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Setting

�
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Finite (for now) Sample Space

Set of all distributions over

‘Convex’ Closed Subset of 

Entropy: 

�
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�
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Maximum Entropy Principle

Suppose we only know that 
We are asked to make probabilistic predictions/ 

decisions about
According to ‘MaxEnt’, we should predict using 

the            that maximizes entropy under the 
constraint      :

Jaynes 1957
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Unique MaxEnt     always exists!

Since entropy is concave and        is finite
is closed and convex :
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Example 1: if                then     is uniform

MaxEnt generalizes Laplace’s (1812) Principle of Indifference

� � � 	� Example 2: independence
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	then

if
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Rule of thumb: if consistent with constraint, MaxEnt
renders variables independent

(Jaynes 1962)
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Example 3: Brandeis Dice
(Jaynes 1962)

Example 3: Brandeis Dice,continued

�

�

In practice, given 

Observe empirical averages of some 
function(s) of          :

in dice case:

�� ��� � � � � ����
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Motivation

Rule of Thumb: as symmetric, uniform and 
independent as possible

Prime Motivation: the MaxEnt distribution for a 
constraint is the least committal, most 
inherently uncertain distribution, making the 
smallest number of additional assumptions 
beyond what is known etc.

Does it make any sense?

Philosophers, Probabilists, Statisticians, 
Physicists and Logicians have been arguing 
about that for 200 years now! (and still don’t 
agree)

Laplace, Venn, Boltzmann, Keynes, Ehrenfest, 
Pearson,…
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Pros and Contras

PRO
– Axiomatic characterizations 

(Csiszar ’89, ònly rational inference procedure’)
– Concentration Phenomenon

(Jaynes ’78, Sanov property)
– Often quite good results!

(e.g. Stutzer, econometrics)
– Game-Theoretic Robustness properties

(Topsøe ’79/Dawid & Grünwald now)

Pros and Contras

CONTRA
– Ex Nihilo Nihil : Suppose                 . In general, 

of course, 
(Ellis, 1842)

– In continuous case, MaxEnt can give arbitrary 
results 

depends on choice of coordinate system
Bertrand’s Paradox (1900)

– Sometimes very counterintuitive results
Judy Benjamin problem (Van Fraassen, 1981)
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Overview

1. Maximum Entropy (MaxEnt)
2. A Game-Theoretic Characterization of 

Maximum Entropy
• Some Game/Decision Theory
• Basic Result

3. Generalized Entropy and Game Theory
4. Pythagoras

Decision Theory
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Set of Actions/Decisions

Loss Function

Abbreviation

Loss incurred by Statistician who has decided   
when actual outcome is       .
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Logarithmic Loss
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Logarithmic loss is a proper scoring rule, i.e. for all       :

Measures how well       fits 

(follows by information inequality)

�

Here actions are formally same as probability distributions 
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Basic Result
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??? Von Neumann 1928 ???

Information Inequality: ���� � ������ �� �� �������

Basic Result
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Grünwald 1998 / Topsøe 1979 !!!

Basic Result, cont.

MaxEnt as a game between Nature and Statistician

MaxEnt    worst-case optimal strategy for Nature:	�
�
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achieved for 
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Basic Result, cont.

MaxEnt as a game between Nature and Statistician

MaxEnt     worst-case optimal strategy for Nature:

MaxEnt     worst-case optimal strategy for Statistician:
surprising!
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achieved for 

achieved for 
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Basic Result, cont.

MaxEnt     worst-case optimal strategy for Statistician:	�
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achieved for 
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Basic Result, cont.

MaxEnt     worst-case optimal strategy for Statistician:	�
�

achieved for 

���
���
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�� �� �������

� � 	�

Nature has to satisfy constraint

Statistician can choose anything she likes
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Example: Brandeis Dice
Jaynes 1962
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Brandeis Dice, cont. 
Jaynes 1962� 	 � � � � � 
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Hence no matter what      is, as long as it is in    ,our
average log loss will be just as large as we expect it to be
(i.e. as if      were t̀rue )̀  (e.g.                            )
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is an equalizer  strategy	�

Brandeis Dice, cont. 
Jaynes 1962� 	 � � � � � 
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Hence  if we use any                for prediction, 
Nature can make us suffer by choosing 

On the other hand,

is uniquely minimax	�

Large Samples: MaxEnt as 
`maximum probability principle’
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Hence for all                       

and hence

� � �

but for all     there exists a            and      such that� � ��

with       -prob. 1

with      - prob. 1

�

�

Application: Kelly Gambling
• Statistician can buy (arbitrary nr) of tickets for 

each outcome, at price $1 / ticket
• If actual outcome is x , ticket on x pays $K. 

Otherwise it pays nothing
• Statistician puts fraction P(x)  of her capital on 

outcome (ticket) x
• Statistician plays game n times; at each 

round, she reinvests all her capital
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Application: Kelly Gambling
• Statistician can buy (arbitrary nr) of tickets for 

each outcome, at price $1 / ticket
• If actual outcome is x , ticket on x pays $K. 

Otherwise it pays nothing
• Statistician puts fraction P(x)  of her capital on 

outcome (ticket) x
• Statistician plays game n times; at each round, 

she reinvests all her capital
• Gain after n rounds:

�
���
� � ��� ����� ���� � � ����

Application: Kelly Gambling

Sequentially gambling as if data were 
distributed according to MaxEnt      leads to 
worst-case optimal expected growth-rate (and 
hence, for large n, maximal end-capital, with    
.   -probability 1)

� ��

	� �

�

Applications: Coding and Gambling
CODING

use  (Shannon-Fano) code based on       to
encode outcomes. By LLN, with     -probability 1,
for large enough sample you minimize the
maximum nr of bits needed to encode the sample. 

KELLY GAMBLING
when sequentially gambling on outcomes, by
hedging your bets according to     , you maximize
worst-case expected optimal growth rate of your
capital (and, by LLN, for large samples, with high

- probability, end capital)

	�

�

	�

�

Three Directions

MaxEnt as a 
`maximum probability principle’ 
connection to c̀oncentration phenomenon’

Grünwald 2001, Strong Entropy 
Concentration, Game Theory, 
Coding and Randomness

Three Directions

MaxEnt as a 
`maximum probability principle’ 
connection to c̀oncentration phenomenon’

Grunwald 2001, Strong Entropy 
Concentration, Game Theory, 
Coding and Randomness

MaxEnt (and exponential families
in general) are robust for certain 
prediction tasks – they may be
suitable for some, but unsafe for 
other tasks (safe statistics)

Grünwald 2000, M̀aximum 
Entropy and the Glasses You 
are Looking Through’

Three Directions

MaxEnt as a 
`maximum probability principle’ 
connection to c̀oncentration phenomenon’

MaxEnt (and exponential families
in general) are robust for certain 
prediction tasks – they may be
suitable for some, but unsafe for 
other tasks (safe statistics)

Grünwald 2000, M̀aximum 
Entropy and the Glasses You 
are Looking Through’

What if we are interested in another loss 
function??? Dawid & Grünwald

Grünwald 2001, Strong Entropy 
Concentration, Game Theory, 
Coding and Randomness



Peter Grünwald
Joint work with A. Philip Dawid

October 2002

Generalized Entropy, Game Theory and 
Pythagoras 7

The Clue

Same Story Can 
Still Be Told!

Overview

1. Maximum Entropy (MaxEnt)
2. A Game-Theoretic Characterization of 

Maximum Entropy
3. Generalized Entropy and Game Theory
4. Pythagoras

Game/Decision Theory
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� ,      ,     Action Space, Sample Space, Constraint Set

Loss Function

Our Game!

�

������ �� ���� ��������
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Randomized actions (set of distributions over      )�

����� � ��

Game/Decision Theory
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� � � � �� �
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� ,      ,     Action Space, Sample Space, Constraint Set

Loss Function

Our Game!

�

������ �� ���� ��������

��
� �

Randomized actions (set of distributions over      )�

����� � ��

Statistician’s Choice
Nature’s Choice

Generalized Entropy

CENTRAL DEFINITION
For (arbitrary) loss function         , the 
 ̀    -entropy of     ’ is defined by��

�� �� � �� ������ ���� ��
De Groot 1962

�

Generalized Entropy

CENTRAL DEFINITION
For (arbitrary) loss function            , the 
 ̀    -entropy of     ’ is defined by��

��� �� � � ������ ��� ����� � ������ �� �� �������

Shannon Entropy is special case:

�� �� � �� ������ ���� ��

�
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Generalized Entropy
��

�� �� � �� ������ ���� ��

always concave

often differentiable

Example: Brier (squared) Loss
� � 	�� � � � � �
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Brier loss is proper scoring rule
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Example: Brier (squared) Loss
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Example: Brier (squared) Loss
��� !" !"
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Example: 0/1 - Loss
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Example: 0/1 - Loss
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Main Theorem

Assume
• convex, tight and closed in weak topology;                  

AND
• is bounded from above OR
• is unique for all

AND
is lower semi-continuous as a    

function of      for all fixed 

�

�

�
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Main Theorem 

� �� ���
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�� �� � � ���
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…then:

is reached for some 

is reached for some         achieving  

	��
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Game has a value!� � �

	� 	��

Proof Sketch

is always concave, i.e. for all   
we have:              

������

�� �� �

��� �� � �

� � 
�� ��� ������ � ��

�� ���� � ��� ����� � ��� ���� � ��� ���� ����

Proof of Concavity

�� �� ��� � ��� ����

�� ����
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Proof of Concavity

�� �� ��� � ��� ����

�� ����
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Under differentiability assumption:
�
��
������

Trivially,

�� � �� � � � � � � �

������ � ���� �� ������ � �� 	�� � 	�� �

	

For all                     ,                   exists for all 

We will show that the inequality is an equality.
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Under differentiability assumption:

�� ����
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If        in interior of     then for all  
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	And hence  

�

Overview

1. Maximum Entropy (MaxEnt)
2. A Game-Theoretic Characterization of 

Maximum Entropy
3. Generalized Entropy and Game Theory
4. Pythagoras

Discrepancy 
(= generalized relative entropy)

For given loss function L, we can define the
discrepancy                 by�� �����

Relative Entropy is special case:

�� ��� �� � ���� ��� ������ ���� ��
�

��� ���� �
�

�

� ��� ��
� ���

����

� �� �� ������� �� ��� �����

� �� �� ������� � ���
� ���

�� �� ���������

Example Discrepancy: Brier score

• This is just the squared Euclidean distance!

�!"����� �� ����� � ����
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�!"����� � ���� �!"�����

�!" ����� � �!"����� � ���
� ���
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����� ����� �
�

�

������ ������

Minimum Relative Entropy 
Principle

For a given ‘prior’ distribution      and constraint
pick distribution      achieving 

• Interpretation:     is the member of      that is 
closest to     , i.e. it is the projection of      on

�

�
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��� ���� � ���
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�
� ��� ��

� ���

����

�

�
�

	�
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Pythagorean Property

As noted by Csiszár, relative entropy behaves
in some ways like squared Euclidean distance:
for all priors      and all               we have

Under some extra conditions we have equality.

� � ��

��� �� 	� � ��� 	� ���� � ��� ����

Csiszár 1975, 1991, many others
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Pythagorean Theorem,
graphicallly�

�
	�

��� �� 	� � ��� 	� ���� � ��� ����

Relative Games

For every loss function L and reference act e,
we can define the relative loss                  by

������� �� ������ � ������

�������

Main Theorem

For all    ,     such that                is finite for all
the game                   has a value, i.e.

reached for saddlepoint
if and only if, for all             :

Grünwald and Dawid, 2002

� 	�� � 	���

����� 	�� � ��� � 	�� � �� � �� ��� ��

����� � ���

� � �
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���
� ��

���
���

����� �� � ���
����

���
� ��

�������

� �� ��� �� � � �

If          has full support, then equality holds 	��

Pythagoras = Von Neumann

In words:

The Pythagorean Property holds iff
the minimax theorem applies to the
loss function under consideration

For example:
minimax theorem holds for squared loss ; 
Pythagorean property reduces to high-school 
Pythagorean theorem

Who could have guessed?

Conclusions/What is this good for?

• Applications in
– R̀obust Bayesian’ inference 
– Iterative Scaling (uses Pythagorean   

property)
• Theoretical Developments:

– Generalized Exponential Families
– Generalized Sufficient Statistics (!!!)
– Generalized Concentration Phenomenon!?

Berger 1985

Thank you for your attention!


