MDL exercises, ninth handout (due April 27th, 14:00)

Consider MDL model selection between

$$
\mathcal{M}_{0}=\left\{P_{0, \sigma}: \sigma>0\right\} \text { and } \mathcal{M}_{1}=\left\{P_{\delta, \sigma}: \sigma>0, \delta \in \mathbb{R}\right\}
$$

where $P_{\delta, \sigma}$ is the distribution under which $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d., each with density given by

$$
p_{\delta, \sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x}{\sigma}-\delta\right)^{2}}
$$

1. Show that \mathcal{M}_{1} is identical to the family of normal distributions with mean in \mathbb{R} and variance in $\sigma^{2}>0$. That is, if $Q_{\mu, \sigma}$ represents a normal distribution with mean μ and variance σ, show that (i) for every $\sigma>$ $0, \delta \in \mathbb{R}$, there is a $\mu \in \mathbb{R}$ such that $P_{\delta, \sigma}=Q_{\mu, \sigma}$ and (ii), conversely, for every $\sigma>0, \mu \in \mathbb{R}$, there is a $\delta \in \mathbb{R}$ such that $P_{\delta, \sigma}=Q_{\mu, \sigma}$.

We associate Bayesian universal measures \bar{p}_{0} with \mathcal{M}_{0} and \bar{p}_{1} with \mathcal{M}_{1}. In both cases, we put the right Haar prior $\pi(\sigma)=1 / \sigma$ on the variance σ. For \bar{p}_{1}, we equip δ with some (arbitrary) proper prior density w. Thus, we measure the evidence against \mathcal{M}_{0} by

$$
\begin{equation*}
M\left(x^{n}\right):=\log \frac{\bar{p}_{1}\left(x^{n}\right)}{\bar{p}_{0}\left(x^{n}\right)} \tag{1}
\end{equation*}
$$

with $\bar{p}_{0}\left(x^{n}\right)=\int \sigma^{-1} p_{0, \sigma}\left(x^{n}\right) d \sigma$ and $\bar{p}_{1}\left(x^{n}\right)=\int_{\sigma>0, \delta \in \mathbb{R}} \sigma^{-1} w(\delta) p_{\delta, \sigma}\left(x^{n}\right) d \sigma d \delta$.
2. Show that $\pi(\sigma)=1 / \sigma$ is improper.
3. (i) Show that $M\left(x^{n}\right)$ is scale-invariant. That is, show that for every sequence x_{1}, \ldots, x_{n}, every $c>0$,

$$
\begin{equation*}
M\left(x_{1}, \ldots, x_{n}\right)=M\left(x_{1} / c, \ldots, x_{n} / c\right) \tag{2}
\end{equation*}
$$

(HINT: re-express the integral over σ in \bar{p}_{0} and \bar{p}_{1} as an integral over $\sigma^{\prime}=c \sigma$).
(ii) Define $Z^{n}=\left(X_{1} /\left|X_{1}\right|, X_{2} /\left|X_{1}\right|, \ldots, X_{n} /\left|X_{1}\right|\right)$. Use (2) to show that, for arbitrary $X_{1} \neq 0, X_{2}, \ldots, X_{n}$,

$$
M\left(X_{1}, \ldots, X_{n}\right)=M\left(Z_{1}, \ldots, Z_{n}\right)
$$

4. Fix $\sigma>0$. Let $X_{1}, X_{2}, \ldots, X_{n} \sim$ i.i.d. $P_{\delta, \sigma}$. Let $X_{i}^{\prime}=X_{i} / \sigma$. (i) Show that, for all $\delta \in \mathbb{R}$, the distribution of $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ is now i.i.d. $N(\delta, 1)$. (ii) Use (i) to show that, for each fixed δ, the distribution of Z^{n} is the same under $P_{\delta, \sigma}$, for all $\sigma>0$ [for question 5 . see back side!].

As a consequence of (4)(ii), we can refer to the distribution P_{δ}^{\prime} on Z^{n} without specifying the variance (the distribution does not depend on the variance of the X^{n}). Let p_{δ}^{\prime} be the density of P_{δ}^{\prime}. We can now write

$$
M\left(X_{1}, \ldots, X_{n}\right)=\frac{\int_{\delta} w(\delta) p_{\delta}^{\prime}\left(Z_{1}, \ldots, Z_{n}\right) d \delta}{p_{0}^{\prime}\left(Z_{1}, \ldots, Z_{n}\right)}
$$

where Z^{n} corresponds to X^{n} as above.
5. Explain the following statement: even though the Bayesian universal measures in (1) are based on improper priors, and therefore do not really define probability distributions, $-\log \bar{p}_{0}\left(X^{n}\right)-\left[-\log \bar{p}_{1}\left(X^{n}\right)\right]$ can be interpreted as a real codelength difference between two codes.

