

•

- - Let \mathcal{P} be a set of conditional distributions $P_{Y|X}$, and let Π be a prior on $\mathcal P$

The Setting

• Let $\mathcal{X} = [0, 1], \mathcal{Y} = \{0, 1\}$ (classification setting)

and let Π be a prior on \mathcal{P}

Let \mathcal{P} be a set of conditional distributions $P_{Y|X}$,

- Let P^* be a distribution on $\mathcal{X} \times \mathcal{Y}$
- Let $(X_1, Y_1), (X_2, Y_2), \dots$ i.i.d. $\sim P^*$
- If $P_{Y|X}^* \in \mathcal{P}$, then Bayes is **consistent** under very mild conditions on Π and \mathcal{P}
 - "consistency" can be defined in number of ways, e.g. posterior distribution $\Pi(\cdot\mid X^n,Y^n)$ "concentrates" on "neighborhoods" of P^*

Bayesian Consistency

- Let $\mathcal{X} = [0, 1], \mathcal{Y} = \{0, 1\}$ (classification setting)
- Let \mathcal{P} be a set of conditional distributions $P_{Y|X}$, • and let Π be a prior on $\mathcal P$
- Let P^* be a distribution on $\mathcal{X}\times\mathcal{Y}$ •
- Let $(X_1, Y_1), (X_2, Y_2), \dots$ i.i.d. $\sim P^*$
- If $P_{Y|X}^* \in \mathcal{P}$, then Bayes is **consistent** under • very mild conditions on \prod and \mathcal{P}

- Let $\mathcal{X} = [0, 1], \mathcal{Y} = \{0, 1\}$ (classification setting)
- Let $\mathcal P$ be a set of conditional distributions $P_{Y|X}$, and let Π be a prior on $\mathcal P$
- Let P^* be a distribution on $\mathcal{X} \times \mathcal{Y}$
- Let (X₁, Y₁), (X₂, Y₂),... i.i.d. ~ P*
 If P^{*}_{Y|X} ∈ P, then Bayes is consistent under
- very mild conditions on \square and \mathcal{P}
- If $P_{Y|X}^* \notin \mathcal{P}$, then Bayes is **consistent** under very mild conditions on \prod and \mathcal{P}

- Let $\mathcal{X} = [0, 1], \mathcal{Y} = \{0, 1\}$ (classification setting)
- Let $\mathcal P$ be a set of conditional distributions $P_{Y|X}$, and let $\Pi~$ be a prior on $\mathcal P$
- Let P^* be a distribution on $\mathcal{X} \times \mathcal{Y}$
- Let $(X_1, Y_1), (X_2, Y_2), \dots$ i.i.d. $\sim P^*$
- If P^{*}_{Y|X} ∈ P, then Bayes is consistent under very mild conditions on ∏ and P
- If $P_{Y|X}^* \notin P$, then Bayes is **consistent** under very much conditions on \square and P

not quite so mild!

 $0.5 - \theta$

1

- Bad News: With P^* probability 1, for all B > 0, $\Pi(\{P_{k,\theta} : D(P^* || P_{k,\theta}) > B\} \mid X^n, Y^n) \to 1$
- Posterior "concentrates" on very bad distributions
- Good News: With P^* probability 1, for all large n, $\overline{D}(P^* \| P_{\mathsf{Bayes}}(Y_{n+1} \mid X_{n+1}, X^n, Y^n))$ $\leq \min_{D \in \mathcal{D}} D(P^* \| P) - 0.32$
- Predictive distribution does perform well!

2. 0/1-Risk Inconsistency

- Bad News: With P^* probability 1, $\Pi(\{P_{k,\theta} : \operatorname{risk}_{01}(P^*, P_{k,\theta}) = 0.3\} \mid X^n, Y^n) \to 1$
- Posterior "concentrates" on bad distributions
- More bad news: With P^* probability 1, risk₀₁(P^* , $P_{\text{Bayes}}(Y_{n+1} | X_{n+1}, X^n, Y^n)$) \rightarrow 0.3.
- Now predictive distribution is no good either!

Theorem 1: worse 0/1 news

- Prior $\sqcap(\mathcal{P}_k) \approx \frac{1}{k^{1+\alpha}}$ depends on parameter α
- True distribution P^* depends on two parameters β,γ With probability β , generate "easy" example
 - With probability 1 β , generate example according to $P_{1,\gamma}$

Bayesian inconsistency under Misspecification

What's new?

- There exist various infamous theorems showing that Bayesian inference can be inconsistent even if $P^* \in \mathcal{P}$ – Diaconis and Freedman (1986), Barron (Valencia 6, 1998)
- · So why is result interesting?
- Because we can choose $\mathcal P$ to be countable

Bayesian Consistency Results

- Doob (1949), Blackwell & Dubins (1962), Barron(1985) Suppose \mathcal{P}
 - Countable
 - Contains 'true' conditional distribution $P_{Y|X}^{*}$. Then with $P^{*}\text{-probability 1, as} \quad n \to \infty \quad \text{,}$

 $\sqcap(\{P_{Y|X}^*\} \mid X^n, Y^n) \to 1$

Countability and Consistency

- Thus: if model well-specified and countable, Bayes must be consistent, and previous inconsistency results do not apply.
- We show that in misspecified case, can even get inconsistency if model countable.
 - Previous results based on priors with 'very small' mass on neighborhoods of ${\rm true} P^*$
 - In our case, prior can be arbitrarily close to 1 on \tilde{P} achieving $\min_{P \in \mathcal{P}} D(P^* \| P)$

Discussion

- 1. "Result not surprising because Bayesian inference was never designed for misspecification"
 - I agree it's not too surprising, but it *is* disturbing, because in practice, Bayes is used with misspecified models all the time

Discussion - II

One objection remains: scenario is very unrealistic! – Goal was to discover the worst possible scenario

- Note however that
 - Variation of result still holds for $\ensuremath{\mathcal{P}}$ containing distributions with differentiable densities
 - Variation of result still holds if precision of X-data is finite
 - Priors are not so strange
 - Other methods such as McAllester's PAC-Bayes do perform better on this type of problem.
 - They are guaranteed to be consistent under misspecification but often need much more data than Bayesian procedures

see also Clarke (2003), Suzuki (2005)

Conclusion

• Conclusion should not be

"Bayes is bad under misspecification",

but rather

"more work needed to find out what types of misspecification are problematic for Bayes" Thank you, and let's Party!