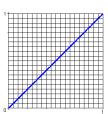


Bayes and Occam



 $\stackrel{\dots}{\mathcal{M}}_1$ Discretized i.i.d. Bernoulli distributions

 \mathcal{M}_2 Discretized First-Order Markov Chains

Bayesian justification of Occam

Occam Factor'-type Argument (Gull '88)

- No prior preference for $\ddot{\mathcal{M}}_1$ or $\ddot{\mathcal{M}}_2$.
 - expressed as $P(\ddot{\mathcal{M}}_1) = P(\ddot{\mathcal{M}}_2) = \frac{1}{2}$
- Given $\overset{\circ}{\mathcal{M}}_j$, no preference for any of the distributions in $\overset{\circ}{\mathcal{M}}_j$:
 - i.e. for all θ indexing a distribution in $\overset{\dots}{\mathcal{M}}_j$, $P(\theta|\overset{\dots}{\mathcal{M}}_j) = \mathrm{const.} = \frac{1}{|\overset{\dots}{\mathcal{M}}_j|}.$
 - for example:

$$P(\theta|\ddot{\mathcal{M}}_1) = \frac{1}{100} \; ; \; P(\theta|\ddot{\mathcal{M}}_2) = \frac{1}{100 \times 100} = \frac{1}{10000}$$

Bayesian justification of Occam

'Occam Factor'-type Argument (Gull '88)

· Bayesian model selection selects

$$\label{eq:problem} \begin{split} \arg\max_{j} P(\ddot{\mathcal{M}}_{j}|x^{n}) = \arg\max_{j} P(x^{n}|\ddot{\mathcal{M}}_{j})P(\ddot{\mathcal{M}}_{j}) = \\ \arg\max_{j} \sum_{\theta: P(\cdot|\theta) \in \dddot{\mathcal{M}}_{j}} P(x^{n}|\theta)P(\theta|\ddot{\mathcal{M}}_{j}) \\ & \qquad \qquad \text{a lot smaller for } \ddot{\mathcal{M}}_{2} \end{split}$$

Bayesian justification of Occam

Occam Factor'-type Argument (Gull '88)

Prior for individual distribution *within* 'complex' model is much smaller. Therefore, if the simple and the complex model fit the data about equally well, Bayes selects 'simple' model.

Bayesian criticism of Occam

'No Free Lunch'-type Argument (Van Allen, Greiner '00)

- No prior preference for $\dddot{\mathcal{M}}_1$ or $\dddot{\mathcal{M}}_2$.
 - previously expressed as
 - $P(\widetilde{\mathcal{M}}_1) = P(\widetilde{\mathcal{M}}_2) = \frac{1}{2}$
 - now expressed as

$$P'(\theta) = \text{const.} = \frac{1}{|\ddot{\mathcal{M}}_1 \cup \ddot{\mathcal{M}}_2|} = \frac{1}{|\ddot{\mathcal{M}}_2|}.$$

- for example:

$$P'(\ddot{\mathcal{M}}_1) = \sum_{\theta : P(\cdot|\theta) \in \ddot{\mathcal{M}}_1} P'(\theta) = 100 \times \frac{1}{10000} = \frac{1}{100}$$

$$P'(\ddot{\mathcal{M}}_2) = \sum_{\theta : P(\cdot|\theta) \in \ddot{\mathcal{M}}_2 \setminus \ddot{\mathcal{M}}_1} P'(\theta) = 1 - \frac{1}{100} = \frac{99}{100}$$

Bayesian criticism of Occam

• As discretization gets finer and finer, $\dddot{\mathcal{M}}_1$ gets swamped by $\dddot{\mathcal{M}}_2$ in the sense that

$$\frac{P'(\ddot{\mathcal{M}}_1)}{P'(\ddot{\mathcal{M}}_2)} \to 0$$

• Therefore, with prior $P'(\ddot{\mathcal{M}}_j)$, Bayesian model selection will always select $\ddot{\mathcal{M}}_2$, no matter what data/sample size we actually observe!

Bayesian criticism of Occam

'No Free Lunch'-type Argument (Van Allen, Greiner '00)

- No prior preference for $\dddot{\mathcal{M}}_1$ or $\dddot{\mathcal{M}}_2$.
 - previously expressed as

uniform prior over things you are interested in

- now expressed as

uniform prior over possible states of the world

Who's Right??

short answer:

The validity of either argument depends entirely on what you mean by 'Bayesian Statistics'!

Savage, De Finetti, Jeffreys L. Savage The Foundations of Statistics (1954) *modern' Bayesian Statistics has (at least) three founding fathers, each with (quite) different ideas B. De Finetti Theory of Probability ('1937',1974) H. Jeffreys Theory of Probability (1939, 1961)

Subjective vs Pragmatic Priors

- Savage
 - most influential of the three
 - $-P(\theta)$ is quite literally 'degree of belief that θ is true'
- De Finetti
 - Allows pragmatic priors
 - $-P(\theta)$ cannot be interpreted as 'degree of belief that θ is true' (nevertheless, subjectivist)

'Probabilities do not exist'

B. De Finetti, 1974, page 1

Purely Subjective vs Pragmatic Priors

- If you insist on Savage's interpretation, and you believe that the distributions in \mathcal{M}_1 are not a priori more likely than those in \mathcal{M}_2 , then you end up with NFL-type argument
- If you accept De Finetti/Jeffreys, you may choose to use Occam-type prior if it is useful.

Purely Subjective vs Pragmatic Priors

- If you insist on Savage's interpretation, and you believe that the distributions in \mathcal{M}_1 are not a priori more likely than those in \mathcal{M}_2 , then you end up with NFL-type argument
 - IMHO, Savage's interpretation is untenable when viewed as `sole valid interpretation' of Bayesian inference: naïve Bayes, speech recognition...
- If you accept De Finetti/Jeffreys, you may choose to use Occam-type prior if it is useful.

So, are Occam-type priors useful?

So, are Occam-type priors useful?

Occam-type priors are useful

- Empirical justifications:
 - very good results for regression, Bayesian network order selection, denoising...
- Theoretical justifications:
 - leads to consistent model selection procedures
 - avoid multiple hypothesis testing:
 - · Predictive ('prequential') interpretation

Prequential Interpretation

Dawid 1984, Rissanen 1984

• For data x_1, \dots, x_n , Bayes with Occam-type prior selects \mathcal{M}_j minimizing

$$\sum_{i=1}^{n} loss(x_i, P_{preq}(\cdot|x_1, \dots, x_{i-1}, \mathcal{M}_j))$$

where

$$P_{\text{preq}}(X_i|x_1,\ldots,x_{i-1},\mathcal{M}_j) = \int P(X_i|\theta,\mathcal{M}_j)w(\theta|x_1,\ldots,x_{i-1},\mathcal{M}_j)d\theta$$

 $loss(x,P) := -\log P(x)$

- In words: Bayesian model selection selects the model such that Bayesian prediction based on the model leads to the smallest sequential accumulated prediction error, measured using log-loss
- Closely related to cross-validation!

Prequential Interpretation

- This suggests, and for some many types of models experiments confirm, that Occam-Bayes selects the model that leads to smaller prediction error of future data!
 - For small sample size, this is with high probability the simpler model, even if the 'truth', generating the data is complex!
 - Of course, we have to assume *some* things for this to be true.

Prequential Justification

 Prequential interpretation gives a nonasymptotic justification of Occam-type priors:

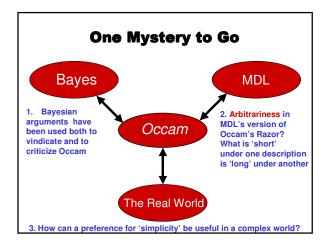
If the goal is to minimize prediction error over future data, then selecting an overly simple model may be a good idea even if the truth is complex!

Closely related to bias-variance trade-off, cross-validaton

Occam-type priors and MDL

- · with Occam-type priors, Bayesian model selection becomes very similar to 'modern' versions of MDL...
- ... but not the same (tutorial tomorrow!)
- · gives alternate justification for MDL
- · yet one nagging problem remains:
 - Possible arbitrariness in definition of 'Occam-type prior' (and hence MDL...)

Arbitrariness? Given \mathcal{M}_2 , how should we construct \mathcal{M}_1 ? Why is Bernoulli (left) more natural candidate for \mathcal{M}_1 than `reverse Bernoulli' (right) or any other 1-dimensional *submodel* of $\ddot{\mathcal{M}}_2$, for that matter?



Simple models in a complex world

· Remark:

Occam's Razor seems no good, because, after all, 'What good are simple models in a complex world?'

G. Webb (as quoted in KDD Nuggets 96:2)

Answer:

Occam's Razor is useful after all, because it is 'mostly true in most real world situations'

> G. Piatetski-Shapiro (KDD Nuggets 96:2) (Piatetski later retracted this statement) (thanks to Pedro Domingos for telling me this)

'truth' of Occam's Razor is not the point!

- · MDL and Bayes with pragmatic priors are strategies for inductive inference ...
 - Strategies are not 'true' or 'false', but 'clever' or 'stupid'!
- ...these strategies are not at all based on belief that 'simple models are a priori more likely to be true
 - that idea derives from (untenable yet very influential) purely Savagian interpretation of Bayesian inference
 - much work on MDL based on assumption that 'truth is infinitely complex' (Barron and Cover, 1991)

Simple models in a complex world

- A preference for simplicity can lead to algorithms achieving better predictions for small samples, even if truth is complex
 - Of course some regularity conditions are needed!
 - Criticisms usually mention boosting, decision trees. These are very special (yet interesting) cases!

Thank you for your attention!