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Bayesian Consistency

• Let                                      (classification setting)
• Let      be a set of conditional distributions          ,   

and let      be a prior on
• Let      be a distribution on
• Let                                     i.i.d.  
• If                 , then Bayes is consistent under        

very mild conditions on      and
– “consistency” can be defined in number of ways, e.g. 

posterior distribution         “concentrates” on 
“neighborhoods” of 
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Bayesian Consistency?

• Let                                      (classification setting)
• Let      be a set of conditional distributions          ,   

and let      be a prior on
• Let      be a distribution on
• Let                                     i.i.d.  
• If                 , then Bayes is consistent under        

very mild conditions on      and
• If                 , then Bayes is consistent under        

very mild conditions on      and

not quite so mild!

Misspecification Inconsistency

• We exhibit:
1. a model , 
2. a prior
3. a “true”

such that
– contains a good approximation         to 
– Yet 
– and Bayes will be inconsistent in various ways

The Model (Class) 

• Let
• Each     is a 1-dimensional parametric model,

• Example:      
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• Each     is a 1-dimensional parametric model,
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The Model (Class) 

• Let
• Each     is a 1-dimensional parametric model,

• Example:      ,       , 

The Prior

• Prior mass      on the model index     must be such 
that, for some small           , for all large     ,

• Prior density                            of         given    must be
– continuous
– not depend on 
– bounded away from 0, i.e. 

The Prior

• Prior mass      on the model index     must be such 
that, for some small           , for all large     ,

• Prior density                            of         given    must be
– continuous
– not depend on 
– bounded away from 0, i.e. 

e.g.

e.g.         uniform
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The “True”        - benign version

• marginal       is uniform on
• conditional         is given by  

• Since                       for             , we have
• Bayes is consistent

Two Natural “Distance” Measures

• Kullback-Leibler (KL) divergence

• Classification performance (measured in 0/1-risk)

•
• For all          :

• For all                       :
• For all             ,         :   

is true and, of course, optimal for classification

KL and 0/1-behaviour of   The “True”        - evil version

• First throw a coin                  with bias
• If             , sample            from      as before
• If             , set
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The “True”        - evil version

• First throw a coin                  with bias
• If             , sample            from      as before
• If             , set
• All              satisfy                  , 

so these are easy examples

is still optimal

• For all            ,
• For all            ,          :

•

• For all             ,             

is still optimal for classification

is still optimal in KL divergence

Inconsistency

• Both from a KL and from a classification perspective, 
we’d hope that the posterior converges on 

• But this does not happen!

Inconsistency

• Theorem: With     - probability 1:

•

•

•

Posterior puts almost all 
mass on ever larger   , none 
of which are optimal
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1. Kullback-Leibler Inconsistency

• Bad News: With      - probability 1, for all              ,

• Posterior “concentrates” on very bad distributions
Note: if we restrict all         to                        for some                   

then this only holds for all    smaller than some 

1. Kullback-Leibler Inconsistency

• Bad News: With      - probability 1, for all              ,

• Posterior “concentrates” on very bad distributions

• Good News: With      - probability 1, for all large     ,         

• Predictive distribution does perform well!

2. 0/1-Risk Inconsistency

• Bad News: With      - probability 1,

• Posterior “concentrates” on bad distributions

• More bad news: With      - probability 1,

• Now predictive distribution is no good either!

Theorem 1: worse 0/1 news

• Prior                      depends on parameter 
• True distribution     depends on two parameters

– With probability            , generate “easy” example
– With probability            , generate example according to
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Theorem 1: worse 0/1 news

• Theorem 1: for each desired                     , we can set              
such that 

yet with     -probability 1, as 

• Here           is the binary entropy

Theorem 1, graphically 

• X-axis: 
• = maximum 0/1 risk 

Bayes MAP

• = maximum 0/1 risk
full Bayes 

• Maximum difference         at         

achieved with probability 1, for all large n

Theorem 1, graphically 

• X-axis: 
• = maximum 0/1 risk 

Bayes MAP

• = maximum 0/1 risk
full Bayes 

• Maximum difference         at         

Bayes can get worse than 
random guessing!

Thm 2: full Bayes result is tight

• Let      be an arbitrary countable set  
of conditional distributions

• Let      be an arbitrary prior on    with 
full support

• Let data be i.i.d. according to an 
arbitrary on            , and let 

• Then the 0/1-risk of  Bayes predictive 
distribution is bounded by               
(red line)



Peter Grünwald June 2006 

Bayesian inconsistency under 
Misspecification 8

KL and Classification

• It is trivial to construct a model such that, for some

KL and Classification

• It is trivial to construct a model such that, for some

• However, here we constructed      such that, for 
arbitrary on            , 

achieved for                   that also achieves   

Therefore, the bad classification 
performance of Bayes is really surprising!

KL…

KL geometry  

Bayes predictive dist.

KL…    and classification

KL geometry  0/1 geometry  

Bayes predictive dist.
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What’s new?

• There exist various infamous theorems showing that 
Bayesian inference can be inconsistent even if 
– Diaconis and Freedman (1986), Barron (Valencia 6, 1998)

• So why is result interesting?
• Because we can choose     to be countable

Bayesian Consistency Results

• Doob (1949), Blackwell & Dubins (1962), Barron(1985) 
Suppose
– Countable
– Contains ‘true’ conditional distribution

Then with     -probability 1, as                  , 

Countability and Consistency

• Thus: if model well-specified and countable, Bayes
must be consistent, and previous inconsistency 
results do not apply. 

• We show that in misspecified case, can even get 
inconsistency if model countable.
– Previous results based on priors with ‘very small’ mass on 

neighborhoods of true . 
– In our case,  prior can be arbitrarily close to 1 on     

achieving  

Discussion

1. “Result not surprising because Bayesian inference was 
never designed for misspecification”
• I agree it’s not too surprising, but it is disturbing, because in 

practice, Bayes is used with misspecified models all the time
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Discussion

1. “Result not surprising because Bayesian inference was 
never designed for misspecification”
• I agree it’s not too surprising, but it is disturbing, because in 

practice, Bayes is used with misspecified models all the time

2. “Result irrelevant for true (subjective) Bayesian 
because a ‘true’ distribution does not exist anyway”
• I agree true distributions don’t exist, but can rephrase result so 

that it refers only to realized patterns in data (not distributions)

3. “Result irrelevant if you use a nonparametric model 
class, containing all distributions on           ”
• For small samples, your prior then severely restricts “effective” 

model size (there are versions of our result for small samples)

Discussion - II

• One objection remains: scenario is very unrealistic!
– Goal was to discover the worst possible scenario

• Note however that 
– Variation of result still holds for     containing distributions

with differentiable densities
– Variation of result still holds if precision of    -data is finite
– Priors are not so strange
– Other methods such as McAllester’s PAC-Bayes do 

perform better on this type of problem.
– They are guaranteed to be consistent under misspecification 

but often need much more data than Bayesian procedures

see also Clarke (2003), Suzuki (2005)

Conclusion

• Conclusion should not be  

“Bayes is bad under misspecification”, 

• but rather 
“more work needed to find out what types
of misspecification are problematic for Bayes” 
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Thank you, and let’s Party!


