Generalized Entropy, Game Theory and Pythagoras

> Peter Grünwald EURANDOM www.cwi.nl/~pdg

Joint work with A.P. Dawid, University College, London

Overview

- 1. Maximum Entropy (MaxEnt)
- 2. A Game-Theoretic Characterization of Maximum Entropy
- 3. Generalized Entropy and Game Theory
- 4. Pythagoras

Overview

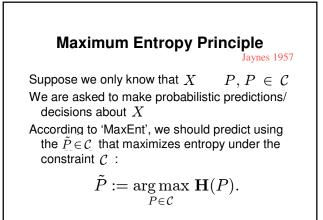
1. Maximum Entropy (MaxEnt)

- 2. A Game-Theoretic Characterization of Maximum Entropy
- 3. Generalized Entropy and Game Theory
- 4. Pythagoras

Setting

- $\begin{array}{lll} \mathcal{X} & \mbox{Finite (for now) Sample Space} \\ \mathcal{P} & \mbox{Set of all distributions over } \mathcal{X} \end{array}$
- $\mathcal{C} \,\subseteq\, \mathcal{P}$ 'Convex' Closed Subset of $\,\mathcal{P}\,$
 - H Entropy:

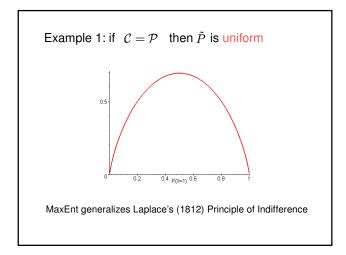
$$\mathbf{H}(P) := E_P[-\ln P(X)] = -\sum_{x \in \mathcal{X}} P(x) \ln P(x)$$



$$\tilde{P} := \underset{P \in \mathcal{C}}{\operatorname{arg\,max}} \ \mathbf{H}(P).$$

Since entropy is concave and $\,\mathcal{X}\,$ is finite $\,\mathcal{C}\,$ is closed and convex :

Unique MaxEnt \tilde{P} always exists!

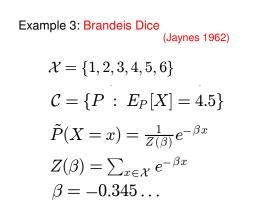


Example 2: independence
if

$$\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2$$

 $\mathcal{X}_1 = \mathcal{X}_2 = \{0, 1\}$
 $\mathcal{C} = \{P : P(X_1 = 1) = p; P(X_2 = 1) = q\}$
then
 $\tilde{P}(X_1 = x_1 \mid X_2 = x_2) = \tilde{P}(X_1 = x_1)$
Rule of thumb: if consistent with constraint, MaxEnt
renders variables independent

٦



Example 3: Brandeis Dice, continued (Jaynes 1962) In practice, given $X_1, X_2, ..., X_n$ Observe empirical averages of some function(s) of X : $\frac{1}{n} \sum_{i=1}^{n} \phi(X_i) = t$ in dice case: $\frac{1}{n} \sum_{i=1}^{n} X_i = 4.5$

Motivation

Rule of Thumb: as symmetric, uniform and independent as possible

Prime Motivation: the MaxEnt distribution for a constraint is the least committal, most *inherently uncertain* distribution, making the smallest number of additional assumptions beyond what is known etc.

Does it make any sense?

Philosophers, Probabilists, Statisticians, Physicists and Logicians have been arguing about that for 200 years now! (and still don't agree)

Laplace, Venn, Boltzmann, Keynes, Ehrenfest, Pearson,...

PRO

- Axiomatic characterizations (Csiszar '89, `only rational inference procedure')
- Concentration Phenomenon (Jaynes '78, Sanov property)
- Often quite good results!
 (e.g. Stutzer, econometrics)
- Game-Theoretic Robustness properties (Topsøe '79/Dawid & Grünwald now)

Pros and Contras

CONTRA

- Ex Nihilo Nihil : Suppose $X \sim P^*$. In general, of course, $P^* \neq \tilde{P}$
- (Ellis, 1842)
- In continuous case, MaxEnt can give arbitrary results

depends on choice of coordinate system Bertrand's Paradox (1900)

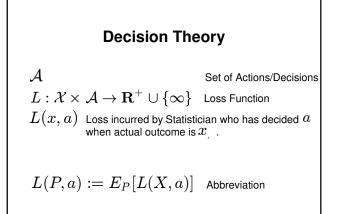
 Sometimes very counterintuitive results Judy Benjamin problem (Van Fraassen, 1981)

Overview

- 1. Maximum Entropy (MaxEnt)
- 2. A Game-Theoretic Characterization of Maximum Entropy
- 3. Generalized Entropy and Game Theory
- 4. Pythagoras

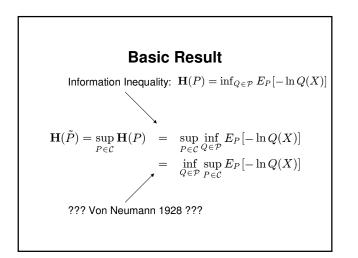
Overview

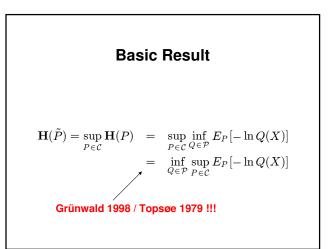
- 1. Maximum Entropy (MaxEnt)
- 2. A Game-Theoretic Characterization of Maximum Entropy
 - Some Game/Decision Theory
 - Basic Result
- 3. Generalized Entropy and Game Theory
- 4. Pythagoras



Logarithmic Loss

 $\begin{aligned} \mathcal{A} &= \mathcal{P} \\ \text{Here actions are formally same as probability distributions} \\ L_{\lg}(x,P) &:= -\ln P(X=x) \; [\; = -\ln p(x) \;] \\ \text{Measures how well } P \; \text{fits } x \\ \text{Logarithmic loss is a proper scoring rule, i.e. for all } P \; : \\ P &= \underset{Q \in \mathcal{A}}{\arg\min} \; E_P[-\ln Q(X)] = \underset{Q \in \mathcal{A}}{\arg\min} \; L_{\lg}(P,Q) \\ \text{(follows by information inequality)} \end{aligned}$





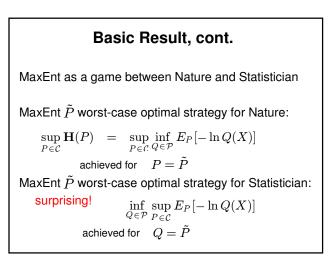
Basic Result, cont.

MaxEnt as a game between Nature and Statistician

MaxEnt \tilde{P} worst-case optimal strategy for Nature:

$$\sup_{P \in \mathcal{C}} \mathbf{H}(P) = \sup_{P \in \mathcal{C}} \inf_{Q \in \mathcal{P}} E_P[-\ln Q(X)]$$

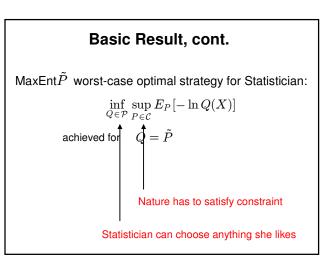
achieved for $P = \tilde{P}$

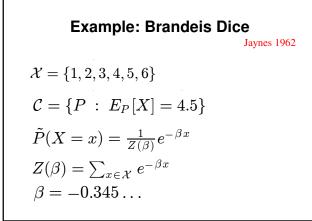


Basic Result, cont.

MaxEnt \tilde{P} worst-case optimal strategy for Statistician:

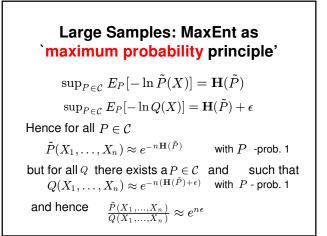
 $\inf_{Q \in \mathcal{P}} \sup_{P \in \mathcal{C}} E_P[-\ln Q(X)]$ achieved for $Q = \tilde{P}$





Brandeis Dice, cont. Jaynes 1962 $C = \{P : E_P[X] = 4.5\}$ $\tilde{P}(X = x) = \frac{1}{Z(\beta)}e^{-\beta x}$ $E_P[-\ln \tilde{P}(X)] = E_P[\beta X + \ln Z(\beta)] = \beta 4.5 + \ln Z(\beta) =$ $= E_{\tilde{P}}[\beta X + \ln Z(\beta)] = \mathbf{H}(\tilde{P}) = \text{const.}$ Hence no matter what P is, as long as it is in C our average log loss will be just as large as we expect it to be (i.e. as if \tilde{P} were `true`) (e.g. $P(X = 4) = P(X = 5) = \frac{1}{2}$)

Brandeis Dice, cont. Jaynes 1962 $C = \{P : E_P[X] = 4.5\}$ $\tilde{P}(X = x) = \frac{1}{Z(\beta)}e^{-\beta x}$ $E_P[-\ln \tilde{P}(X)] = E_P[\beta X + \ln Z(\beta)] = \beta 4.5 + \ln Z(\beta) =$ $= E_{\tilde{P}}[\beta X + \ln Z(\beta)] = \mathbf{H}(\tilde{P}) = \text{const.}$ Hence no matter what \tilde{P} is, as long as it is in C our average log loss will be just as large as we expect it to be (i.e. as if \tilde{P} were `true`) (e.g. $P(X = 4) = P(X = 5) = \frac{1}{2}$) \tilde{P} is an equalizer strategy **Brandeis Dice, cont.** Jaynes 1962 $C = \{P : E_P[X] = 4.5\}$ $\tilde{P}(X = x) = \frac{1}{Z(\beta)}e^{-\beta x}$ $E_P[-\ln \tilde{P}(X)] = E_P[\beta X + \ln Z(\beta)] = \beta 4.5 + \ln Z(\beta) =$ $= E_{\tilde{P}}[\beta X + \ln Z(\beta)] = \mathbf{H}(\tilde{P}) = \text{const.}$ On the other hand, $E_{\tilde{P}}[-\ln Q(X)] > E_{\tilde{P}}[-\ln \tilde{P}(X)] = \mathbf{H}(\tilde{P}) \text{ if } Q \neq \tilde{P}$ Hence if we use any $Q \neq \tilde{P}$ for prediction, Nature can make us suffer by choosing $P = \tilde{P}$ \tilde{P} is uniquely minimax



- Statistician can buy (arbitrary nr) of tickets for each outcome, at price \$1 / ticket
- If actual outcome is x, ticket on x pays \$K. Otherwise it pays nothing
- Statistician puts fraction P(x) of her capital on outcome (ticket) x
- Statistician plays game n times; at each round, she reinvests all her capital

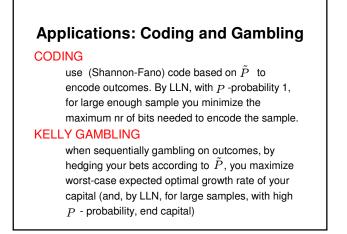
Application: Kelly Gambling

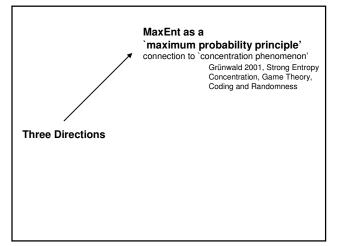
- Statistician can buy (arbitrary nr) of tickets for each outcome, at price \$1 / ticket
- If actual outcome is x , ticket on x pays \$K. Otherwise it pays nothing
- Statistician puts fraction P(x) of her capital on outcome (ticket) x
- Statistician plays game n times; at each round, she reinvests all her capital
- Gain after n rounds:

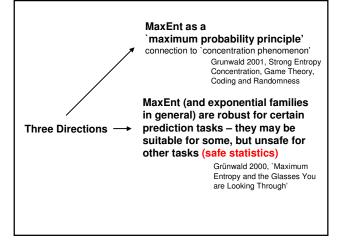
$$G_P^{(n)} = K^n P(x_1) P(x_2) \cdot P(x_n)$$

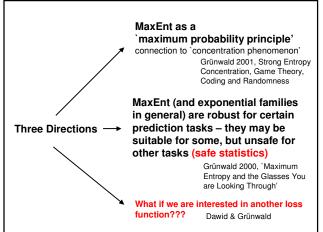
Application: Kelly Gambling

Sequentially gambling as if data were distributed according to MaxEnt \tilde{P} leads to worst-case optimal expected growth-rate (and hence, for large n, maximal end-capital, with P -probability 1)









Generalized Entropy, Game Theory and Pythagoras

The Clue

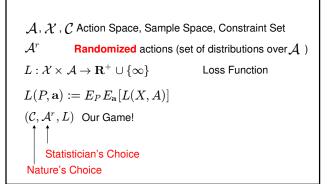
Same Story Can Still Be Told!

Overview

- 1. Maximum Entropy (MaxEnt)
- 2. A Game-Theoretic Characterization of Maximum Entropy
- 3. Generalized Entropy and Game Theory
- 4. Pythagoras

Game/Decision Theory

 $\begin{array}{ll} \mathcal{A}, \, \mathcal{X} \,, \, \mathcal{C} \text{ Action Space, Sample Space, Constraint Set} \\ \mathcal{A}^r & \textbf{Randomized} \text{ actions (set of distributions over } \mathcal{A} \,\,) \\ L: \mathcal{X} \times \mathcal{A} \to \mathbf{R}^+ \cup \{\infty\} & \text{Loss Function} \\ L(P, \mathbf{a}) := E_P \, E_\mathbf{a}[L(X, A)] \\ (\mathcal{C}, \mathcal{A}^r, L) \,\, \text{Our Game!} \end{array}$



Game/Decision Theory

Generalized Entropy

CENTRAL DEFINITION For (arbitrary) loss function L , the `L -entropy of P' is defined by

 $\mathbf{H}_L(P) := \inf_{a \in \mathcal{A}} L(P, a)$ De Groot 1962

Generalized Entropy

CENTRAL DEFINITION For (arbitrary) loss function L , the `L -entropy of P' is defined by

$$\mathbf{H}_L(P) := \inf_{a \in \mathcal{A}} L(P, a)$$

Shannon Entropy is special case: $H_{\lg}(P) = \inf_{Q \in \mathcal{A}} L_{\lg}(P, Q) = \inf_{Q \in \mathcal{A}} E_P[-\ln Q(X)]$

Generalized Entropy

 $\mathbf{H}_L(P) := \inf_{a \in \mathcal{A}} L(P, a)$

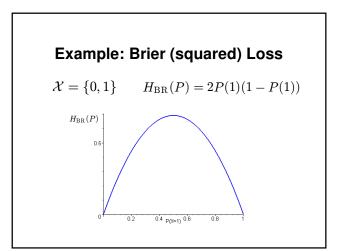
always concave

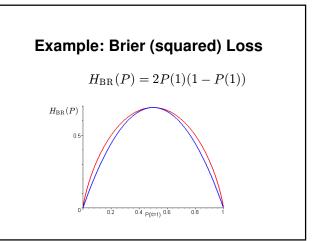
often differentiable

Example: Brier (squared) Loss

$$\begin{split} \mathcal{X} &= \{1, \dots, k\} \\ \mathcal{A} &= \mathcal{P} \\ L_{\mathrm{BR}}(i, P) &:= ||\vec{e_i} - \vec{p}||^2 = \\ (P(1))^2 + \dots + (P(i-1))^2 + (1 - P(i))^2 + (P(i+1))^2 + \dots + (P(k))^2 \\ H_{\mathrm{BR}}(P) &= \inf_{Q \in \mathcal{A}} L_{\mathrm{BR}}(P, Q) = L_{\mathrm{BR}}(P, P) \end{split}$$

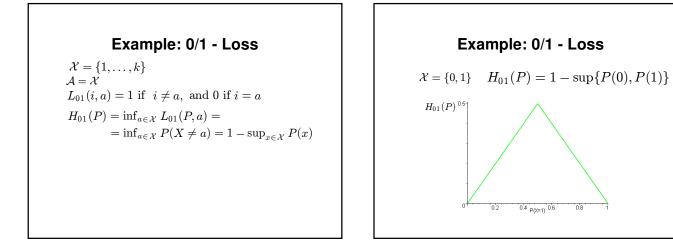
Brier loss is proper scoring rule

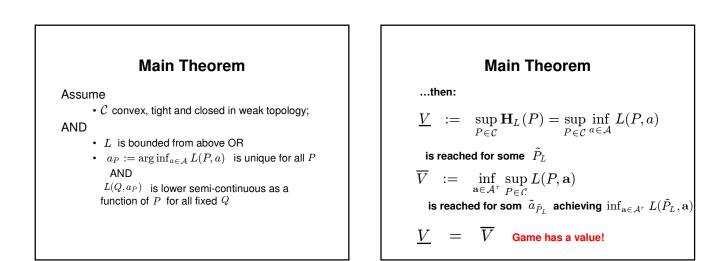


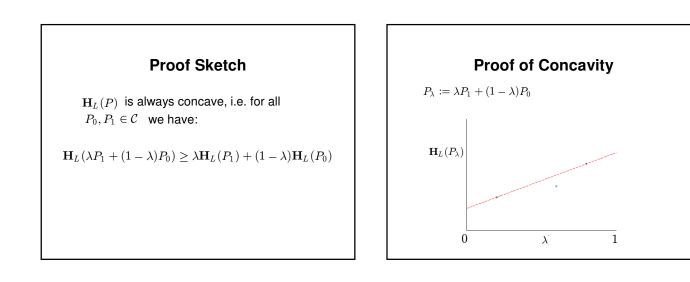


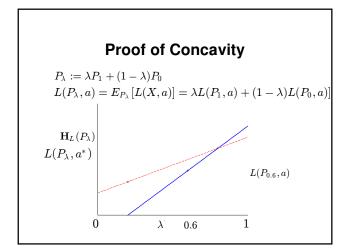
0.4 P(X=1) 0.6

0.8



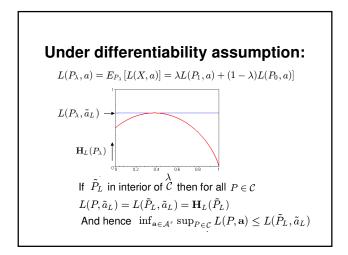


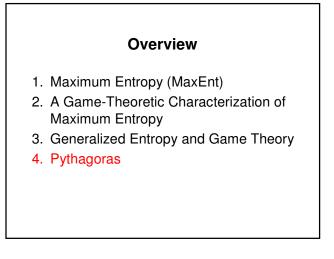




For all $P_0,P_1\in \mathcal{C}\,$, $\frac{d}{d\lambda}H_L(P_\lambda)\,$ exists for all $0\leq\lambda\leq 1$ Trivially,

 $\inf_{\mathbf{a}\in\mathcal{A}^r} \sup_{P\in\mathcal{C}} L(P,\mathbf{a}) \ge L(\tilde{P}_L,\tilde{a}_L)$ We will show that the inequality is an equality.





Discrepancy (= generalized relative entropy)

For given loss function L, we can define the discrepancy $D_L(P, a)$ by

$$D_L(P,a) = L(P,a) - \inf_{a \in \mathcal{A}} L(P,a)$$

Relative Entropy is special case:

$$D(P||Q) = \sum_{x} P(x) \ln \frac{P(x)}{Q(x)} \\ = E_{P}[-\ln Q(X) - [-\ln P(X)]] \\ = E_{P}[-\ln Q(X)] - \inf_{Q' \in \mathcal{P}} E_{P}[-\ln Q'(X)].$$

Example Discrepancy: Brier score $L_{BR}(x,Q) := ||\vec{e}_x - \vec{q}||^2$ $L_{BR}(P,Q) = E_{X \sim P} L_{BR}(X,Q)$ $D_{BR}(P,Q) = L_{BR}(P,Q) - \inf_{Q' \in \mathcal{P}} L_{BR}(P,Q') =$ $||\vec{p} - \vec{q}||^2 = \sum_x (P(x) - Q(x))^2$

• This is just the squared Euclidean distance!

Minimum Relative Entropy Principle

For a given 'prior' distribution Q and constraint \mathcal{C} pick distribution \tilde{P} achieving

$$\inf_{P \in \mathcal{C}} D(P||Q) = \inf_{P \in \mathcal{C}} \sum P(X) \ln \frac{P(X)}{Q(X)}$$

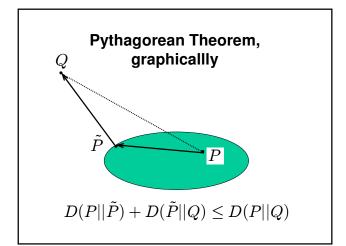
- Interpretation: Q is the member of $\,\mathcal{C}$ that is closest to \tilde{P} , i.e. it is the projection of Q on $\,\mathcal{C}$

Pythagorean Property

As noted by Csiszár, relative entropy behaves in some ways like squared Euclidean distance: for all priors Q and all $P \in \mathcal{C}$ we have

 $D(P||\tilde{P}) + D(\tilde{P}||Q) \leq D(P||Q)$

Under some extra conditions we have equality. Csiszár 1975, 1991, many others

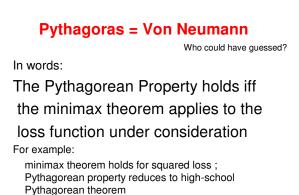


For every loss function L and reference act e, we can define the relative loss $L_e(X, a)$ by

$$L_e(X,a) := L(X,a) - L(X,e)$$

Main Theorem
Grünwald and Dawid, 2002In we
string the second secon

 $\begin{array}{l} D_L(P,\tilde{a}_L)+D_L(\tilde{P}_L,e)\leq D_L(P,e)\\ \text{If }\tilde{P}_L \ \ \text{has full support, then equality holds} \end{array}$



Conclusions/What is this good for?

- · Applications in
 - `Robust Bayesian' inference Berger 1985
 - Iterative Scaling (uses Pythagorean property)
- Theoretical Developments:
 - Generalized Exponential Families
 - Generalized Sufficient Statistics (!!!)
 - Generalized Concentration Phenomenon!?

Thank you for your attention!