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ABSTRACT

Image similarity models characterize images as points
in high-dimensional feature spaces. Each point is rep-
resented by a combination of distinct features, such
as brightness, color histograms or texture character-
istics of the image, etc. For the design and tuning of
features, and thus the effectiveness of the image simi-
larity model, it is important to understand the inter-
relations of individual features and the implications
on the structure of the feature space.

In this paper, we discuss an interactive visualization
tool for the exploration of multidimensional feature
spaces. Our tool uses a graph as an intermediate
representation of the points in the feature space. A
mass spring algorithm is used to layout the graph in
a 2D space in which arrangements of similar images
are attracted to each other and dissimilar images are
repelled.

The emphasis of the visualization tool is on interac-
tion: users may influence the layout by interactively
scaling dimensions of the feature space. In this way,
the user can explore how a feature behaves in relation
to other features.

1. INTRODUCTION

Visual information retrieval systems allow images to
be retrieved from data repositories subject to a user
defined query. Although the preferred mode of query-
ing an image is semantic, queries are usually based on
syntactic features of the image (such as color, tex-
ture and object shape). The discrepancy that re-
sults from using syntactic features to satisfy seman-
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tic queries causes a basic problem with the traditional
query /response style of interaction. In addition, syn-
tactic features are context sensitive in that a feature
may successfully be used in one context, but can be
inadequate in a different context. Hence, it depends
on the image set which feature (or combination of fea-
tures) is most useful for a search.

Image similarity models for visual information re-
trieval are a well studied subject. Such models usually
represent an image as a point in a multidimensional
feature space where similarity of two images is ex-
pressed by the distance between their points in the
feature space. A larger similarity/dissimilarity cor-
responds to a smaller/larger distance of the points.
Traditionally, image retrieval systems return a list of
images, sorted by similarity to the query image. This
list is then presented to the user as a list of thumb-
nail images. Unfortunately, such a presentation can
be disorienting since relationships between the images
of the answer set are largely ignored and only the sim-
ilarity to the query image is assessed. More appropri-
ate would be a presentation of the multidimensional
space where the similarity relationships of all images
in the vicinity of the query image, i.e. the answer set,
are preserved and presented in a way that is easy and
intuitive to grasp for the user.

In this paper, we represent the multidimensional fea-
ture space of images with a graph. A vertex in the
graph represents a point in the space, while edges rep-
resent similarity relationships between images. The
graph is displayed in such a way that vertices with
strong similarities are attracted to each other and dis-
similar vertices are repelled. The advantage of this
presentation is that it gives a global overview of points
in the feature space as well as similarity relations
among points. In addition, the method allows a user
to interactively scale each dimension of the feature
space. By interactively scaling a dimension, the user
can explore how a feature behaves in relation to other
features.



The focus of our research is not to develop interfaces
for end users of visual information retrieval systems.
Rather, we are developing a framework in which fea-
ture developers can experiment with features on wide
varieties of image sets. Our framework allows devel-
opers to gain insight into the weak and strong points
of an individual feature, as well as insight into com-
binations of features. We believe that interactive in-
terfaces, in which developers continuously control one
or more dimensions of the feature space, are very in-
tuitive for understanding the effect that features have
on the underlying similarity model.

The remainder of this paper is organized as follows:
After reviewing related work, in Section 3, we re-
view the building blocks of our system. In Section 4
we present experimental results obtained with a real-
world data set, detailing different scaling effects. We
discuss possibilities and limitations of application of
our system in Section 5 and present our conclusions
in Section 6.

2. RELATED WORK

User interfaces to visual information retrieval systems
have gained much attention recently, see e.g. [1, 2].
Research is underway in defining new ways of repre-
senting the content of visual archives and the paths
followed during a retrieval session. In retrieving vi-
sual information, high-level semantic concepts are of-
ten used together with perceptual features in a query.

Mass-spring algorithms are well known for graph lay-
out, [3, 4, 5]. For example, Gross et al. developed a
mass-spring based system that in which a similarity
metric is quantified for objects in financial applica-
tions. This similarity metric drives the spring stiff-
ness parameters of the mass-spring system which, in
its equilibrium state, will reveal multidimensional re-
lations and adjacency in terms of spatial neighbor-
hoods.

Given a set of n objects in a K-dimensional space
and a dissimilarity measure between objects, Multi-
dimensional scaling (MDS) computes a configuration
of points in a low-dimensional Euclidean space so that
the Euclidean distances between two points match the
original dissimilarities between the corresponding ob-
jects as precise as possible, [6]. The MDS procedure
is realized by applying a least-squares technique to an
objective function that penalizes the overall disparity
between distances and dissimilarities. A minimum of
the objective function yields the desired configuration.
A number of commercial and research prototype im-
age retrieval systems, which are based on MDS to dis-
play similarity, have been developed, including QBIC
[7] and a research system built at Stanford Vision Lab-
oratory [8]. QBIC displays the returned images as a
list sorted by dissimilarity from the query. The Stan-

ford system applies MDS to the dissimilarity matrix
and places image thumbnails at the coordinates of the
resulting two-dimensional projection.

3. METHODS

3.1 Similarity Metrics

For any given image, a feature is expressed as a k-
dimensional vector f; = (vi1,vi2,...,Vik). The di-
mension of the vector may vary significantly from fea-
ture to feature. For example, the brightness of an im-
age maybe noted as a single value, i.e., K = 1, whereas

a color histogram may consist for instance of 128 val-
ues, i.e., k= 128.

Now, given a set of M features, we define the feature
vector of an image as the composition of the single
feature values:

F = (011, ,Ulky, V21, -+ ;U2kgy--- UMLy--- ,UMkpg)

Accordingly, the dimension of F is K = dim(F) =
M
> dim(f;). For some \; € [0;1], let S be a matrix of
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with matrices A; = i - Iim(s;) Where I, denotes the

identity matrix of order n.

Using S as a scaling matrix, we can compute the dis-

tance matrix D for a set of images I1,...,I, as
din di2 - din
d21 do2 --- don
D = . . .
dnl dn2 et dnn

with di; = || S |(F; — Fj)|||- F: and Fj are the feature
vectors of image I; and I, respectively. The d;; can
be interpreted as the scaled similarity metric between
image I; and I;.

3.1.0.1 Examples.

To illustrate the concept of features, we survey some
features widely used in the literature.

Color-based features. Color-based features operates
solely based on the color information contained in the
image. The most prominent representatives of which
are color histograms where the images are usually
first dithered and the incidence of the single colors
is determined afterwards [9, 7, 10]. Color histograms
have been frequently used in related work as reference
technique to assess the performance of new features



[11]. Also simpler features that reduce even to a sin-
gle scalar value are conceivable like the information
of how many different colors occur, the brightness, or
the contrast of an image. Especially with cliparts,
i.e. non-photographic images, these very simple fea-
tures are often of high distinctive power. On the other
hand, color histograms can be refined to reflect also
some spatial information of the image by allowing for
color transitions, i.e. these histograms do not record
the number of pixels per color but the number of pairs
of neighbored pixels that make up a certain color tran-
sition. For example with a color palette of 16 colors
the transition histogram covers 256 color transitions.
Depending on the particular feature, the quality can
be enhanced by applying filters like despeckle or blur
filters to the image as a pre-processing.

Texture-based features. Texture-based feature cap-
tures structures within the images. The most typi-
cal representatives are approximations with periodic
functions like the Fourier transform. Here, the fea-
ture vector corresponds to the sequence of coefficients
found. Other important members of this class include
Gabor filters and wavelets. Texture-base features are
particularly successful when applied to genres of im-
ages where color information is of lesser importance,
e.g. air photography [12].

3.2 Layout

A graph is used as an intermediate representation of
the points in the feature space. Vertices represent the
points in the K-dimensional feature space while edges
model the similarity relationship between points.

For the layout of the graph a mass-spring system is
used. Edges are modeled as springs. A minimiza-
tion algorithm computes an equilibrium configuration
of the points with minimal energy. Unfortunately, to
compute one step in the energy minimization algo-
rithm, most spring mass systems are in O(N?), where
N is the number of vertices. This makes such fully
connected mass-spring systems non-scalable for inter-
active usage.

To overcome this scaling problem, we define an alter-
native mapping from the distance matrix to the graph.
Instead of generating a fully connected graph, we gen-
erate a graph in which only highly similar vertices are
connected. For this, we introduce a threshold distance
T. When the graph is constructed only edges corre-
sponding to a distance that is less than T are taken
into account; i.e. vertices ¢ and j have an edge if and
only if dij <T.

The governing equations of the interactive mass spring
layout model are captured as follows: denote the po-
sition of vertex 7 in visualization space as p; and the
position of point ¢ in multidimensional space as P;.
The force applied by a vertex j onto a vertex i de-

pends on the discrepancy between the ||[p; — p;|| and
[|[P; — P;||. If the discrepancy of these two distances is
large than the force will be large. The resulting total
force applied to a vertex is the sum of all forces on the
vertex. The mass spring algorithm will minimize the
total discrepancy of the distances.

With v;; = H, the unit vector in the direction

i J

from p; to pj, we define the force between vertices ¢
and j as

p. = Jwii(di = llpi = pill) - vis
“ 0 otherwise

The visualization space paramter R can be set by the
user.

This formulation allows an efficient algorithm to be
implemented. The computation of F; is sped up in
two ways. First, a uniform grid of radius R around
vertex ¢ is used to quickly test and select only those
vertices in the neighborhood of i. Second, edges are
used to select only those vertices of a distance smaller
than d;; to 4. In this way, instead of testing all vertices,
only a limited number of vertices have to be tested,
(see [13]).

3.3 GraphSplatting

GraphSplatting is a technique to transform the graph
into a continuous field. It is based on the observation
that the density of vertices is an important character-
istic of the graph. Splatting projects each vertex of
the graph onto a two-dimensional scalar field. Instead
of showing the individual vertices and edges, the vari-
ations in density are shown. Vertices of the graph are
represented in the field by a splatting function. Each
vertex contributes to the field with a two-dimensional
Gaussian shaped basis function. The resulting field is
constructed by adding all the contributions. This field
is called the splat field.

Figure 1 illustrates the mapping primitive. The fig-
ure shows a cross section of the Gaussian splatting
function. The width of the Gaussian (o in Figure 1)
determines the 'smoothness’ of the splat field. A large
value of ¢ will result in smoothing out the details of
the graph. Using a small value for o will present more
detail of the graph. In the limited case o = 0 the orig-
inal vertices will be represented as points. The user
can interactively control the width of the splats with
a global parameter.

The height (h in Figure 1) of each splat can be used
for mapping an attribute of the vertices. In this way,
different properties of the graph can be highlighted.
Vertices with a large attribute values will contribute
more to the splat field that vertices with low attribute
values.

llpi —pjll <R, dij <T



Figure 1: Visualization of a splat field. The
left panel shows the mapping parameters for
the base function; The right panel shows three
splat fields of a graph with 4 vertices and 4
edges (upper left). The splat fields have differ-
ent splat widths.

GraphSplatting is designed to be used in combination
with other graph rendering methods. A continuous
representation is often useful for obtaining an overview
of the data associated with the vertices of the graph.
After zooming into a detail, it can be combined with
other graph visualization methods.

4. RESULTS

4.0.0.2 Test Image Set.

‘We applied our methods to a synthetic test set of 3276
images. The test set consisted of 36 groups of images
with distinct hue values. Each group had 91 textures
of varying frequency and orientation. For each image,
6 feature vectors were computed: a 1 four-dimensional
gabor feature vector for texture analysis and 5 distinct
color-based features vectors. The color-based features
vectors including a hue histogram, a hue histogram of
the center region of the image, and 3 hue transition
histograms. For transition histograms, the hue is first
dithered to 16 bins; then the histogram of the 256 re-
sulting combinations is recorded. As a pre-processing
step, the images were segmented into 32, 128, and 256
tiles, and each tile was replaced by its dominant hue.
The dimensionality of the feature space spanned by
the 6 features vectors is 804.

Figure 6 shows a snapshot of the user interface. The
upper panel shows the graph view: an arrangement of
the graph in the visualization space. Small dots are
used to represent vertices. Grey lines represent edges

between points with distances below the threshold dis-
tance T. Edges also provide additional feedback on
the state and progression of the layout algorithm. For
example, very long edges will indicate that the lay-
out algorithm has not reached an equilibrium. Some
selected vertices are annotated with a thumbnail im-
age. The lower panel shows the splat field, which is
color encoded from white (low density values) to black
(high density values). In Figure 6, the mass spring al-
gorithm has reached an equilibrium. Users can drag
vertices to other positions, after which the mass spring
algorithm will compute a new equilibrium. Animation
is used to display each step of the mass spring system
evolving to an equilibrium. In this way, the user can
study how an arrangement evolves towards another.

The graph provides a 2D view in which the images
are displayed according to their mutual dissimilarities
and similar images are clustered. A problem with the
graph view is the potential cluttering, making it dif-
ficult to estimate density of vertices in dense regions.
The splat field provides a 2D view of a continuous den-
sity field. Colors are used to show which areas have a
high density of vertices. In this way, the user can see
in a glance which images are similar.

Scaling is illustrated in Figure 3. Each panel of the
3x3 matrix show the splat field of the graph layout in
a equilibrium. Each row has scaled the hue histogram
feature vector by incrementing the corresponding A
by 0.5. Similarly, each column has scaled the gabor
feature vector with increasing A settings.

The influence of scaling the hue histogram feature vec-
tor in combination with scaling the gabor feature vec-
tor can be analyzed from the matrix. For example, the
arrangements shown in the first row are very different
than the arrangements in the last row. In addition,
the circular pattern of small clusterings seen in the
last row, can already be discerned in the second row.
This observation indicates that the hue histogram fea-
ture vector is dominating the gabor feature vector for
this test set.

4.0.0.3 Cord Image Collection.

We also experimented with images taken from the
Corel Image Collection [14]. A set of 200 images were
selected across different genres, yet, at the same time
care has been taken that there is a small fraction of
images per genre that would be commonly regarded
as “similar”. For example, images of similar objects
like sailing boats, or image of objects which differ in
lighting characteristics or camera positions only. The
6 feature vectors mentioned above were computed for
each image.

The four panels in Figure 4 demonstrate the effects of
different A settings. These panels shows that differ-
ent weightings of features lead to distinctly different



clusterings of the graph. Scaled features are meaning-
ful in their own way but provide significantly different
separation of different regions or images.

In this case the gabor and hue histogram feature vec-
tor were scaled. The upper left panel shows the graph
with A setting for the gabor feature at 1.0 and the A
setting for the hue histogram feature at 0.0. In the
upper right panel, the A settings were 0.8 and 0.2. In
the lower left panel, the A settings were 0.2 and 0.8.
In the lower right pane, the A settings were 0.0 and
1.0. The threshold value was set so that each graph
contained approximately 1100 edges.

Each panel show a very different structure of the un-
derlying graph. The upper left panel shows a struc-
ture with 4 clusters of vertices. Clusters are connected
with relatively few links. The lower right panel shows
a structure with dense cluster.

To illustrate the scalability of the splat field, we have
applied our methods to larger image sets. Figure 6
shows the splat fields of four image sets taken from the
Corel Image Collection. The sets have 1000, 4788 and
10000 images respectively. The same set of features
as above was computed for both sets. To generate the
snapshots, the mass spring algorithm was used with
the A of the gabor feature vector set to 1.0. All other
A factors were set to 0.0.

The top row shows the graph view for each layout.
Graph views with 1182, 33524 and 86521 edges are
very cluttered and it is very difficult to determine
which areas contain images that are similar. The bot-
tom shows the splat field for each layout. Here, the
structure of the graph is clearly shown. This is useful
particularly in areas of high vertex density, i.e. those
areas in which images have high similarity. Also, the
structure of the graph is very similar for the four im-
age sets.

5. DISCUSSION

The framework discussed in this paper allows devel-
opers concerned with the design and tuning of fea-
tures to experiment with the precision of particular
features, feature distributions, similarity models, and
the visualization of similar images. The interactive vi-
sualization tools are tailored towards the exploration
and presentation of the underlying multidimensional
spaces.

5.1 Visualization

The layout algorithm detailed in section 3.2 generates
arrangements in which similar images are attracted
and dissimilar images are repelled. Since related im-
ages are grouped together in order of increasing dis-
similarity, the density of the images can be interpreted
as a measure of image similarity. Images are dis-
played either as points (useful for density distribu-

tions), thumbnails (useful for visual similarity com-
parisons), or the complete image.

However, the interactive nature of the interface pro-
vides additional advantages regarding both the layout
and modification of the points in the space by different
feature weightings.

e Layout

Besides the actual layout algorithm, the tool
comes with a whole array of interactive elements
including zooming, drag-and-drop of vertices,
inspecting a vertex properties, highlighting of
neighbored vertices and connecting edges etc.
This enables users to disentangle dense areas and
study neighborhoods of individual vertices.

The animation of the layout algorithm gives an
immediate impression of the strength of the links
and components. Additionally, the user can also
adjust the velocity of the convergence of the sys-
tem to study these effects also in slow-motion.

e Scaling

It is well-known that there is no universal con-
cept of similarity but similarity always depends
on both the properties of the query image and
the images stored in the repository. For differ-
ent sets of images, features differ in their effec-
tiveness. In addition, the effectiveness may vary
even from one region of the feature space to an-
other [15]. Thus, weighting and scaling of fea-
tures is a necessity.

Studying these effects with statistical methods
like cluster analysis etc. is often not satisfac-
tory. Capturing the structure of the points in
space in order to describe the effects of scaling
is computational expensive and results are diffi-
cult to grasp. In contrast, scaling the influence
of features interactively, helps to grasp these ef-
fects in an immediate and evident way.

Our experience has been that for the bulk of images
the weighting is of little influence—these images ap-
pear very similar under many different features, par-
ticularly, since features often subsume other features.
However, there are also areas where the influence of a
few, sometimes even one single feature, is crucial. In-
teractive and animated scaling of single features makes
it easy to explore and analyze the impact of individual
features. Our layout provides for the visualization of
areas which is facilitated by the threshold parameter.
Modifying this parameter enables pruning of the sim-
ilarity relationships in the graph to blot out regions
that are of little interest. It does not matter exactly
how distant dissimilar images are from a given image,
as long as they are far in relation to similar ones.



A splat field is used to show the density of one single
dimension of the feature space by mapping the fea-
ture value of a feature to a splat. Since splat fields
are continuous representations of the discrete graph,
they allow for the visualization of very large graphs.
Individual vertices will not be discerned, but the con-
tinuous field will contain density information that can
be used to determine clusters of similar images.

5.2 Comparison with other MDS based
systems

The use of a mass-spring system for the layout of a
multidimensional space is an approximation to MDS.
Recall that MDS uses a least-square technique to de-
fine an objective function that penalizes the overall
disparity between distances and dissimilarities. The
MDS objective function may be interpreted as the to-
tal energy of a fully connected mass-spring system,
with a vertex for each image, and springs connecting
each vertex. The relaxed length of a spring connecting
two vertices is given be the dissimilarity between the
corresponding pair of images. The actual length of
the spring is the Euclidean distance between vertices.
The equilibrium of this spring system corresponds to
the minimum of the MDS objective function.

Our method differs from MDS when the graph is not
fully connected. Constructing a graph from the dis-
tance matrix uses a distance threshold 7. When the
graph is constructed only edges corresponding to a dis-
tance that is less than 7" are taken into account; i.e.
vertices ¢ and j have an edge if and only if d;; < T. For
example, when T = 0, the graph will have no edges
and if T = oo, the graph will be fully connected.

In the case of a not completely connected graph, our
mass-spring algorithm will result in groups of similar
images. Mutual distances between images within a
group can be interpreted as a measure of similarity.
Distances between groups have no meaning, but the
similarity between images in different groups is known
to be larger than the distance threshold.

6. CONCLUSION

The framework discussed in this paper allows image
feature developers to experiment with the precision
of particular features, feature distributions, similarity
models, and the visualization of similar images. The
interactive visualization tools are tailored towards the
exploration and presentation of the underlying multi-
dimensional spaces.

We have demonstrated that our tools can be used
to gain insight into the strengths and weaknesses of
features and how they perform in combination with
other features. We believe that interactive interfaces,
in which users continuously control one or more di-
mensions of the feature space, are very intuitive for

understanding the effect that features have on the un-
derlying similarity model.

7. REFERENCES
[1] S.K. Card, J.D. Mackinlay, and B. Shneiderman,
editors. Readings in Information Visualization.
Morgan Kaufmann Publishers, 1999.

[2] A. del Bimbo. Visual Information Retrieval.
Morgan Kaufmann Publishers, 1999.

[3] G. di Battista, P. Eades, R.A. Tamassia, and
J.G. Tollis. Graph Drawing. Prentice Hall, 1999.

[4] R.J. Hendley, N.S. Drew, A.M. Wood, and
R. Beale. Narcissus: Visualizing information. In
S.K. Card, J.D. Mackinlay, and
B. Shneiderman, editors, Readings in
Information Visualization, pages 503-511.
Morgan Kaufmann Publishers, 1999.

[5] M.H. Gross, T.C. Springer, and J. Finger.
Visualizing information on a sphere. In
Proceedings Symposium on Information
Visualization, pages 11-16. IEEE Computer
Science Press, 1997.

[6] T.F. Cox and M.A.A. Cox. Multidimensional
Scaling. Chapman & Hall, London, 1994.

[7] J. Ashley, M. Flickner, J.L. Hafner, D. Lee,
W. Niblack, and D. Petkovic. The Query By
Image Content (QBIC) System. In ACM
SIGMOD Conference on Management of Data,
page 475, 1995.

[8] Y. Rubner, C. Tomasi, and L.J. Guibas. A
Metric for Distributions with Applications to
Image Databases. In IEEE International
Conference on Computer Vision, pages 59-66,
Bombay, India, January 1998.

[9] V. Ogle and M. Stonebraker. Chabot: Retrieval
From a Relational Database of Images. IEEE
Computer, 28(9):40-48, September 1995.

[10] A. Pentland, R. Picard, and S. Sclaroff.
Photobook: Content-based manipulation of
image databases. International Journal of
Computer Vision, 18(3):233-254, June 1996.

[11] J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu,
and R. Zabih. Image Indexing Using Color
Correlograms. In IEEE Computer Vision and
Pattern Recognition, pages 762-768, Puerto
Rico, 1997.

[12] B.S. Manjunath and W.Y. Ma. Texture features
for browsing and retrieval of large image data.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18(8):837-842, August
1996.



[13]

[14]

[15]

R. van Liere and W. de Leeuw. Graphsplatting:
visualizing graphs as continuous fields.
Submitted for publication. Available at http://
www.cwi.nl/~-robertl.

Corel,
http://www.corel.ca/products/clipartandphotos/photos/index.htm.
Corel Stock Photos, 1999.

S. Santini and R. Jain. Similarity is a
Geometer. Multimedia Tools and Applications,
5(3):377-306, November 1997.



Figure 2: Two views of a graph arrangement for the test set. The upper panel shows graph view
with vertices and edges. The lower panel shows the splat field. Some vertices are annotated with
a thumbnail image.
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Figure 3: Nine splat fields with different scaling factors. Rows have increasing )\ values for the hue
histogram feature vector. Columns have increasing \ values for the gabor feature vector.
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Figure 4: Four panels showing the graph with different scaling factors for the hue histogram and
gabor feature vectors. Ten vertices are annotated with a thumbnail image.
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Figure 5: Scalability of splat fields. The top three panels show the graph views of three image
sets. The bottom three panels show the splat fields. The gabor feature vector was scaled to 1.0.



