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Mechanism Design

Mechanism Design: how can a social planner / optimizer achieve
objective when participant preferences are private.

Challenge: designer does not know participant preferences,
participants may strategize when reporting preference!
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Goals for Theory

Goals for Mechanism Design Theory:

• Descriptive: predict/affirm mechanisms arising in practice.

• Prescriptive: suggest how good mechanisms can be designed.

• Conclusive: pinpoint salient characteristics of good mechanisms.
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Goals for Theory

Goals for Mechanism Design Theory:

• Descriptive: predict/affirm mechanisms arising in practice.

• Prescriptive: suggest how good mechanisms can be designed.

• Conclusive: pinpoint salient characteristics of good mechanisms.

Informal Thesis: approximately optimality is often descriptive, prescrip-
tive, and conclusive.
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Example 1: Gambler’s Stopping Game

A Gambler’s Stopping Game:

• sequence of n games,

• prize of game i is distributed from Fi,

• prior-knowledge of distributions.

On day i, gambler plays game i:

• realizes prize vi ∼ Fi,

• chooses to keep prize and stop, or

• discard prize and continue.
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Example 1: Gambler’s Stopping Game

A Gambler’s Stopping Game:

• sequence of n games,

• prize of game i is distributed from Fi,

• prior-knowledge of distributions.

On day i, gambler plays game i:

• realizes prize vi ∼ Fi,

• chooses to keep prize and stop, or

• discard prize and continue.

Question: How should our gambler play?
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Optimal Strategy

Optimal Strategy:

• threshold ti for stopping with ith prize.

• solve with “backwards induction”.
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Optimal Strategy

Optimal Strategy:

• threshold ti for stopping with ith prize.

• solve with “backwards induction”.

Discussion:

• Complicated: n different, unrelated thresholds.

• Inconclusive: what are properties of good strategies?

• Non-robust: what if order changes? what if distribution changes?

• Non-general: what do we learn about variants of Stopping Game?
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Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix t, gambler takes first prize vi ≥ t”.

(clearly suboptimal, may not accept prize on last day!)
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Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix t, gambler takes first prize vi ≥ t”.

(clearly suboptimal, may not accept prize on last day!)

Theorem: (Prophet Inequality) For t such that Pr[“no prize”] = 1/2,

E[prize for strategy t] ≥ E[maxi vi] /2.
[Samuel-Cahn ’84]
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Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix t, gambler takes first prize vi ≥ t”.

(clearly suboptimal, may not accept prize on last day!)

Theorem: (Prophet Inequality) For t such that Pr[“no prize”] = 1/2,

E[prize for strategy t] ≥ E[maxi vi] /2.
[Samuel-Cahn ’84]

Discussion:

• Simple: one number t.

• Conclusive: trade-off “stopping early” with “never stopping”.

• Robust: change order? change distribution above or below t?

• General: same solution works for similar games: invariant of
“tie-breaking rule”
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Prophet Inequality Proof

0. Notation:

• qi = Pr[vi < t].

• x = Pr[never stops] =
∏

i qi.

1. Upper Bound on E[max]:

2. Lower Bound on E[prize]:

3. Choose x = 1/2 to prove theorem.
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• qi = Pr[vi < t].
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∏
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1. Upper Bound on E[max]:

E[max] ≤ t + E
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maxi(vi − t)+

]

2. Lower Bound on E[prize]:

3. Choose x = 1/2 to prove theorem.
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Prophet Inequality Proof

0. Notation:

• qi = Pr[vi < t].

• x = Pr[never stops] =
∏

i qi.

1. Upper Bound on E[max]:

E[max] ≤ t + E
[
maxi(vi − t)+

]

≤ t +
∑

i
E
[
(vi − t)+

]
.

2. Lower Bound on E[prize]:

E[prize] ≥ (1 − x)t +

3. Choose x = 1/2 to prove theorem.
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Prophet Inequality Proof

0. Notation:

• qi = Pr[vi < t].

• x = Pr[never stops] =
∏

i qi.

1. Upper Bound on E[max]:

E[max] ≤ t + E
[
maxi(vi − t)+

]

≤ t +
∑

i
E
[
(vi − t)+

]
.

2. Lower Bound on E[prize]:

E[prize] ≥ (1 − x)t +
∑

i
E
[
(vi − t)+ | other vj < t

]
Pr[other vj < t]

3. Choose x = 1/2 to prove theorem.
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Prophet Inequality Proof

0. Notation:

• qi = Pr[vi < t].

• x = Pr[never stops] =
∏

i qi.

1. Upper Bound on E[max]:

E[max] ≤ t + E
[
maxi(vi − t)+

]

≤ t +
∑

i
E
[
(vi − t)+

]
.

2. Lower Bound on E[prize]:

E[prize] ≥ (1 − x)t +
∑

i
E
[
(vi − t)+ | other vj < t

]

Q

j 6=i
qj

︷ ︸︸ ︷

Pr[other vj < t]

3. Choose x = 1/2 to prove theorem.
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[
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3. Choose x = 1/2 to prove theorem.
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Philosophy of Approximation

What is the point of a 2-approximation?
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Philosophy of Approximation

What is the point of a 2-approximation?

• Must make tradeoff between understanding and optimality.

(1 + ǫ) constant super-constant

Performance great ok bad

Understanding little lots some
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What is the point of a 2-approximation?
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(1 + ǫ) constant super-constant

Performance great ok bad

Understanding little lots some

• Constant approximations identify salient features of model/solution.
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Philosophy of Approximation

What is the point of a 2-approximation?

• Must make tradeoff between understanding and optimality.

(1 + ǫ) constant super-constant

Performance great ok bad

Understanding little lots some

• Constant approximations identify salient features of model/solution.
Example: is X important in MD?

– no, if mech without X is constant approx

– yes, otherwise.
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Philosophy of Approximation

What is the point of a 2-approximation?

• Must make tradeoff between understanding and optimality.

(1 + ǫ) constant super-constant

Performance great ok bad

Understanding little lots some

• Constant approximations identify salient features of model/solution.
Example: is X important in MD? competition?

– no, if mech without X is constant approx

– yes, otherwise.
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Philosophy of Approximation

What is the point of a 2-approximation?

• Must make tradeoff between understanding and optimality.

(1 + ǫ) constant super-constant

Performance great ok bad

Understanding little lots some

• Constant approximations identify salient features of model/solution.
Example: is X important in MD? competition? transfers?

– no, if mech without X is constant approx

– yes, otherwise.
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Philosophy of Approximation

What is the point of a 2-approximation?

• Must make tradeoff between understanding and optimality.

(1 + ǫ) constant super-constant

Performance great ok bad

Understanding little lots some

• Constant approximations identify salient features of model/solution.
Example: is X important in MD? competition? transfers?

– no, if mech without X is constant approx

– yes, otherwise.

• Seller can always try ad hoc improvements on approximation.
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Overview

1. Single-dimensional Bayesian settings.

(e.g., single-item auctions)

2. Multi-dimensional Bayesian settings.

(e.g., multi-item auctions)

3. Prior-free settings.
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Part I: Approximation for single-dimensional Bayesian mechanism
design

(where agent preferences are given by a private value for service, zero
for no service; preferences are drawn from a distribution)



Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem

• a single item for sale,

• n buyers, and

• a dist. F = F1 × · · · × Fn from which the
consumers’ values for the item are drawn.

Goal: seller opt. auction for F.

APPROXIMATION AND MECHANISM DESIGN – SEPTEMBER 3, 2010
10



Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem

• a single item for sale,

• n buyers, and

• a dist. F = F1 × · · · × Fn from which the
consumers’ values for the item are drawn.

Goal: seller opt. auction for F.

Question: What is optimal auction?
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Optimal Auction Design [Myerson ’81]
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Optimal Auction Design [Myerson ’81]

1. Def: revenue curve: Ri(q) = q · F−1
i (1 − q).

0 1

0
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Optimal Auction Design [Myerson ’81]

1. Def: revenue curve: Ri(q) = q · F−1
i (1 − q).

0 1

0

2. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)

= marginal revenue.
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= marginal revenue.

3. Def: virtual surplus: virtual value of winner(s).
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Optimal Auction Design [Myerson ’81]

1. Def: revenue curve: Ri(q) = q · F−1
i (1 − q).

0 1

0

2. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)

= marginal revenue.

3. Def: virtual surplus: virtual value of winner(s).

4. Thm: E[revenue] = E[virtual surplus].
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Optimal Auction Design [Myerson ’81]

1. Def: revenue curve: Ri(q) = q · F−1
i (1 − q).

0 1

0

2. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)

= marginal revenue.

3. Def: virtual surplus: virtual value of winner(s).

4. Thm: E[revenue] = E[virtual surplus].

5. Def: Fi is regular iff revenue curve concave iff virtual values

monotone.
0 1
0
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Optimal Auction Design [Myerson ’81]

1. Def: revenue curve: Ri(q) = q · F−1
i (1 − q).

0 1

0

2. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)

= marginal revenue.

3. Def: virtual surplus: virtual value of winner(s).

4. Thm: E[revenue] = E[virtual surplus].

5. Def: Fi is regular iff revenue curve concave iff virtual values

monotone.
0 1
0

6. Thm: for regular dists, optimal auction sells to bidder with highest
positive virtual value.
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Optimal Auction Design [Myerson ’81]

1. Def: revenue curve: Ri(q) = q · F−1
i (1 − q).

0 1

0

2. Def: virtual value: ϕi(vi) = vi −
1−Fi(v)
fi(vi)

= marginal revenue.

3. Def: virtual surplus: virtual value of winner(s).

4. Thm: E[revenue] = E[virtual surplus].

5. Def: Fi is regular iff revenue curve concave iff virtual values

monotone.
0 1
0

6. Thm: for regular dists, optimal auction sells to bidder with highest
positive virtual value.

7. Cor: for iid, regular dists, optimal auction is Vickrey with monopoly
reserve price ϕ−1(0).
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Optimal Auctions

Optimal Auctions:

• iid, regular distributions: Vickrey with monopoly reserve price.

• general: sell to bidder with highest positive virtual value.
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Optimal Auctions

Optimal Auctions:

• iid, regular distributions: Vickrey with monopoly reserve price.

• general: sell to bidder with highest positive virtual value.

Discussion:

• iid, regular case: seems very special.

• general case: nobody runs optimal auction (too complicated?).
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan ’10]
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan ’10]

Proof: apply prophet inequality (tie-breaking by value) to virtual values.
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan ’10]

Proof: apply prophet inequality (tie-breaking by value) to virtual values.

prophet inequality Vickrey with reserves

prizes virtual values

threshold t virtual price

E[max prize] E[optimal revenue]

E[prize for t] E[Vickrey revenue]
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Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: Vickrey with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation. [Chawla, H, Malec, Sivan ’10]

Proof: apply prophet inequality (tie-breaking by value) to virtual values.

prophet inequality Vickrey with reserves

prizes virtual values

threshold t virtual price

E[max prize] E[optimal revenue]

E[prize for t] E[Vickrey revenue]

Discussion:

• constant virtual price ⇒ bidder-specific reserves.

• simple: reserve prices natural, practical, and easy to find.

• robust: posted pricing with arbitrary tie-breaking works fine,
collusion fine, etc.
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Anonymous Reserves

Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)
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Anonymous Reserves

Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with anonymous
reserve price is 4-approximation. [H, Roughgarden ’09]
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Anonymous Reserves

Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with anonymous
reserve price is 4-approximation. [H, Roughgarden ’09]

Proof: more complicated extension of prophet inequalities.
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Anonymous Reserves

Question: for non-identical distributions, is anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, Vickrey with anonymous
reserve price is 4-approximation. [H, Roughgarden ’09]

Proof: more complicated extension of prophet inequalities.

Discussion:

• theorem is not tight, actual bound is in [2, 4].

• justifies wide prevalence.

• approximation good for platform design.
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Extensions

Beyond single-item auctions: general feasibility constraints.

APPROXIMATION AND MECHANISM DESIGN – SEPTEMBER 3, 2010
15



Extensions

Beyond single-item auctions: general feasibility constraints.

Thm: for non-identical regular distributions, VCG with monopoly
reserves is often a 2-approximation. [H, Roughgarden ’09]

Thm: non-identical (possibly irregular) distributions, posted pricing
mechanisms are often constant approximations.

[Chawla, H, Malec, Sivan ’10]
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Extensions

Beyond single-item auctions: general feasibility constraints.

Thm: for non-identical regular distributions, VCG with monopoly
reserves is often a 2-approximation. [H, Roughgarden ’09]

Thm: non-identical (possibly irregular) distributions, posted pricing
mechanisms are often constant approximations.

[Chawla, H, Malec, Sivan ’10]

Proof technique:

• optimal mechanism is a virtual surplus maximizer.

• reserve-price mechanisms are virtual surplus approximators.
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Extensions

Beyond single-item auctions: general feasibility constraints.

Thm: for non-identical regular distributions, VCG with monopoly
reserves is often a 2-approximation. [H, Roughgarden ’09]

Thm: non-identical (possibly irregular) distributions, posted pricing
mechanisms are often constant approximations.

[Chawla, H, Malec, Sivan ’10]

Proof technique:

• optimal mechanism is a virtual surplus maximizer.

• reserve-price mechanisms are virtual surplus approximators.

Basic Open Question: to what extent to simple mechanisms approxi-
mate (well understood but complex) optimal ones?

Challenges: non-downward-closed settings, negative virtual values.
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Part II: Approximation for multi-dimensional Bayesian mechanism
design

(where agent preferences are given by values for each available
service, zero for no service; preferences drawn from distribution)



Example 3: unit-demand pricing

Problem: Bayesian Unit-Demand Pricing

• a single, unit-demand consumer.

• n items for sale.

• a dist. F = F1 × · · · × Fn from which the con-
sumer’s values for each item are drawn.

Goal: seller optimal item-pricing for F.

APPROXIMATION AND MECHANISM DESIGN – SEPTEMBER 3, 2010
17



Example 3: unit-demand pricing

Problem: Bayesian Unit-Demand Pricing

• a single, unit-demand consumer.

• n items for sale.

• a dist. F = F1 × · · · × Fn from which the con-
sumer’s values for each item are drawn.

Goal: seller optimal item-pricing for F.

Question: What is optimal pricing?
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Optimal Pricing

Optimal Pricing: consider distribution, feasibility constraints, incentive
constraints, and solve!
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Optimal Pricing

Optimal Pricing: consider distribution, feasibility constraints, incentive
constraints, and solve!

Discussion:

• little conceptual insight and

• not generally tractable.
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Analogy

Challenge: approximate optimal but we do not understand it?
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Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.
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Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.

Note: Same informational structure.
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Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.

Note: Same informational structure.
Thm: for any indep. distributions, MD-PRICING ≤ SD-AUCTION.
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Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.

Note: Same informational structure.
Thm: for any indep. distributions, MD-PRICING ≤ SD-AUCTION.
Thm: a constant virtual price for MD-PRICING is 2-approx....

[Chawla,H,Malec,Sivan’10]
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Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand
Pricing (a.k.a., MD-PRICING)

• a single, unit-demand buyer,

• n items for sale, and

• a dist. F from which the con-
sumer’s value for each item is
drawn.

Goal: seller opt. item-pricing for F.

Problem: Bayesian Single-item
Auction (a.k.a., SD-AUCTION)

• a single item for sale,

• n buyers, and

• a dist. F from which the con-
sumers’ values for the item are
drawn.

Goal: seller opt. auction for F.

Note: Same informational structure.
Thm: for any indep. distributions, MD-PRICING ≤ SD-AUCTION.
Thm: a constant virtual price for MD-PRICING is 2-approx....

[Chawla,H,Malec,Sivan’10]Proof: prophet inequality (tie-break by vi − pi).
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in sequence, offer posted
prices.
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in sequence, offer posted
prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in sequence, offer posted
prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)
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constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION ≥ MD-PRICING

(competition increases revenue)
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Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION ≥ MD-PRICING

(competition increases revenue)
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Multi-item Auctions

Sequential Posted Pricing: agents arrive in sequence, offer posted
prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION ≥ MD-PRICING

(competition increases revenue)

3. Reduction: MD-PRICING ≥ SD-PRICING

(pricings don’t use competition)

4. Instantiation: SD-PRICING ≥ 1
β

SD-AUCTION

(virtual surplus approximation)
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Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in sequence, offer posted
prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
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Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in sequence, offer posted
prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Discussion:

• robust to agent ordering, collusion, etc.

• conclusive: competition not important for approximation.

• practical: posted pricings widely prevalent. (e.g., eBay)

• role of randomization is crucial.
[Briest,Chawla,Kleinberg,Weinberg’10; Chawla,Malec,Sivan’10]
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Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in sequence, offer posted
prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, H, Malec, Sivan ’10]
Discussion:

• robust to agent ordering, collusion, etc.

• conclusive: competition not important for approximation.

• practical: posted pricings widely prevalent. (e.g., eBay)

• role of randomization is crucial.
[Briest,Chawla,Kleinberg,Weinberg’10; Chawla,Malec,Sivan’10]

Open Question: identify upper bounds beyond unit-demand settings
that are

• conceptually tractable and

• approximable.

APPROXIMATION AND MECHANISM DESIGN – SEPTEMBER 3, 2010
21



Part III: Approximation for prior-free mechanism design.

(mechanisms should be good for any set of agent preferences, not just
given distributional assumptions)



The problem with priors

Prior assumption: the mechanism designer knows the distribution of
agent preferences.
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The problem with priors

Prior assumption: the mechanism designer knows the distribution of
agent preferences.

Where does prior come from:

• historical data

then using prior affects incentives of earlier transactions.
(e.g. Coase Conjecture)

• market analysis

accuracy depends on market size, auctions are for small markets.
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agent preferences.

Where does prior come from:

• historical data

then using prior affects incentives of earlier transactions.
(e.g. Coase Conjecture)

• market analysis

accuracy depends on market size, auctions are for small markets.

Must commit to use one mechanism in many settings (e.g., the
Internet).
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The problem with priors

Prior assumption: the mechanism designer knows the distribution of
agent preferences.

Where does prior come from:

• historical data

then using prior affects incentives of earlier transactions.
(e.g. Coase Conjecture)

• market analysis

accuracy depends on market size, auctions are for small markets.

Must commit to use one mechanism in many settings (e.g., the
Internet).

Question: can we design good auctions without knowledge of
prior-distribution?
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Resource augmentation

Approach 1: “resource” augmentation.
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Resource augmentation

Approach 1: “resource” augmentation.

Thm: for iid, regular, single-item auctions, the Vickrey auction on n + 1
bidders has more revenue than the optimal auction on n bidders.

[Bulow, Klemperer ’96]
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Resource augmentation

Approach 1: “resource” augmentation.

Thm: for iid, regular, single-item auctions, the Vickrey auction on n + 1
bidders has more revenue than the optimal auction on n bidders.

[Bulow, Klemperer ’96]

Discussion: [Dhangwatnotai, Roughgarden, Yan ’10]

• “recruit one more bidder” is prior-free strategy.

• “bicriteria” approximation result.

• conclusive: competition more important than optimization.
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Resource augmentation

Approach 1: “resource” augmentation.

Thm: for iid, regular, single-item auctions, the Vickrey auction on n + 1
bidders has more revenue than the optimal auction on n bidders.

[Bulow, Klemperer ’96]

Discussion: [Dhangwatnotai, Roughgarden, Yan ’10]

• “recruit one more bidder” is prior-free strategy.

• “bicriteria” approximation result.

• conclusive: competition more important than optimization.

• non-generic: e.g., for k-unit auctions, need k additional bidders.
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Special Case: n = 1

Special Case: for regular distribution, the Vickrey revenue from two
bidders is at least the optimal revenue from one bidder.
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Special Case: n = 1

Special Case: for regular distribution, the Vickrey revenue from two
bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]
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Special Case: for regular distribution, the Vickrey revenue from two
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Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

• each bidder in Vickrey views other bid as “random reserve”.
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• random reserve revenue ≥ 1
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Special Case: n = 1

Special Case: for regular distribution, the Vickrey revenue from two
bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

• each bidder in Vickrey views other bid as “random reserve”.

• Vickrey revenue = 2× random reserve revenue.

• random reserve revenue ≥ 1
2× optimal reserve revenue:

R(q)

0 1
0
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2× optimal reserve revenue:
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Special Case: n = 1

Special Case: for regular distribution, the Vickrey revenue from two
bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan ’10]

• each bidder in Vickrey views other bid as “random reserve”.

• Vickrey revenue = 2× random reserve revenue.

• random reserve revenue ≥ 1
2× optimal reserve revenue:

R(q)

0 1
0

• So Vickrey with two bidders ≥ optimal revenue from one bidder.
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Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?
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Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution,
post the monopoly price ϕ−1(0). [Myerson ’81]
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Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution,
post the monopoly price ϕ−1(0). [Myerson ’81]

Discussion:

• optimal,

• simple, but

• not prior-free
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Approximation via Single Sample

Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.
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Approximation via Single Sample

Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.

Thm: for iid, regular distributions, single sample auction on
(n + 1)-agents is 2-approx to optimal on n agents.

[Dhangwatnotai, Roughgarden, Yan ’10]
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Approximation via Single Sample

Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.

Thm: for iid, regular distributions, single sample auction on
(n + 1)-agents is 2-approx to optimal on n agents.

[Dhangwatnotai, Roughgarden, Yan ’10]
Proof: from geometric argument.
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Approximation via Single Sample

Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan ’10]

1. pick random agent i as sample.

2. offer all other agents price vi.

3. reject i.

Thm: for iid, regular distributions, single sample auction on
(n + 1)-agents is 2-approx to optimal on n agents.

[Dhangwatnotai, Roughgarden, Yan ’10]
Proof: from geometric argument.

Discussion:

• prior-free.

• conclusive, don’t need precise distribution, only need single sample
for approximation. (more samples can improve approximation
factor.)

• generic, applies to general settings.
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Average-case vs Worst-case

Note: prior-free auction cannot be optimal in every setting.
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Average-case vs Worst-case

Note: prior-free auction cannot be optimal in every setting.

Average Case Approximation: ∃A,∀F ∈ IID,

Ev∼F[A(v)] ≥ Ev∼F[OPTF(v)]
β

.
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Average-case vs Worst-case

Note: prior-free auction cannot be optimal in every setting.

Average Case Approximation: ∃A,∀F ∈ IID,

Ev∼F[A(v)] ≥ Ev∼F[OPTF(v)]
β

.

Worst Case Approximation: ∃A,∀v,

A(v) ≥
sup

F∈IID OPTF(v)

β
.
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Average-case vs Worst-case

Note: prior-free auction cannot be optimal in every setting.

Average Case Approximation: ∃A,∀F ∈ IID,

Ev∼F[A(v)] ≥ Ev∼F[OPTF(v)]
β

.

Worst Case Approximation: ∃A,∀v,

A(v) ≥
sup

F∈IID OPTF(v)

β
.

Notes:

• worst-case approximation implies average-case approximation.

• sup
F∈IID OPTF(v) is prior-free performance benchmark.

• for digital goods, prior-free benchmark = optimal posted price
revenue.
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Approximation via Random Sampling

Random Sampling Auction: (for digital goods)
[Goldberg, H, Wright ’01]

1. Randomly partition agents into two sets.

2. Compute optimal posted prices for each set.

3. Offer prices to opposite set.
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Approximation via Random Sampling

Random Sampling Auction: (for digital goods)
[Goldberg, H, Wright ’01]

1. Randomly partition agents into two sets.

2. Compute optimal posted prices for each set.

3. Offer prices to opposite set.

Thm: Random sampling auction is worst-case 4.68-approximation.∗

[Aleai, Malekian, Srinivasan ’09]
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Approximation via Random Sampling

Random Sampling Auction: (for digital goods)
[Goldberg, H, Wright ’01]

1. Randomly partition agents into two sets.

2. Compute optimal posted prices for each set.

3. Offer prices to opposite set.

Thm: Random sampling auction is worst-case 4.68-approximation.∗

[Aleai, Malekian, Srinivasan ’09]
Conjecture: Random sampling auction is worst-case 4-approximation.
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Approximation via Random Sampling

Random Sampling Auction: (for digital goods)
[Goldberg, H, Wright ’01]

1. Randomly partition agents into two sets.

2. Compute optimal posted prices for each set.

3. Offer prices to opposite set.

Thm: Random sampling auction is worst-case 4.68-approximation.∗

[Aleai, Malekian, Srinivasan ’09]
Conjecture: Random sampling auction is worst-case 4-approximation.

Discussion:

• conclusive, market analysis can be done “on the fly”

• worst-case is for n = 2.

• practical, bounds approach 1 in limit with n.

• generic, analysis extends beyond digital goods.
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Extensions

Prior-free results extend to limited supply, downward-closed settings,
non-identical distributions, other objectives, etc.

[citations omitted]

APPROXIMATION AND MECHANISM DESIGN – SEPTEMBER 3, 2010
30



Extensions

Prior-free results extend to limited supply, downward-closed settings,
non-identical distributions, other objectives, etc.

[citations omitted]

Open Questions:

• non-downward-closed settings?

• multi-dimensional settings?

• beyond the revelation principle?
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Conclusions

Conclusions:

1. Approximation predictive, descriptive, and conclusive.
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2. Key step for approximation: concise description of upper bound.
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Conclusions:
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2. Key step for approximation: concise description of upper bound.

3. Approximation mechanisms for multi-dimensional and prior-free
settings.
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Conclusions

Conclusions:

1. Approximation predictive, descriptive, and conclusive.

2. Key step for approximation: concise description of upper bound.

3. Approximation mechanisms for multi-dimensional and prior-free
settings.

Basic Open Question: attack economic impossibility w. approximation.
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