Pricing Lotteries

Patrick Briest

Shuchi Chawla Robert Kleinberg Matt Weinberg

Workshop on Advances in Algorithmic Game Theory.
CWI,Amsterdam, 09/03/20l0.

Randomness is a useful resource ...

... in algorithm design.
... in market design.

But how useful is it?

Unit-Demand Envy-Free Pricing

- Seller (monopolist) has unlimited supply of n types of goods.
- Consumer i wants to buy a single good, has value $v_{i j}$ for good j. $(i=1, \ldots, m)$.
- Seller posts price vector $\left(p_{j}\right)_{j=1, \ldots, n}$.
- Each consumer chooses one good (or none) to maximize $v_{i j}-p_{j}$ ("utility"). Consumer pays p_{j}.
- Compute profit-maximizing prices.

Distributional Version

Economist's version of the problem: instead of a discrete set of m consumer types, one is given a distribution over consumers.

Computational Results

- There is an efficient algorithm with approximation ratio n, e.g. single-price algorithm. [Guruswami et al. '05]
- For product distributions (i.e. components of the valuation vector are independent) there is a polynomial-time 3-approximation. [Chawla,Hartline,Kleinberg '07]
- $\Omega\left(n^{\varepsilon}\right)$-hardness of approx. if $\exists \delta$ s.t. $\mathrm{NP} \nsubseteq \operatorname{BPTIME}\left(2^{\mathcal{O}\left(n^{\delta}\right)}\right)$. [B. '08]

Lotteries

- Change the pricing problem: instead of just selling items, you can also sell "lotteries": distributions over items.
- Lottery is given by $\left(p, \lambda_{1}, \ldots, \lambda_{n}\right), p=$ price, $\lambda=$ vector of probabilities. $\left(\sum \lambda_{i} \leq 1\right)$.
- Consumer's utility is $\lambda \cdot v-p$. (Expected value of random sample, minus price.)

Do lotteries help?

Riley \& Zeckhauser (I983): With just one item type, randomization doesn't help. Can always maximize profit using one fixed offer.

The Single-Item Case

Given $\left\{\left(p_{i}, \lambda_{i}\right)\right\}$ with $0=p_{0}<p_{1}<\cdots<p_{k}$, a consumer prefers $\left(p_{i}, \lambda_{i}\right)$ to its predecessor and successor only if

$$
\begin{aligned}
& \lambda_{i} v-p_{i} \geq \lambda_{i-1} v-p_{i-1} \\
& \lambda_{i} v-p_{i} \geq \lambda_{i+1} v-p_{i+1}
\end{aligned}
$$

or, rearranging:

$$
v \in\left[\frac{p_{i}-p_{i-1}}{\lambda_{i}-\lambda_{i-1}}, \frac{p_{i+1}-p_{i}}{\lambda_{i+1}-\lambda_{i}}\right]
$$

Fix a consumer buying lottery i at price p_{i}.

The Single-Item Case

Setting price $\frac{p_{j}-p_{j-1}}{\lambda_{j}-\lambda_{j-1}}$ with probability $\left(\lambda_{j}-\lambda_{j-1}\right)$ yields an expected payment of:

$$
\sum_{j<i}\left(\lambda_{j}-\lambda_{j-1}\right) \frac{p_{j}-p_{j-1}}{\lambda_{j}-\lambda_{j-1}}=\sum_{j<i}\left(p_{j}-p_{j-1}\right)=p_{i}
$$

Do lotteries help?

For multiple item types, some similar argument should work...

Do lotteries help?

- If goods are substitutes, lotteries can improve profit. [Thanassoulis, 2004; Manelli \& Vincent, 2006]
- Thanassoulis example:

$$
\begin{aligned}
& v_{1}=\text { value for Hilton } \\
& v_{2}=\text { value for Hyatt }
\end{aligned}
$$

Independent, uniformly distributed on [200,250].
v_{2}

Do lotteries help?

- Price vector $\left(p_{1,}, p_{2}\right)$ divides the type space into 3 regions.
- Optimizing over $\left(p_{1}, p_{2}\right)$ we find that profit is maximized at $p_{1}=p_{2}=w$.
- Now introduce lottery (w- $\delta, 0.5,0.5$).
- For small enough δ, profit

Do lotteries help?

> Proposition 9. Suppose consumers are uniformly distributed on a square $[a, a+1]^{2}$ with a>1 and the seller has two symmetric substitutable goods to sell with marginal costs normalised to 0 . The fully optimal selling strategy is to use take it or leave it prices in combination with the lottery $\left(\frac{1}{2}, \frac{1}{2}\right)$ only.
> Numerical Proof. This proposition is substantiated through a large number of numerical optimisations with different grid sizes and different supports, $[a, a+1]^{2}$. I have run this experiment for $a \in\{0,1,2,3,5,10,20,50\}$ and have found that the proposition holds in all of these cases (Fig. 3$)$.
> We note that the above proof is numerical and so does not constitute an analytical proof. ${ }^{21}$ Such proofs would be hard to come by due to the large number of constraints active on candidate surplus functions $v(\cdot)$. It is worth mentioning that the profit gain from the fully optimal sales strategy as compared to the best tioli prices is very modest: at best of the order of a single percentage point.
(From Thanassoulis, J. Economic Theory, 2004)
\rightarrow How big can the percentage gain be?
Is it computationally hard to find optimal lotteries?

Quantifying the gain

> When $n=2$, any system of lotteries (each with total probability 1 of allocating an item) is 3-approximated by pure item pricing.

Randomized rounding + geometric arguments.

For multiple item types, some similar argument should work...

Quantifying the gain

For any $n \geq 4$, the gap between the optimal item pricing and lottery pricing revenue cannot be bounded in terms of the number of item types.

Geometric argument: vector packing.

Our guiding questions

How big a percentage gain can one get from using lottery pricing?

Unbounded when selling at least 4 item types.
Is it computationally hard to find optimal lotteries?

How is the input specified?

Computing Lotteries

- Assume input specifies a distribution μ over m type vectors.
max. $\sum_{i=1}^{m} \mu_{i} p_{i}$
- Let $\left(p_{i}, q_{i j}\right)$ be the preferred lottery of consumer type i.

$$
\sum_{j=1}^{n} q_{i j} v_{i j}-p_{i} \geq 0
$$

- The LP to the right describes the optimal

$$
\text { s.t. } \quad \sum_{j=1}^{n} q_{i j} \leq 1
$$

$\sum_{j=1}^{n} q_{i j} v_{i j}-p_{i} \geq \sum_{j=1}^{n} q_{k j} v_{i j}-p_{k} \quad \forall i, k$ system of lotteries.

Our guiding questions

How big a percentage gain can one get from using lottery pricing?

Unbounded when selling at least 4 item types.
Is it computationally hard to find optimal lotteries?

No, it's easy, unlike the case of item pricing.

... for this

- A single item, a single consumer with value $v=1$.
- Offer two lotteries:

$$
\begin{array}{lll}
L_{1}: & \lambda=1 & p=1 / 2 \\
L_{2}: & \lambda=1 / 2 & p=\varepsilon
\end{array}
$$

- What to buy if disposal is free...?

$$
\operatorname{util}\left(k \times L_{2}\right)=\left(1-2^{-k}\right)-k \varepsilon
$$

The "Buy Many" Model

Theorem: In the "buy many" model:
I. The optimal item pricing approximates the optimal lottery pricing within $O(\log n)$.
2. There exist consumer distributions for which this factor cannot be improved.
3. Optimal lottery pricing inherits the same approximation hardness as envy-free item pricing, up to a $O(\log n)$ factor.

The uniform case

First assume everyone has: $\quad \operatorname{Pr}$ (receiving i)

- A set S of desired items.
- A value v for items in S.

Suppose some lottery with price p_{i} offers item i with probability at least $1 / n$.

$$
\text { Key insight: Someone who wants } i \text { and }
$$ spends $k \cdot n \cdot p_{i}$ has value $\sim e^{k \cdot} \cdot n \cdot p_{i}$.

How to round lotteries

- Let $\Lambda_{\text {opt }}$ be the optimal set of lotteries.
- Let $b_{i}=$ price of cheapest lottery with $\operatorname{Pr}(i)>1 /(2 n)$ $=$ "base price of item i "
- Output price vector $r \cdot\left(b_{1}, \ldots, b_{n}\right)$
- $r=$ random power of e.
- First $\ln (n)$ powers have probability $\propto 1 / \ln (n)$.
- $r=e^{\ln (n)+k} \sim e^{k \cdot n}$ has probability $\propto e^{-k}$.

Analysis

- Fix a consumer of type (v, S). Assume she buys a lottery with $\operatorname{Pr}(S)>1 / 2$ and cost q.
- Let i be the item in S with cheapest base price.
- Given item prices $r\left(b_{1}, \ldots, b_{n}\right)$ for any value of r, this consumer will purchase item i or nothing at all!

In general...

- Consumers may have different nonzero values for different items.
- Analysis is too lengthy for this talk.
- Main problem: A consumer chooses to buy different items as you scale up the prices.
- Solution: Carefully organize these different choices into a telescoping sum.

O(logn) is optimal

To find consumer distribution where lottery pricing improves item pricing by $\Omega(\log n)$:

- Consumers must prefer their "intended lottery" to all bundles of cheaper ones. Type vectors must be nearly orthogonal.
- Geometry to the rescue once again, but this time the geometry of degree-2 curves in the affine plane over a finite field.
- Bounding item pricing revenue is tricky.
 Can prove existence of bad instance via the probabilistic method.

Applications \& Open Problems

- Revenue-maximizing auction mechanisms via random sampling [Balcan,Blum,Hartline,Mansour '05]:

- Bundle-pricing as done on, e.g., hotwire.com: lottery tickets' "probability distributions" are non-public. [B,Röglin 'I0]
- Randomness in Multi-Dimensional Mechanism Design

