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Congestion Model

Congestion Model M = (N, F, X, (cf)rer)

> N ={1,...,n} finite set of players

> F ={1,..., m} finite set of facilities

> X = X;en Xi set of strategy profiles with X; C 2F
> Set of cost functions (cr)rer where ¢r : R>g — R



Weighted Congestion Game

Congestion model M = (N, F, X, (¢f)feF)
Vector of demands d = (d;)ien, di € Rso

Weighted Congestion Game

G= (N7X7 (Wi)ieN)
> private cost functions mi(x) = Y re,. dice(¢¢(x))
> load le(x) = Zien:rex di

Unweighted congestion game < d; =1 foralli e N
Singleton Congestion Game < |x;| =1 forall i € N, x; € X;



Definition: Pure Nash Equilibrium (PNE)

Definition
As strategy profile x is a pure Nash equilibrium (PNE) if no
player has an incentive to unilaterally change her decision:

mi(xi, x_;) < mi(y;, x_;) forall i € N, x;,y; € X;, and x_; € X_;



Unweighted Congestion Games (d; = 1)

> PNE exists (via exact potential) [Rosenthal, IGT '73]
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Singleton Weighted Congestion Games (|x;| = 1)

> non-decreasing cost functions, non-increasing cost
functions
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Matroid Weighted Congestion Games

> non-decreasing functions
» PNE exists [Ackermann et al., WINE '06]



Arbitrary Strategy Spaces

Affine Costs

> PNE exists (via exact potential) [Fotakis et al., ICALP 05]

Exponential costs

> PNE exist for cr(x) = exp(x) for all f € F
[Spirakis and Panagopoulou, JEA '06]

> PNE exist for cr(x) = ar exp(¢ x) + br for all f € F
[H, Klimm, Mé&hring, SAGT '09]

Counterexamples

> No PNE (2-players with demands d; = 1, d> = 2) [Libman &
Orda, TS '01] [Fotakis et al., ICALP '05] [Goemanns et al., FOCS '05]



Counterexamples in Single-Commodity Networks

Two Players with demands d; = 1,d, =2
Vi Vo
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Counterexamples in Single-Commodity Networks

Two Players with demands d; = 1,d, =2
Vi
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S t
Two-wise linear costs quadratic and linear costs
[Fotakis et al., ICALP '05] [Goemanns et al., FOCS '05]

2-player Shapley cost sharing games (c.(x) = ke/le(x)) always
have a PNE [Anshelevich et al., SICOMP '08]
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Definition

A set C of cost functions is consistent if every weighted
congestion game to a congestion model

M = (N, F, X, (cr)rer) with ¢r € C for all f € F admits a
PNE.

> Examples of consistent cost functions:
»C={c:Rsg—>R:c(l)=al+b,a,be R}
» Cy={c:Rsg —R:c(l)=ae? + b,a,bcR}



Necessary Condition: Monotonicity Lemma

Lemma (Monotonicity Lemma)

Let C be a set of continuous cost functions. If C is consistent,
then C contains only monotonic functions.

Even valid under the following restrictions

v

games with 2 players

games with 2 facilities

singleton games

games with identical cost functions on all facilities

symmetric games



Proof of the Monotonicity Lemma

> Consider game with N={1, 2},
F={f,g}, di=y—x and dy=x
> Player 1 prefers to be alone

> Player 2 prefers to share a
facility with Player 1

= no PNE
Game without PNE
. 4 e}
(f} xc(y) xc(x)
(y—x)c(y) (y—x)c(y—x)
xc(x) xc(y)
= [ (y—x)e(y)




Towards an Extended Monotonicity Lemma

. {f) s}

Game
S i e}
f X X
i} (y—x) (y—x)
g (y—x)




Towards an Extended Monotonicity Lemma




Towards an Extended Monotonicity Lemma

12 FuJ HUG
FUH X( + 32C2(X)) X( T 32C2(y))
(y—=x)( + a2c(y—x))| (y=x)( + a262(y))
JUG X( + 32C2(y)) X( + 32C2(X))
(y—=)( + a26(y))] (r—=>)( + a26(y—x))




Towards an Extended Monotonicity Lemma

> Consider cost function
c(l) = — a,6 (/) and
chose di =y — x, db = x
> Player 1 prefers to be alone
> Player 2 prefers to share

= no PNE
12 FuJ HUG
FUH x( + a263(x)) x( + ax62(y))
(y—x)( + a6 (y—x))| (y—x)( + a262(y))
UG x( + ax0(y)) x( + a263(x))
(y—x)( + axaa(y))| (y—x)( + a:6(y—x))




Integer 2-Hull

Definition (Integer 2-hull)

For a set C of cost functions we call

L’%(C) ={c:Rso =R | ¢c(x) = a1 c1(x) — ax &a(x),
a,a €N, c,0 € C}

the integer 2-hull of C.

Lemma (Extended Monotonicity Lemma 1)

Let C be a set of continous cost functions. If C is consistent
then L3(C) contains only monotonic functions.

> Even valid for games with 2 players.



Generalizing Extended Monotonicity Lemma 1

2 FuJ HUG

o @B - - | QOB =1+
v QP -1~ | GB® - -

> Introduce a third player with demand d; = b and a single
strategy X5 = {J U H}

> Take ¢; = &

> effective cost on F and G equals ¢;(x)

> effective cost on H and J equals c;(x + b)




Integer 3-Hull

Definition (Integer 3-hull)

For a set C of cost functions we call

L"E’\I(C) ={c:Rso—= R | ¢(x) = a1 c(x)—aa(x+b),
ai, a, be N,q € C}

the integer 3-hull of C.

Lemma (Extended Monotonicity Lemma 1)

Let C be a set of continous cost functions. If C is consistent
then L3,(C) contains only monotonic functions.

> Even valid for games with 3 players.



Our Results so far

Singleton 2-player weighted congestion games

C is consistent = C contains only monotonic functions

2-player weighted congestion games

C is consistent = L3(C) = {c | c(x) = arci(x) — axca(x)}
contains only monotonic functions

3-player weighted congestion games

C is consistent = L3(C) = {c | c(x) = arc1(x + b) — arci(x)}
contains only monotonic functions



Characterizing monotonicity of £5/(C)
L3(C) ={c| c(x) = arc1(x)—aca(x), a1,a2 € N, c1, 0 € C}

Lemma

Let C be a set of twice continuously differentiable and
monotonic functions. Then, L£3(C) contains only monotonic
increasing or decreasing functions iff for all ¢;, c; € C there are
a,b € R such that c;(x) = acy(x) + b for all x > 0.

Proof.

P

(9}

c1(x) — axeo(x)

a(x)—aaca(x)—ab

(%)
¢(x)

&(x) = (a1 — am)ci(x)

:31
:31

No change in sign of ¢’ = € is monotonic



Characterizing monotonicity of £3,(C)

Proof. (cont'd)

1. Show D(x) := det ( ;i,(();)) 2,(();)) ) =0 forall x>0.

D(xg) # 0 = D(x) # 0 for all x € (xo — €, X0 + €)
» Non-trivial solution of

a(x) o(x) ar(x) | _ 0
(cf(x) Cg(x))(@(x))—(_gg;)'

a1(x) =1, ax(x) continous = find x € (xg — €, xp + €)

with p /g = ax(x) € Q
» ¢ = qc — pca € L3(C) has strict local extremum in x

v

v



Characterizing monotonicity of £3,(C)

Proof. (cont'd).

2. Show D(x) =0forall x >0 = o(x)=ac+b
> If ¢f # 0 note that

D(x) =0 = (Cé(x)> =0

c1(x)

> Integration delivers cy(x) = ac; + b for a,b € R
> Glueing togesther intervals with ¢; = 0 and ¢} # 0
delivers the result




Characterizing 2-player Weighted Congestion Games

[H, Klimm, ICALP '10]

Theorem

Let C be a set of twice continously differentiable functions.
Then C is consistent w.r.t. 2-player weighted congestion
games iff the following holds
1. C contains only monotonic functions
2. for all ¢, c; € C there are constants a, b € R such that
c =ac+ b

The if-part follows from a generalization of [H, Kiimm, Méhring,
SAGT '09].



Characterizing monotonicity of £3,(C)

L3(C) = {c | c(x) = arci(x+b)—arci(x), a1, a, b€ N, ¢ €C}
[H, Klimm, ICALP '10]

Theorem

Let C be a set of twice continously differentiable functions.
Then, L£3.(C) contians only monotonic functions iff one of the
following holds

1. C contains only affine functions

2. C contains only functions of type c¢(x) = a.e®* + b, where
ac, b € R may depend on x while ¢ is independent of c.

The if-part follows from [Fotakis et al., ICALP '05], [H, Klimm, Méhring,
SAGT '09], [Spirakis and Panagopoulou, JEA '06].



Conclusion

Necessary conditions on consistency of costs

Strategy 2-player 3-player
Singleton monotonic monotonic
Arbitrary aff. transformations affine or exponential

If cost functions are strictly increasing and positive

Strategy 2-player 3-player
Single-commodity  aff. transformations [FIP < aff. or exp.]
Multi-commodity  aff. transformations affine or exponential

Red conditions are tight



