Pure Nash Equilibria in Weighted Congestion Games

<u>Tobias Harks</u>, Max Klimm Technical University Berlin harks@math.tu-berlin.de

Congestion Model $\mathcal{M} = (N, F, X, (c_f)_{f \in F})$

N = {1,..., n} finite set of players
F = {1,..., m} finite set of facilities
X = X_{i∈N} X_i set of strategy profiles with X_i ⊆ 2^F
Set of cost functions (c_f)_{f∈F} where c_f : ℝ_{>0} → ℝ

Weighted Congestion Game

Congestion model $\mathcal{M} = (N, F, X, (c_f)_{f \in F})$ Vector of demands $d = (d_i)_{i \in N}, d_i \in \mathbb{R}_{>0}$

Weighted Congestion Game

$$G = (N, X, (\pi_i)_{i \in N})$$

Unweighted congestion game $\Leftrightarrow d_i = 1$ for all $i \in N$ Singleton Congestion Game $\Leftrightarrow |x_i| = 1$ for all $i \in N$, $x_i \in X_i$

Definition: Pure Nash Equilibrium (PNE)

Definition

As strategy profile x is a pure Nash equilibrium (PNE) if no player has an incentive to unilaterally change her decision:

 $\pi_i(x_i, x_{-i}) \leq \pi_i(y_i, x_{-i})$ for all $i \in N, x_i, y_i \in X_i$, and $x_{-i} \in X_{-i}$

Previous Work

Unweighted Congestion Games $(d_i = 1)$

▷ PNE exists (via exact potential) [Rosenthal, IJGT '73]

Previous Work

Unweighted Congestion Games $(d_i = 1)$

▷ PNE exists (via exact potential) [Rosenthal, IJGT '73]

Singleton Weighted Congestion Games $(|x_i| = 1)$

- non-decreasing cost functions, non-increasing cost functions
- PNE exists (via potential) [Fotakis et al., ICALP '02] [Even-Dar et al., ICALP '03] [Fabrikant et al., STOC '04], [Rozenfeld & Tennenholz, WINE '06]

Previous Work

Unweighted Congestion Games $(d_i = 1)$

▷ PNE exists (via exact potential) [Rosenthal, IJGT '73]

Singleton Weighted Congestion Games $(|x_i| = 1)$

- non-decreasing cost functions, non-increasing cost functions
- PNE exists (via potential) [Fotakis et al., ICALP '02] [Even-Dar et al., ICALP '03] [Fabrikant et al., STOC '04], [Rozenfeld & Tennenholz, WINE '06]

Matroid Weighted Congestion Games

- non-decreasing functions
 - PNE exists [Ackermann et al., WINE '06]

Arbitrary Strategy Spaces

Affine Costs

▷ PNE exists (via exact potential) [Fotakis et al., ICALP '05]

Exponential costs

 \triangleright PNE exist for $c_f(x) = \exp(x)$ for all $f \in F$

[Spirakis and Panagopoulou, JEA '06]

 \triangleright PNE exist for $c_f(x) = a_f \exp(\phi x) + b_f$ for all $f \in F$

[H, Klimm, Möhring, SAGT '09]

Counterexamples

▷ No PNE (2-players with demands $d_1 = 1, d_2 = 2$) [Libman & Orda, TS '01] [Fotakis et al., ICALP '05] [Goemanns et al., FOCS '05]

Counterexamples in Single-Commodity Networks

Counterexamples in Single-Commodity Networks

have a PNE [Anshelevich et al., SICOMP '08]

Definition

A set C of cost functions is consistent if every weighted congestion game to a congestion model $\mathcal{M} = (N, F, X, (c_f)_{f \in F})$ with $c_f \in C$ for all $f \in F$ admits a PNE.

Definition

A set C of cost functions is consistent if every weighted congestion game to a congestion model $\mathcal{M} = (N, F, X, (c_f)_{f \in F})$ with $c_f \in C$ for all $f \in F$ admits a PNE.

▷ Examples of consistent cost functions:

$$\begin{array}{l} \blacktriangleright \ \mathcal{C} = \{ c : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R} : c(\ell) = a\ell + b, a, b \in \mathbb{R} \} \\ \blacktriangleright \ \mathcal{C}_{\phi} = \{ c : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R} : c(\ell) = ae^{\phi\ell} + b, a, b \in \mathbb{R} \} \end{array}$$

Necessary Condition: Monotonicity Lemma

Lemma (Monotonicity Lemma)

Let C be a set of continuous cost functions. If C is consistent, then C contains only monotonic functions.

Even valid under the following restrictions

- ▷ games with 2 players
- p games with 2 facilities
- singleton games
- ▷ games with identical cost functions on all facilities
- symmetric games

Proof of the Monotonicity Lemma

 $\triangleright \text{ Consider game with } N = \{1, 2\},\ F = \{f, g\}, \ d_1 = y - x \text{ and } d_2 = x$

- ▷ Player 1 prefers to be alone
- Player 2 prefers to share a facility with Player 1

 \Rightarrow no PNE

Game

Integer 2-Hull

Definition (Integer 2-hull)

For a set $\ensuremath{\mathcal{C}}$ of cost functions we call

$$\mathcal{L}^2_{\mathbb{N}}(\mathcal{C}) = \{ c: \mathbb{R}_{\geq 0}
ightarrow \mathbb{R} \hspace{0.2cm} | \hspace{0.2cm} c(x) = a_1 \, c_1(x) - a_2 \, c_2(x), \ a_1, a_2 \in \mathbb{N}, c_1, c_2 \in \mathcal{C} \}.$$

the integer 2-hull of C.

Lemma (Extended Monotonicity Lemma 1)

Let C be a set of continous cost functions. If C is consistent then $\mathcal{L}^2_{\mathbb{N}}(\mathcal{C})$ contains only monotonic functions.

▷ Even valid for games with 2 players.

Generalizing Extended Monotonicity Lemma 1

- ▷ Introduce a third player with demand d₃ = b and a single strategy X₃ = {J ∪ H}
- ▷ Take $c_1 = c_2$
- ▷ effective cost on *F* and *G* equals $c_1(x)$
- ▷ effective cost on *H* and *J* equals $c_1(x + b)$

Integer 3-Hull

Definition (Integer 3-hull)

For a set $\ensuremath{\mathcal{C}}$ of cost functions we call

$$\mathcal{L}^3_{\mathbb{N}}(\mathcal{C}) = \{ c: \mathbb{R}_{\geq 0} o \mathbb{R} \mid c(x) = a_1 c_1(x) - a_2 c_1(x+b), \ a_1, a_2, b \in \mathbb{N}, c_1 \in \mathcal{C} \}.$$

the integer 3-hull of C.

Lemma (Extended Monotonicity Lemma 1)

Let C be a set of continous cost functions. If C is consistent then $\mathcal{L}^3_{\mathbb{N}}(C)$ contains only monotonic functions.

▷ Even valid for games with 3 players.

Our Results so far

Singleton 2-player weighted congestion games

 $\mathcal C$ is consistent $\Rightarrow \mathcal C$ contains only monotonic functions

2-player weighted congestion games

C is consistent $\Rightarrow \mathcal{L}^2_{\mathbb{N}}(C) = \{c \mid c(x) = a_1c_1(x) - a_2c_2(x)\}$ contains only monotonic functions

3-player weighted congestion games

C is consistent $\Rightarrow \mathcal{L}^3_{\mathbb{N}}(C) = \{c \mid c(x) = a_1c_1(x+b) - a_2c_1(x)\}$ contains only monotonic functions

Characterizing monotonicity of $\mathcal{L}^2_{\mathbb{N}}(\mathcal{C})$

$$\mathcal{L}^2_{\mathbb{N}}(\mathcal{C}) = \{ c \mid c(x) = a_1c_1(x) - a_2c_2(x), \ a_1, a_2 \in \mathbb{N}, c_1, c_2 \in \mathcal{C} \}$$

Lemma

Let C be a set of twice continuously differentiable and monotonic functions. Then, $\mathcal{L}^2_{\mathbb{N}}(C)$ contains only monotonic increasing or decreasing functions iff for all $c_1, c_2 \in C$ there are $a, b \in \mathbb{R}$ such that $c_2(x) = ac_1(x) + b$ for all $x \ge 0$.

Proof.

"
$$\Leftarrow$$
 " $\tilde{c}(x) = a_1c_1(x) - a_2c_2(x)$
 $\tilde{c}(x) = a_1c_1(x) - a a_2 c_1(x) - ab$
 $\tilde{c}'(x) = (a_1 - a a_2)c_1'(x)$

No change in sign of $\tilde{c}' \Rightarrow \tilde{c}$ is monotonic

Characterizing monotonicity of $\mathcal{L}^2_{\mathbb{N}}(\mathcal{C})$

Proof. (cont'd)

1. Show
$$D(x) := \det \begin{pmatrix} c'_1(x) & c'_2(x) \\ c''_1(x) & c''_2(x) \end{pmatrix} = 0$$
 for all $x \ge 0$.

•
$$D(x_0) \neq 0 \Rightarrow D(x) \neq 0$$
 for all $x \in (x_0 - \epsilon, x_0 + \epsilon)$

Non-trivial solution of

$$\left(\begin{array}{cc}c_1'(x) & c_2'(x)\\c_1''(x) & c_2''(x)\end{array}\right)\left(\begin{array}{c}a_1(x)\\a_2(x)\end{array}\right) = \left(\begin{array}{c}0\\-\frac{D(x)}{c_2'(x)}\end{array}\right).$$

- ▶ $a_1(x) = 1$, $a_2(x)$ continous \Rightarrow find $x \in (x_0 \epsilon, x_0 + \epsilon)$ with $p / q = a_2(x) \in \mathbb{Q}$
- ▶ $c = qc_1 pc_2 \in \mathcal{L}^2_{\mathbb{N}}(\mathcal{C})$ has strict local extremum in x

Characterizing monotonicity of $\mathcal{L}^2_{\mathbb{N}}(\mathcal{C})$

Proof. (cont'd).

2. Show D(x) = 0 for all $x \ge 0 \implies c_2(x) = ac_1 + b$ \blacktriangleright If $c'_1 \ne 0$ note that

$$D(x) = 0 \qquad \Rightarrow \qquad \left(\frac{c'_2(x)}{c'_1(x)}\right)' = 0$$

- Integration delivers $c_2(x) = ac_1 + b$ for $a, b \in \mathbb{R}$
- Glueing togesther intervals with $c_1' = 0$ and $c_1' \neq 0$ delivers the result

[H, Klimm, ICALP '10]

Theorem

Let C be a set of twice continously differentiable functions. Then C is consistent w.r.t. 2-player weighted congestion games iff the following holds

- $1.\ \mathcal{C}$ contains only monotonic functions
- 2. for all $c_1, c_2 \in C$ there are constants $a, b \in \mathbb{R}$ such that $c_2 = ac_1 + b$

The if-part follows from a generalization of [H, Klimm, Möhring, SAGT '09].

Characterizing monotonicity of $\mathcal{L}^3_{\mathbb{N}}(\mathcal{C})$

$$\mathcal{L}^3_{\mathbb{N}}(\mathcal{C})=\{c\mid c(x)=a_1c_1(x{+}b){-}a_2c_1(x),\;a_1,a_2,b\in\mathbb{N},c_1\in\mathcal{C}\}$$

[H, Klimm, ICALP '10]

Theorem

Let C be a set of twice continously differentiable functions. Then, $\mathcal{L}^3_{\mathbb{N}}(C)$ contians only monotonic functions iff one of the following holds

- 1. C contains only affine functions
- 2. C contains only functions of type $c(x) = a_c e^{\phi x} + b_c$ where $a_c, b_c \in \mathbb{R}$ may depend on x while ϕ is independent of c.

The if-part follows from [Fotakis et al., ICALP '05], [H, Klimm, Möhring, SAGT '09], [Spirakis and Panagopoulou, JEA '06].

Conclusion

Necessary conditions on consistency of costs

Strategy	2-player	3-player
Singleton	monotonic	monotonic
Arbitrary	aff. transformations	affine or exponential

If cost functions are strictly increasing and positive

Strategy	2-player	3-player
Single-commodity	aff. transformations	$[FIP \Leftrightarrow aff. \text{ or } exp.]$
Multi-commodity	aff. transformations	affine or exponential

Red conditions are tight