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Congestion Model

Congestion ModelM = (N , F ,X , (cf )f ∈F )

⊲ N = {1, . . . , n} finite set of players

⊲ F = {1, . . . ,m} finite set of facilities

⊲ X =
�

i∈N Xi set of strategy profiles with Xi ⊆ 2F

⊲ Set of cost functions (cf )f ∈F where cf : R≥0 → R



Weighted Congestion Game

Congestion modelM = (N, F ,X , (cf )f ∈F )
Vector of demands d = (di)i∈N , di ∈ R>0

Weighted Congestion Game

G = (N,X , (πi)i∈N)

⊲ private cost functions πi(x) =
∑

f ∈xi
dicf (ℓf (x))

⊲ load ℓf (x) =
∑

i∈N:f∈xi
di

Unweighted congestion game ⇔ di = 1 for all i ∈ N

Singleton Congestion Game ⇔ |xi | = 1 for all i ∈ N, xi ∈ Xi



Definition: Pure Nash Equilibrium (PNE)

Definition

As strategy profile x is a pure Nash equilibrium (PNE) if no
player has an incentive to unilaterally change her decision:

πi(xi , x−i) ≤ πi(yi , x−i) for all i ∈ N, xi , yi ∈ Xi , and x−i ∈ X−i



Previous Work

Unweighted Congestion Games (di = 1)

⊲ PNE exists (via exact potential) [Rosenthal, ĲGT ’73]
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Previous Work

Unweighted Congestion Games (di = 1)

⊲ PNE exists (via exact potential) [Rosenthal, ĲGT ’73]

Singleton Weighted Congestion Games (|xi | = 1)

⊲ non-decreasing cost functions, non-increasing cost
functions

⊲ PNE exists (via potential) [Fotakis et al., ICALP ’02] [Even-Dar et al.,

ICALP ’03] [Fabrikant et al., STOC ’04], [Rozenfeld & Tennenholz, WINE ’06]

Matroid Weighted Congestion Games

⊲ non-decreasing functions
◮ PNE exists [Ackermann et al., WINE ’06]



Arbitrary Strategy Spaces

Affine Costs

⊲ PNE exists (via exact potential) [Fotakis et al., ICALP ’05]

Exponential costs

⊲ PNE exist for cf (x) = exp(x) for all f ∈ F

[Spirakis and Panagopoulou, JEA ’06]

⊲ PNE exist for cf (x) = af exp(φ x) + bf for all f ∈ F

[H, Klimm, Möhring, SAGT ’09]

Counterexamples

⊲ No PNE (2-players with demands d1 = 1, d2 = 2) [Libman &

Orda, TS ’01] [Fotakis et al., ICALP ’05] [Goemanns et al., FOCS ’05]
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s

v1

v2

t
quadratic and linear costs
[Goemanns et al., FOCS ’05]

2-player Shapley cost sharing games (ce(x) = ke/ℓe(x)) always
have a PNE [Anshelevich et al., SICOMP ’08]
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Consistency

Definition

A set C of cost functions is consistent if every weighted
congestion game to a congestion model
M = (N, F ,X , (cf )f ∈F ) with cf ∈ C for all f ∈ F admits a
PNE.

⊲ Examples of consistent cost functions:
◮ C = {c : R≥0 → R : c(ℓ) = aℓ+ b, a, b ∈ R}
◮ Cφ = {c : R≥0 → R : c(ℓ) = aeφℓ + b, a, b ∈ R}



Necessary Condition: Monotonicity Lemma

Lemma (Monotonicity Lemma)

Let C be a set of continuous cost functions. If C is consistent,

then C contains only monotonic functions.

Even valid under the following restrictions

⊲ games with 2 players

⊲ games with 2 facilities

⊲ singleton games

⊲ games with identical cost functions on all facilities

⊲ symmetric games



Proof of the Monotonicity Lemma

x yy−x

•
• •

⊲ Consider game with N ={1, 2},
F ={f , g}, d1 =y−x and d2 =x

⊲ Player 1 prefers to be alone

⊲ Player 2 prefers to share a
facility with Player 1

⇒ no PNE

Game without PNE
2

1
{f } {g}

{f }
xc(y)

(y−x)c(y)

xc(x)

(y−x)c(y−x)

{g}
xc(x)

(y−x)c(y−x)

xc(y)

(y−x)c(y)



Towards an Extended Monotonicity Lemma

Model
2

1
{f } {g}

{f } f

{g} g

Game
2

1
{f } {g}

{f }
xc(y)

(y−x)c(y)

xc(x)

(y−x)c(y−x)

{g}
xc(x)

(y−x)c(y−x)

xc(y)

(y−x)c(y)



Towards an Extended Monotonicity Lemma

Model
2

1
{f , j} {h, g}

{f , h} f c1 h c2

{j , g} j c2 g c1

Game

2

1
{f , j} {h, g}

{f ,h}
x(c1(y) + c2(x))

(y−x)(c1(y) + c2(y−x))

x(c1(x) + c2(y))

(y−x)(c1(y−x) + c2(y))

{j ,g}
x(c1(x) + c2(y))

(y−x)(c1(y−x) + c2(y))

x(c1(y) + c2(x))

(y−x)(c1(y) + c2(y−x))



Towards an Extended Monotonicity Lemma

Model
2

1
F∪J H∪G

F∪H F c1, |F | = a1 H c2, |H| = a2

J∪G J c2, |J | = a2 G c1, |G | = a1

Game

2

1
F∪J H∪G

F∪H
x(a1c1(y) + a2c2(x))

(y−x)(a1c1(y) + a2c2(y−x))

x(a1c1(x) + a2c2(y))

(y−x)(a1c1(y−x) + a2c2(y))

J∪G
x(a1c1(x) + a2c2(y))

(y−x)(a1c1(y−x) + a2c2(y))

x(a1c1(y) + a2c2(x))

(y−x)(a1c1(y) + a2c2(y−x))



Towards an Extended Monotonicity Lemma

x yy−x

•
• •

c ⊲ Consider cost function
c(ℓ) = a1c1(ℓ)− a2c2(ℓ) and
chose d1 = y − x , d2 = x

⊲ Player 1 prefers to be alone

⊲ Player 2 prefers to share

⇒ no PNE

Game

2

1
F∪J H∪G

F∪H
x(a1c1(y) + a2c2(x))

(y−x)(a1c1(y) + a2c2(y−x))

x(a1c1(x) + a2c2(y))

(y−x)(a1c1(y−x) + a2c2(y))

J∪G
x(a1c1(x) + a2c2(y))

(y−x)(a1c1(y−x) + a2c2(y))

x(a1c1(y) + a2c2(x))

(y−x)(a1c1(y) + a2c2(y−x))



Integer 2-Hull

Definition (Integer 2-hull)

For a set C of cost functions we call

L2N(C) = {c : R≥0 → R | c(x) = a1 c1(x)− a2 c2(x),

a1, a2 ∈ N, c1, c2 ∈ C}.

the integer 2-hull of C.

Lemma (Extended Monotonicity Lemma 1)

Let C be a set of continous cost functions. If C is consistent

then L2N(C) contains only monotonic functions.

⊲ Even valid for games with 2 players.



Generalizing Extended Monotonicity Lemma 1

Model
2

1
F∪J H∪G

F∪H F c1, |F | = a1 H c2, |H| = a2

J∪G J c2, |J | = a2 G c1, |G | = a1

⊲ Introduce a third player with demand d3 = b and a single
strategy X3 = {J ∪ H}

⊲ Take c1 = c2

⊲ effective cost on F and G equals c1(x)

⊲ effective cost on H and J equals c1(x + b)



Integer 3-Hull

Definition (Integer 3-hull)

For a set C of cost functions we call

L3N(C) = {c : R≥0 → R | c(x) = a1 c1(x)− a2 c1(x + b),

a1, a2, b ∈ N, c1 ∈ C}.

the integer 3-hull of C.

Lemma (Extended Monotonicity Lemma 1)

Let C be a set of continous cost functions. If C is consistent

then L3N(C) contains only monotonic functions.

⊲ Even valid for games with 3 players.



Our Results so far

Singleton 2-player weighted congestion games

C is consistent ⇒ C contains only monotonic functions

2-player weighted congestion games

C is consistent ⇒ L2N(C) = {c | c(x) = a1c1(x)− a2c2(x)}
contains only monotonic functions

3-player weighted congestion games

C is consistent ⇒ L3N(C) = {c | c(x) = a1c1(x + b)− a2c1(x)}
contains only monotonic functions



Characterizing monotonicity of L2N(C)
L2N(C) = {c | c(x) = a1c1(x)−a2c2(x), a1, a2 ∈ N, c1, c2 ∈ C}

Lemma

Let C be a set of twice continuously differentiable and

monotonic functions. Then, L2N(C) contains only monotonic

increasing or decreasing functions iff for all c1, c2 ∈ C there are

a, b ∈ R such that c2(x) = ac1(x) + b for all x ≥ 0.

Proof.

“⇐ “ c̃(x) = a1c1(x)− a2c2(x)

c̃(x) = a1c1(x)− a a2 c1(x)− ab

c̃ ′(x) = (a1 − a a2)c
′
1(x)

No change in sign of c̃ ′ ⇒ c̃ is monotonic



Characterizing monotonicity of L2N(C)

“⇐ “
Proof. (cont’d)

1. Show D(x) := det

(

c ′1(x) c ′2(x)
c ′′1 (x) c ′′2 (x)

)

= 0 for all x ≥ 0.

◮ D(x0) , 0 ⇒ D(x) , 0 for all x ∈ (x0 − ǫ, x0 + ǫ)
◮ Non-trivial solution of

(

c ′1(x) c ′2(x)
c ′′1 (x) c ′′2 (x)

)(

a1(x)
a2(x)

)

=

(

0

−D(x)
c′

2
(x)

)

.

◮ a1(x) = 1, a2(x) continous ⇒ find x ∈ (x0 − ǫ, x0 + ǫ)
with p / q = a2(x) ∈ Q

◮ c = qc1 − pc2 ∈ L
2N(C) has strict local extremum in x



Characterizing monotonicity of L2N(C)

“⇐ “
Proof. (cont’d).

2. Show D(x) = 0 for all x ≥ 0 ⇒ c2(x) = ac1 + b

◮ If c ′1 , 0 note that

D(x) = 0 ⇒

(

c ′2(x)

c ′1(x)

)′

= 0

◮ Integration delivers c2(x) = ac1 + b for a, b ∈ R
◮ Glueing togesther intervals with c ′1 = 0 and c ′1 , 0

delivers the result

�



Characterizing 2-player Weighted Congestion Games

[H, Klimm, ICALP ’10]

Theorem

Let C be a set of twice continously differentiable functions.

Then C is consistent w.r.t. 2-player weighted congestion

games iff the following holds

1. C contains only monotonic functions

2. for all c1, c2 ∈ C there are constants a, b ∈ R such that

c2 = ac1 + b

The if-part follows from a generalization of [H, Klimm, Möhring,

SAGT ’09].



Characterizing monotonicity of L3N(C)

L3N(C) = {c | c(x) = a1c1(x+b)−a2c1(x), a1, a2, b ∈ N, c1 ∈ C}

[H, Klimm, ICALP ’10]

Theorem

Let C be a set of twice continously differentiable functions.

Then, L3N(C) contians only monotonic functions iff one of the

following holds

1. C contains only affine functions

2. C contains only functions of type c(x) = aceφx + bc where

ac , bc ∈ R may depend on x while φ is independent of c.

The if-part follows from [Fotakis et al., ICALP ’05], [H, Klimm, Möhring,

SAGT ’09], [Spirakis and Panagopoulou, JEA ’06].



Conclusion

Necessary conditions on consistency of costs

Strategy 2-player 3-player

Singleton monotonic monotonic
Arbitrary aff. transformations affine or exponential

If cost functions are strictly increasing and positive

Strategy 2-player 3-player

Single-commodity aff. transformations [FIP ⇔ aff. or exp.]
Multi-commodity aff. transformations affine or exponential

Red conditions are tight


