseteq \mathbb{R}^n$, $v_i(x_i, y) = x_i \cdot y_i$
- 3. Discrete sample space Ω input size = $|\Omega|$ How is the algorithm f specified?
- 1. Black box model oracle for evaluating f
- 2. Ideal model additional oracle for $E[f(x,x_{-i})]$

Summary of Results

Assume $v_i : X_i \times Y \rightarrow [0,1]$, and seek ε -additive approximation to social welfare of f.

	Discrete	1-Param.	General
Ideal	Ω	O(٤ ⁻¹)	Ο(ε-Δ-2)*
Black Box	$\tilde{O}(n^3 \Omega ^7\epsilon^{-3})$	Õ(٤-3)	Õ(٤ ^{-3Δ-6})**

Table gives sample complexity s. Running time is O(ns³).

Assume $v_i : X_i \times Y \rightarrow [0,1]$, and seek ε -additive approximation to social welfare of f.

	Discrete	1-Param.	General
Ideal	Ω	O(8 ⁻¹)	Ο(ε-Δ-2)*
Black Box	$\tilde{O}(n^3 \Omega ^7\epsilon^{-3})$	Õ(٤-3)	$ ilde{O}(\epsilon^{-3\Delta-6})^{**}$

* Δ = "number of parameters to specify a type or outcome"

** Mechanism is only ε -truthful, not truthful.

Assume $v_i : X_i \times Y \rightarrow [0,1]$, and seek ε -additive approximation to social welfare of f.

Discrete **1**-Param.

General

∀ sufficiently large k, each X_i can be covered by O(k^Δ) sets of diameter 1/k in the L_∞ metric. (Distance between types is max. difference of values they assign to the same outcome.)

- * $\Delta =$ "number of parameters to specify a type or outcome"
- ** Mechanism is only ε -truthful, not truthful.

Assume $v_i : X_i \times Y \rightarrow [0,1]$, and seek ε -additive approximation to social welfare of f.

	Discrete	1-Param.	General
Ideal	Ω	O(8 ⁻¹)	Ο(ε-Δ-2)*
Black Box	$\tilde{O}(n^3 \Omega ^7\epsilon^{-3})$	Õ(٤-3)	$ ilde{O}(\epsilon^{-3\Delta-6})^{**}$

* Δ = "number of parameters to specify a type or outcome"

** Mechanism is only ε -truthful, not truthful.

Assume $v_i : X_i \times Y \rightarrow [0,1]$, and seek ε -additive approximation to social welfare of f.

	Discrete	1-Param.	General
Ideal	Ω	O(٤ ⁻¹)	Ο(ε-Δ-2)*
Black Box	$\tilde{O}(n^3 \Omega ^7\epsilon^{-3})$	Õ(٤-3)	$ ilde{O}(\epsilon^{-3\Delta-6})^{**}$

* Δ = "number of parameters to specify a type or outcome"

** Mechanism is only ε -truthful, not truthful.

- Replace each bid x_i with a random surrogate $\sigma(x_i)$.
- Choose outcome $y = f(\sigma(x_1), ..., \sigma(x_n))$.

We require two properties of the sampling process $\sigma(\cdot)$.

Stationarity: stationary distrib. is the type distrib. of player i.

Monotonicity: the function $x \rightarrow \sigma(x)$ is CMON.

- Replace each bid x_i with a random surrogate $\sigma(x_i)$.
- Choose outcome $y = f(\sigma(x_1), \dots, \sigma(x_n))$.

Allocation rule
$$RS(\sigma)$$

We require two properties of the sampling process $\sigma(\cdot)$.

Stationarity: stationary distrib. is the type distrib. of player i.

Monotonicity: the function $x \rightarrow \sigma(x)$ is CMON.

- Replace each bid x_i with a random surrogate $\sigma(x_i)$
- Choose outcome $y = f(\sigma(x))$

w.r.t. valuation function $\mathcal{V}(\mathbf{x},\mathbf{y}):=\mathsf{E}[\mathbf{v}(\mathbf{x},\mathbf{f}(\mathbf{y},\mathbf{x}_{-i}))]$

The expected value that type x assigns to the random outcome obtained using surrogate y.

Allocation rule $RS(\sigma)$

is the type distrib.

of player i.

Monotonicity: the junction $x \rightarrow \sigma(x)$ is CMON.

Stationarity: stationary distrib. is type distrib. of player i.

Monotonicity: the function $x \rightarrow \sigma(x)$ is CMON.

Theorem: If σ satisfies these two properties, then the allocation rule RS(σ) is CMON.

Proof:

Stationarity: stationary distrib. is type distrib. of player i.

Monotonicity: the function $x \rightarrow \sigma(x)$ is CMON.

Theorem: If σ satisfies these two properties, then the allocation rule RS(σ) is CMON.

Stationarity: stationary distrib. is type distrib. of player i.

Monotonicity: the function $x \rightarrow \sigma(x)$ is CMON.

Theorem: If σ satisfies these two properties, then the allocation rule RS(σ) is CMON.

Remark: Easy to compute payments for $RS(\sigma)$, but won't discuss the issue further in this talk.

Examples

1. $\sigma = Id$ satisfies stationary, but not monotonicity unless f is monotone.

2. σ = Resample satisfies both properties, but has lousy social welfare.

- Sample *replicas* r₁,...,r_m and surrogates s₁,...,s_m i.i.d. from type distribution on X_i.
- 2. Choose random k, set $r_k = x_i$.
- 3. Set edge weights $w_{ij} = v(r_i, s_j)$.
- 4. Let $\mu = max$ -weight matching.
- 5. Declare surrogate $\sigma(x_i) = \mu(r_k)$.

- Sample *replicas* r₁,...,r_m and surrogates s₁,...,s_m i.i.d. from type distribution on X_i.
- 2. Choose random k, set $r_k = x_i$.
- 3. Set edge weights $w_{ij} = v(r_i, s_j)$.
- 4. Let $\mu = max$ -weight matching.
- 5. Declare surrogate $\sigma(x_i) = \mu(r_k)$.

- Sample *replicas* r₁,...,r_m and surrogates s₁,...,s_m i.i.d. from type distribution on X_i.
- 2. Choose random k, set $r_k = x_i$.
- 3. Set edge weights $w_{ij} = v(r_i, s_j)$.
- 4. Let $\mu = max$ -weight matching.
- 5. Declare surrogate $\sigma(x_i) = \mu(r_k)$.

- Sample *replicas* r₁,...,r_m and surrogates s₁,...,s_m i.i.d. from type distribution on X_i.
- 2. Choose random k, set $r_k = x_i$.
- 3. Set edge weights $w_{ij} = v(r_i, s_j)$.
- 4. Let $\mu = max$ -weight matching.
- 5. Declare surrogate $\sigma(x_i) = \mu(r_k)$.

- Sample *replicas* r₁,...,r_m and surrogates s₁,...,s_m i.i.d. from type distribution on X_i.
- 2. Choose random k, set $r_k = x_i$.
- 3. Set edge weights $w_{ij} = v(r_i, s_j)$.
- 4. Let $\mu = max$ -weight matching.
- 5. Declare surrogate $\sigma(x_i) = \mu(r_k)$.

Idea #2: Replicas

- Sample *replicas* r₁,...,r_m and surrogates s₁,...,s_m i.i.d. from type distribution on X_i.
- 2. Choose random k, set $r_k = x_i$.
- 3. Set edge weights $w_{ij} = v(r_i, s_j)$.
- 4. Let $\mu = max$ -weight matching.
- 5. Declare surrogate $\sigma(x_i) = \mu(r_k)$.

Stationarity: Distrib. of $\mu(r_k)$ unchanged if step 2 omitted.

Idea #2: Replicas

- Sample *replicas* r₁,...,r_m and surrogates s₁,...,s_m i.i.d. from type distribution on X_i.
- 2. Choose random k, set $r_k = x_i$.
- 3. Set edge weights $w_{ij} = v(r_i, s_j)$.
- 4. Let $\mu = max$ -weight matching.
- 5. Declare surrogate $\sigma(x_i) = \mu(r_k)$.

Monotonicity: Conditional on replicas, surrogates, and k, the mapping from x_i to $\sigma(x_i)$ is monotone. (in fact, max'l in range)

Welfare Approximation

Welfare loss of bidder i is $v(r_k, r_k) - v(r_k, \mu(r_k))$

Expectation is $(1/m)^*[\Sigma_k \mathcal{V}(r_k, r_k) - \Sigma_k \mathcal{V}(r_k, \mu(r_k))]$

This is no greater than $(1/m)^*[\Sigma_k \mathcal{V}(\mathbf{r}_k,\mathbf{r}_k) - \Sigma_k \mathcal{V}(\mathbf{r}_k,\lambda(\mathbf{r}_k))]$ for any other matching λ .

Bound this from above by $(1/m)^*[\Sigma_k ||r_k - \lambda(r_k)||_{\infty}]$

Choose λ to minimize the RHS.

X a metric space.

Transportation cost between two m-point subsets of X is length of min-cost matching.

X a metric space.

Transportation cost between two m-point subsets of X is length of min-cost matching.

X a metric space.

Transportation cost between two m-point subsets of X is length of min-cost matching.

Theorem: If Diam(X)=1 and X partitions into k^{Δ} sets of diameter 1/k, the expected transportation cost of two random m-point subsets is $O(m/k + (mk^{\Delta})^{1/2})$.

Proof Sketch: Match as many points as possible to partners in same piece of partition. Bound expected number of unmatched points by $(mk^{\Delta})^{1/2}$.

X a metric space.

Transportation cost between two m-point subsets of X is length of min-cost matching.

Theorem: If Diam(X)=1 and X partitions into k^{Δ} sets of diameter 1/k, the expected transportation cost of two random m-point subsets is $O(m/k + (mk^{\Delta})^{1/2})$.

Corollary: Replica-surrogate matching mechanism achieves $O(\varepsilon)$ welfare loss when k = ε^{-1} , m= $\varepsilon^{-\Delta-2}$.

X a metric space.

Transportation cost between two m-point subsets of X is length of min-cost matching.

Theorem: If Diam(X)=1 and X partitions into k^{Δ} sets of diameter 1/k, the expected transportation cost of two random m-point subsets is $O(m/k + (mk^{\Delta})^{1/2})$.

Corollary: Replica-surrogate matching mechanism achieves $O(\epsilon)$ welfare loss when k = ϵ^{-1} , m= $\epsilon^{-\Delta-2}$.

Remark: More careful analysis gives $m = \varepsilon^{-\Delta - 1}$ in doubling dimension Δ . This is tight except for $\Delta \leq 2$.

- Improved mechanism for single-parameter case.
 {Replicas} = {Surrogates}
- Mechanisms for the black box model. (Can evaluate f but can't query its exact expectation.)
 - Single-parameter case
 - Discrete type space

- Improved mechanism for single-parameter case.
 {Replicas} = {Surrogates}
- Mechanisms for the black box model. (Can evaluate f but can't query its exact expectation.)
 - Single-parameter case
 - Discrete type space

- Improved mechanism for single-parameter case.
 {Replicas} = {Surrogates}
- Mechanisms for the black box model. (Can evaluate f but can't query its exact expectation.)
 - Single-parameter case
 - Discrete type space

- Improved mechanism for single-parameter case.
 {Replicas} = {Surrogates}
- Mechanisms for the black box model. (Can evaluate f but can't query its exact expectation.)
 - Single-parameter case
 - Discrete type space

- Improved mechanism for single-parameter case.
 {Replicas} = {Surrogates}
- Mechanisms for the black box model. (Can evaluate f but can't query its exact expectation.)
 - Single-parameter case
 - Discrete type space

Open Questions

	Discrete	1-Param.	General
Ideal	Ω	O(٤ ⁻¹)	Ο(ε-Δ-2)*
Black Box	$\tilde{O}(n^3 \Omega ^7\epsilon^{-3})$	Õ(٤-3)	$\tilde{O}(\epsilon^{-3\Delta-6})^{**}$

* Δ =covering dimension

** E-truthful, but not truthful

- Exponential dependence on Δ necessary?
- Remove the double-asterisk ... please!!
- Achieve ε-approximation pointwise, not in expectation.
- Approximate other objectives, e.g. fairness.