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Minimum Description Length Principle 

• ‘MDL’ is a method for inductive inference, 
• in particular developed and suited for model 

selection problems

Rissanen 1978, 1987, 1996, 
Barron, Rissanen and Yu 1998

Minimum Description Length Principle 

• MDL is based on the correspondence 
between ‘regularity’ and ‘compression’:
– The more you are able to compress a 

sequence of data, the more regularity you 
have detected in the data

– Example:
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Minimum Description Length Principle 

• MDL is based on the correspondence 
between ‘regularity’ and ‘compression’:
– The more you are able to compress a 

sequence of data, the more regularity you 
have detected in the data…

– …and thus the more you have learned
from the data: 

• ‘inductive inference’ as trying to find regularities 
in data (and using those to make predictions of 
future data)

Model Selection

Given data                                and ‘models’
, 

which model best explains the data ?
– Need to take into account

• Error (minus Goodness-of-fit)
• Complexity of models

– Examples
• Variable (order) selection in regression
• Selection of order in (hidden) Markov Models
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Example: Regression Example: Regression

Example: Regression Example: Regression

Example: Regression Modern MDL!

Kinds of MDL

Algorithmic, ‘ideal’ MDL
(Li and Vitányi ’97)

2-part code MDL
(Rissanen ’78, ’83)

Universal model based MDL
(Rissanen ’96, Barron, Rissanen,
Yu ‘98, Grünwald ‘03)

MML (Wallace ‘68 (!), ‘87)
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Five MDL Lectures

Part I:  basics
• information-theoretic preliminaries:

Probabilities and code lengths, universal code/model

Part II: basic MDL model selection
• Four interpretations; How to use it in practice 

Part III: the general MDL Principle; 
• extensions/difficulties

Part IV: classification
• promises and problems

Part V: MDL and the others
• does it work in practice?
• justification/comparison to other approaches
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Part I: Overview

• Probability and Code Length
• Universal Models
• MDL Model Selection

Codes

(countable) ‘data alphabet’

A (uniquely decodable) code      is a one-to-one 
map from      to             .

denotes the length (in bits) needed to 
describe      .
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Example 1: uniform code

• Let

• One possible code for     is given by

• Then for all �, 
• But of course infinitely many other (not 

necessarily uniform-length) codes are possible 
as well!

Code Length & Probability

• Let      be a probability distribution. Since                   
only few      can have  ‘large’ probability

• Let       be a code for            . . Since the  fraction of  
sequences that  can be compressed by more than   
bits is less than                                , only very few
symbols can have small code length.

• This suggests an analogy!
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Code Lengths ‘are’ probabilities… 

• Let      be a (uniquely decodable) code over 
countable set     . Then there exists a 
(possibly defective) probability distribution       
such that

• is a ‘proper’ probability distribution iff the 
code     is ‘complete’.

(follows from Kraft-McMillan inequality)
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…and probabilities ‘are’ code lengths!

• Let      be a probability distribution over 
countable set      . Then there exists a code  
for     such that 

�
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The Most Important Slide!

There is a 1-1 correspondence between 
probability distributions and code length functions, 
such that small probabilities correspond to large 
code lengths and vice versa:

	
� � �� � � � ����� � � � 
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The Most Important Slide!

There is a 1-1 correspondence between 
probability distributions and code length functions, 
such that small probabilities correspond to large 
code lengths and vice versa:

	
� � �� � � � ����� � � � 
�� ��� �

Note: data alphabet is now a sample 

The Most Important Slide!

There is a 1-1 correspondence between 
probability distributions and code length functions, 
such that small probabilities correspond to large 
code lengths and vice versa:

Example:       is 1st 0rder Markov Chain – if      fits 
data well (regularities in data are well-captured by

) , the code based on     compresses much.� �

�� ��
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Example 1: uniform code/distr.

• Let

• Let

• One of the codes corresponding to � is

• We have for all � : 
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0 1

111000 01

a b c d

Every prefix code can be represented by a binary tree.
For example:

Prefix codes      distributions

0 1

1110

a

b c

For all � :

Prefix codes      distributions
Non-uniform example:

General Recipe (Kraft)

• Codes        Distributions:
• For every uniquely decodeable code, there is a prefix code

with the same length function (McMillan)
• Let � be a leaf node of some arbitrary binary tree, and let 
�(�) be the length of path between � and root node. Then

• For every prefix code there is a binary tree with leaf nodes 
representing the encoded symbols � such that for all �:

• Distributions        Codes: slightly more complicated

Example 3: distributions     codes

0 1

1110

a

b c

For all �, difference                                  

• Now suppose we extend                                           
to � outcomes by independence                   

• For all        , we have

• It seems that, for some sequences, e.g., 
,   we have                               

which is much larger!?!?
• …but it’s not: rather than concatenating codewords, we 

should directly assign probabilities to 

Example 3: distributions     codes The Most Important Slide!

There is a 1-1 correspondence between 
probability distributions and code length functions, 
such that small probabilities correspond to large 
code lengths and vice versa:

	
� � �� � � � ����� � � � 
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Remarks

• In this correspondence, probability distributions 
(mass functions) are treated as mathematical objects 
and nothing else.

• Extend correspondence to continuous sample space 
through discretization;        may stand for density

• Distributions and codes over sequences of outcomes: 
still max. 1 bit round-off error

• Neglect difference and identify code length functions 
and probability mass functions

�

Part I: Overview

• Probability and Code Length
• Universal Models
• MDL Model Selection

Universal Codes

• : set of code (length function)s available to 
encode data

• Suppose we think that one of the code(length 
function)s in      allows for substantial 
compression of 

• GOAL:  encode      using minimum number of 
bits!


�� � �� � � � � � ��
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Universal Codes

• Simply encoding       using the           that 
minimizes code length                              
does not work (encoding cannot be decoded)

• But there exist codes      which, for any 
sequence        are ‘almost’ as good as 

• These  are called ‘universal codes’ for 

��	�� �����
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Universal Codes

• Example:       finite
• There exists a 2-part code      such that for some 

constant     , for all            , all             :

• In particular, 

• Note that      does not depend on     , while typically,        
grows linearly in   
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Universal Models

• Let       be a probabilistic model, i.e. a family (set) of 
probability distributions

• Assume        finite:
• There exists a code        such that for all                :

• Hence, exists distribution        such that

• i.e. 
• is a ‘universal model’ (distribution) for    
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Terminology

• Statistics:
– Model = family of distributions

• Information theory:
– Model = single distribution
– Model class = family of distributions

• Universal model is a single distribution acting 
as a representative of/defined relative to a set 
of distributions

Bayesian Mixtures are 
universal models

• Let      be a prior over       . The Bayesian 
marginal likelihood            is defined as:

��������� ��� �
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Bayesian Mixtures are 
universal models

• Let      be a prior over       . The Bayesian 
marginal likelihood is defined as:

• This is a universal model, since
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2-part MDL code is a 
universal model (code)

• The ML (maximum likelihood) distribution           
is the      achieving

• Code        by first coding ,                            
then coding       ‘with the help of’            :

����� ��
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2-part vs. Bayes universal models

• Bayes’ mixture typically ‘better’ universal 
model in that it assigns larger probability 
(shorter code length) to outcomes. 

• What does ‘better’ really mean?
• What prior leads to short code lengths?

Optimal Universal Model

Look for       such that regret

is small no matter what       are; i.e. look for��

�

��	� � ����� �� � �� 
�� � ��� �� �� 
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Optimal Universal Model - II

is achieved for Normalized Maximum Likelihood 
(NML) distribution (Shtarkov 1987): 

�
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Summary: Universal Codes

• Given set of candidate codes 
• Universal code is a code satisfying for all          : 

– If      finite, then there exist 2-part codes which satisfy 
for all          :

- if      infinite, then regret typically grows with �
- Often, logarithmic regret is achieveable

Summary: Universal Models

• Given set of candidate distributions
• Universal model is distribution with for all          :

– If      finite, then finite regret achieveable
- if      infinite, then regret typically grows with �

- For parametric families logarithmic regret is achieveable

That is,

Summary: Optimal Universal Model

• Minimax (optimal in the worst-case) regret is 
achieved by the Normalized Maximum 
Likelihood Distribution :

� �� � � � � � �
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Part II: Overview

1. MDL model selection for parametric models
2. Four interpretations:

• Compression Interpretation
• Counting/Geometric Interpretation
• Bayesian Interpretation
• Predictive Interpretation

3. How to use it in practice
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MDL Model Selection

• Suppose we are given data                              
• We want to select between models        and    

as explanations for the data. MDL tells us to 
pick the        for which the associated optimal 
universal model                        assigns the 
largest probability to the data: 

��� �� �
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MDL Model Selection

Select          minimizing                             , i.e. minimizing

(this is just ‘MDL model selection between two 
simple models’; it is not ‘the MDL Principle’)
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�
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complexity term (             ) 

�

� 
��error (= minus fit) term

Four Interpretations

• Compression interpretation

• Counting/Geometric interpretation

• Bayesian interpretation

• Predictive interpretation

Compression Interpretation

Select          minimizing                             , i.e. minimizing

• select model that compresses data most, treating all 
distributions within model on equal footing; 

• selected model detects most (non-spurious) regularity 
in data
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complexity term (             ) 

�
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��error (= minus fit) term

Counting Interpretation of MDL

Select          minimizing                             , i.e. minimizing
� 
�� ��� ��������� � 
�

�
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complexity term (             ) 

�

� 
��error (= minus fit) term

Log ‘effective’ number of distributions

Something like ‘total fit’ model gives to data

Counting Interpretation of MDL
�
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number of distributions
total amount of confusion
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Counting Interpretation of MDL

Select          minimizing                             , i.e. minimizing
� 
�� ��� ��������� � 
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complexity term (             ) 

�

� 
��error (= minus fit) term

Log number of ‘distinguishable’ distributions

Something like ‘total fit’ model gives to data

Parametric Model Classes

• Under regularity conditions:

• Here: 
�

����
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Number of free parameters in

Fisher information matrix at  

Goes to 0 as 
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Geometric Interpretation of MDL

• Under regularity conditions:

• Compare BIC (Schwartz ’78), old ‘MDL Criterion’
(Rissanen ’78): select         minimizing:
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Geometric Interpretation of MDL

• Under regularity conditions:

• Complexity is not only related to number of 
parameters! (Balasubramanian, Myung, Pitt ’00)

� 
����� ��
� ��� �

Bernoulli vs. Crazy Bernoulli embedded in First-Order Markov
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Geometric Interpretation of MDL

• Under regularity conditions: � 
����� ��
� ��� �

nr of parameters

Curvature term

Complexity    TermsError Term
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Geometric Interpretation of MDL

• Under regularity conditions: � 
����� ��
� ��� �

�

�
Log ratio of total nr of distinguishable
(‘essentially different’) distributions  in

to distinguishable distributions in
close to (Balasubramanian ’98)
�

�
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Geometric Interpretation of MDL

• Under regularity conditions: � 
����� ��
� ��� �

�

�
Log ratio of total nr of distinguishable
( èssentially different’) distributions  in

to distinguishable distributions in
close to (Balasubramanian ’98)
�

�
� ��
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MDL truly is a 
‘normalized 
Maximum
Likelihood 
Principle’!

• Recall the Bayesian universal model

• Bayesian model selection between         and 
tells us to select the        maximizing

• with uniform prior W this is the       maximizing

Bayesian Model Selection vs. MDL

Bayesian Model Selection vs. MDL

• Under regularity conditions:

• Under regularity conditions:

• Always within O(1) ;  hence, for large enough �, Bayes
and MDL select the same model
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Bayesian Model Selection vs. MDL

• Under regularity conditions:

• Under regularity conditions:

• If we take Jeffreys-Bernardo prior,                

within o(1): Bayes and NML become indistinguishable
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Bayes and MDL, remarks

• Jeffreys’ prior was proposed as a ‘non-
informative Bayesian prior’ by Jeffreys in 
1939 

• Jeffreys’ prior is uniform prior not on 
parameter space but on the space of 
distributions with the ‘natural metric’ that 
measures distances between distributions by 
how distinguishable they are.

Four Interpretations

• Compression interpretation
• Counting/Geometric interpretation
• Bayesian interpretation
• Predictive interpretation
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Predictive Interpretation
• Interpret                   as ‘loss’ incurred when predicting 

using     while actual outcome was     

• Bayesian marginal likelihood can be rewritten as 
accumulated log-loss prediction error

• Here                                       is the  
Bayesian predictive distribution (posterior mixture)
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Predictive Interpretation, II

• Bayesian predictive distribution given by

• For large �, Bayesian posterior concentrates 
very sharply around ML distribution

• Therefore, Bayes predictive distribution 
resembles ML distribution more and more

Predictive Interpretation, II

• Idea (Dawid/Rissanen): for large    , Bayesian 
predictive distribution resembles ML 
distribution more and more; therefore, may try 
to approximate by

or more generally by

for any ‘likelihood-based estimator’       

�

� �������� � � � � � ������

����������� � � � � � �����

� ���!���� � � � � � ������
! !�

Predictive Interpretation, III

• It turns out that (under regularity conditions)

• Hence, ‘predictive code’ is a universal model
(the fourth kind we encounter!)

• MDL model selection picks the model        such that 
sequential prediction of the future given the past 
within the observed data leads to lowest accumulated 
sequential prediction error.

�
��

��� 
�� ��� �����
����� � � 
�� ��� �������� � �

� 
�������

�

Predictive Interpretation, IV

• MDL can be cast in terms of prequential
validation (Dawid ’84)

• similar to cross-validation
• essential difference: in MDL/prequential

validation each outcome predicted exactly 
once

Part II: Overview

1. MDL model selection for parametric models
2. Four interpretations:

• Compression Interpretation
• Counting/Geometric Interpretation
• Bayesian Interpretation
• Predictive Interpretation

3. How to use it in practice
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How to use MDL in practical 
Model Selection Problems

In order of preference:
1. Try o(1)-universal models: NML distributions 

or non-informative Bayesian mixtures or
2. Use predictive MDL

• with sequential Bayes-MAP estimates
3. Use two-part code MDL with ‘good’ codes or
4. Use asymptotic expansion (k/2 log n +…)  

(or maybe not -- be super-careful!) or
5. Use another O(1)-universal model

Computational Issues

• we NEVER NEVER have to do any real coding!
• Code length of Bayesian universal model can be 

approximated with  Markov Chain Monte Carlo
• and           easily computable for 

exponential families; otherwise, may find local
maximum of likelihood function (e.g. with EM)

•

Computational Issues

• we NEVER NEVER have to do any real coding!
• Code length of Bayesian universal model can be 

approximated with  Markov Chain Monte Carlo
• and           easily computable for 

exponential families; otherwise, may find local
maximum of likelihood function (e.g. with EM)

• Problematic aspect: now complexity term should  
really be recomputed as well!
– if             represents a local maximum, then        

com                     becomes much smaller!

Non-nested models

• We can certainly compare models of entirely 
different functional form, but same nr of parameters!

• Consider two standard psychological models for 
relating stimulus strength to perceived strength:

• Fechner’s model 

• Stevens’ model

• Can use MDL to find which of the two is better for 
our experimental data!

���������������� ��������������������

�
��
����
����������
����
��
����
����������
����
��
����
����������
����
��
����
����������
���

�	�����������	�����������	�����������	����������������
��
����������
��
����������
��
����������
��
����

Difficulties/extensions

• MDL model selection when…
1. comparing infinitely many models
2. also need parameter estimates
3. complexity term infinite

• …solution suggests ‘general MDL Principle’, 
beyond model selection
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Comparing finitely many models

• Let                         be the list of candidate models. MDL
selects

• Reinterpretation: MDL selects       minimizing the total 
two-part code length for the data, where data are 
encoded by (1) uniform code for the model and (2) 
optimal universal code for the data given the model

• Here for                     

��

Comparing infinitely many models

• Select                           

• where now         is the length of some code for all the 
integers, e.g. 

• If we simply picked       minimizing
then indeed, things might go wrong:

• If all the         are singleton sets, then we may overfit 
forever (for example, each        is a Markov chain of some 
order; the list is such that all Markov chains with rational-
valued parameter of each order  is included)

General MDL Principle, part I

• Relative to the given set of candidate models,
– you first devise a single code to encode all 

possible sequences, 
• This code will be “partly two-part, partly one-part”

– you then do all inferences based on that code 
• Apparently needed to avoid overfitting       (our main 

goal!) 
• we will see that it is needed to get a coherent grand 

picture!

Comparing infinitely many models

• Better not use two-part code for the 
parameters

• NML, Bayes give much smaller regret (relative 
code-lengths)

• We are forced to use two-part code for 
encoding model index

• Because we want to select a model, we 
explicity have to encode it

• Note: complexity of models not due to model 
index!

MDL for parameter estimation

• Indeed, MDL for parameter estimation within a given 
model       is not the same as maximum likelihood

• Instead, MDL tells you to devise a universal two-part 
code with smallest possible minimax regret relative to 

• For actual given data    , you would then pick the     
minimizing the two-part code length! 

• Because we want to select a parameter (was: model), we 
explicity have to encode it!

• Leads to truncated (low-precision) estimates!

MDL for parameter estimation

• Example:       is Bernoulli model
• Look for code � achieving

….under constraint that � is of form

for all                    and some code      on 
(subset of) 
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MDL for parameter estimation

• Example:       is Bernoulli model
• ML estimator     is equal to frequency of 1’s

• takes value in set
• possibilities -> need                    bits to 

describe 

• (rough) MDL estimator is nearest point to     in 
set

• need                                  bits to describe 

Difficulties/extensions

• MDL model selection when…
1. comparing infinitely many models
2. also need parameter estimates
3. complexity term infinite/undefined

• …solution suggests ‘general MDL Principle’, 
beyond model selection

What if NML distribution 
undefined?

• In many interesting applications, NML 
distribution undefined

• Examples: linear regression, normal 
distribution:          should have density

• Undefined since complexity 

diverges!

� ��� ���� �����
�� ���� � ����� �� ������ �����

�

��"

�

�

��

���� ������ �� ������ �����

�

What if NML distribution 
undefined?

• In many interesting applications, NML 
distribution undefined

• In such cases typically also                diverges
• Hence Jeffreys’ prior improper
• However, integral typically remains small 

even if parameters get quite close to 
boundary of parameter space

� �
������

Undefined NML, II

• Simplistic solution:
• start with

where (ML) parameters are restricted to

• this is finite for each pair of ‘hyperparameters’
and 

��"��
� ���� � �� ��

���� ���� �����
�� ���� ������ �� ������ �����

�

� � � �  �� � �

 �

Undefined NML, II

• Explicitly encode hyperparameters by 
encoding integers        with  

• We need  

bits
• Unless  for outrageous data sets, need much 

less bits for hyperparameters than for ordinary 
parameters 

 � !

� � ��  � �!
�

� �

� 
� ����� ��� �� ��	
� �

� 
� ��"��
� ���� � �� � ���� � ���
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Undefined NML, II

• Explicitly encode hyperparameters by 
encoding integers        with  

• We get as our new code length:

 � !
� � ��  � �!
�

� 
�  � 
� !

� �

� 
� � ���� ��� �� ��	
� �

� 
� ��"��
� ���� � �� � ��� � � ���

More sophisticated ideas

– Rissanen’s Renormalization (2001)
– Barron and Liang’s conditional minimax

universal codes
• Elegant solution for variable selection in 

regression

– Many others (hot topic!)

General Picture

• such that there is no universal model         achieving 
minimax optimal regret  

• Carve up       into subsets
and define       such that for each      , the regret  

is almost as small as the regret of     , achieving 
minimax regret for the smallest containing

� ��

� �� ��� � � � �

��

� 
�� ���� ��� � �� 
�� ��� ������ ���

� �������� ��

General Picture

• such that there is no universal model         achieving 
minimax optimal regret  

• Carve up       into subsets
and define       such that for each      , the regret  

is almost as small as the regret of     , achieving 
minimax regret for the smallest containing

• is called (by me) quasi-minimax optimal univ. model. 
It achieves ‘nearly’, ‘almost’ minimax regret:

� ��

� �� ��� � � � �

��

� 
�� ���� ��� � �� 
�� ��� ������ ���

� �������� ��

General Principle

• We were doing exactly the same thing when 
trying to find the best model from a countably
infinite list of models

• ‘Luckiness’ idea:
• Let   be the union of 1st- and 

2nd order MC models, and compare the NML 
distribution    with the distribution

which we implicitly used in model selection

� ��� ���

� 
�� ���� � � ��	
�������

� 
���"��
� ���� � �

��"������

‘Luckiness Idea’

• If you’re lucky, you need much less bits using the 
code      than the code

• If you’re not lucky, you need hardly any more bits 
(max. 1) using the code       than the code

• Related to Luckiness principle in Computational Learning 
Theory (Herbrich and Williamson, 2001) 

• ‘‘even if a set of classifiers has infinite VC-dim, your input 
(x)- data may be such that  ‘you’re lucky’ and the 
effective, ‘conditional’ VC-dim is very small’’.

��"������

��"������
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The MDL Principle for coding

• Let        be the union of all models under 
consideration. MDL tells you to design a single 
universal code for       based on two sub-principles:

• 1. Minimax Principle: try to be as ‘honest’ as possible, 
associating      with minimax regret universal code

• 2. Luckiness/Quasi-minimax Principle: if regret 
becomes too large, carve up     into submodels and 
use a ‘quasi-minimax regret’ universal model

• Never much worse than minimax regret model
• If you’re lucky, considerably better than minimax regret 

model

The MDL Principle for modeling

• Let       be set of all contemplated distributions
• interested in ‘best’ explanation for data,
• explanation is an element of a set 

such that   
• MDL Principle:

1. Set up a quasi-minimax regret universal model        for     
2. itself consists of a (quasi-) minimax regret two-part 

universal code for encoding � and a (quasi-) minimax
one-part universal code for encoding           given  

Examples of General Principle

• old two-part code MDL for models which are 
best viewed as countable set 
(rather than continuously parameterizable)

• boundary problems of NML; 
improper Jeffreys’ prior

• non-parametrics

Two-Part Code MDL

(old!) two-part code MDL (Rissanen ’78) :
– Let      be a set of hypotheses. Given data    ,    

pick the              that minimizes the sum of
• the description length of the hypothesis
• the description length of the data      when 

encoded ‘with the help of the hypothesis     ’

�
" � �

�

"

"
�

Two-Part Code MDL

• For probability models this becomes:
• Let       be a countable set of  distributions
• Then two-part code MDL tells us to select the              

achieving

• For every prior/code length function, this is a universal 
model, so may be called ‘some version of MDL’

• But it’s not ‘sophisticated MDL’ – sophisticated MDL 
uses (quasi-) minimax regret universal models

������ ���������������� ���������������� ���������������� ����������

!����
�
���
��!����
�
���
��!����
�
���
��!����
�
���
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Classification: Overview

1. Introduction
2. MDL for classification, basic approach 
3. The Promise

• Basic approach has some great properties!

4. The Problem
• Basic approach shows problematic behaviour

5. Conclusions

Introduction

• MDL mostly developed and studied for probability models
• Yet often applied to models/model classes that are not 

(directly) interpretable as probability distributions
• Here we apply it to models that are families of classifiers

• decision trees
• support vector machines
• neural networks…

Introduction - II

• There is no unique definition of ‘the’ MDL 
Principle for classification

• Yet there is a certain standard approach that 
has been employed by most authors:

• Quinlan and Rivest (1989), 
• Rissanen & Wax (1989), 
• Kearns et al. (1997) ; 
• several others…

Introduction - III

• Standard approach has pleasant but also unpleasant
properties:

• strange experimental results (Kearns et al. 1997 (?))
• can be inconsistent! (Grünwald & Langford, 2003) 

– Even with infinite data, MDL does not identify the classifier 
with the smallest ‘generalization error’ (probability of making 
a wrong prediction) – it asymptotically overfits! 

• Several adjustments exist
• Barron (1991), Yamanishi (1998), McAllester’s PAC-

Bayes (1999)
• these are provably consistent
• but loose some of the pleasant properties of standard 

approach 

Classification: Overview

1. Introduction
2. MDL for classification, basic approach
3. The Promise

• Basic approach has some great properties!

4. The Problem
• Basic approach shows problematic behaviour

5. Conclusions

Classification

• Given: 
• Feature space 
• Label space
• data 
• countable set       of hypotheses (classifiers)

• Goal: find a             that makes few mistakes on future 
data from the same source

• We say ‘" has small generalization error’
• if data are noisy, then it is not a good idea to adopt the "

that minimizes nr of mistakes on the given data
• leads to over-fitting

"

� � ����� ���� � � � � ���� ���� � "

" � � � �
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Example: intervals (toy) domain
Kearns et al., 1995

0 1

set of functions                                 that switch value k times

Example: intervals domain
Kearns et al., 1995

0 1

set of functions                                 that switch value k times

the " in picture is in          and makes 

1 classification error on data �

Two-part code MDL

• We use the oldest, crudest version of MDL 
(two-part code MDL, Rissanen ’78) 

• Problematic aspects of MDL for classification 
are not solved by using modern versions of 
MDL such as normalized maximum likelihood

• Grünwald & Langford, 2003

• Using two-part code allows us to keep our 
story as simple as possible

Two-Part Code MDL

Two-part code MDL:
– Let      be a set of hypotheses. Given data    ,    

pick the              that minimizes the sum of
• the description length of the hypothesis
• the description length of the data      when 

encoded ‘with the help of the hypothesis     ’

�
" � �

�

"

"
�

Two-Part Code MDL

Pick             minimizing" � �

Two-Part Code MDL

Pick             minimizing" � �

Encoding of                           takes 
bits; this term does not involve " . Therefore it plays no   
role in minimization and can be dropped!
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Two-Part Code MDL

Pick             minimizing" � �

Any function on     satisfying Kraft inequality

• , � can be thought of as 
‘prior’ ; many reasonable possibilities

• example code for intervals domain:
encode             in three steps:

1. Encode number of switches �

2. Encode ‘granularity’ �

3. Code location of  � switches within

Coding Hypotheses

Pick             minimizing" � �

Code                       by coding
a. number of mistakes
b. location (index) of mistakes

��� � � � � ��

Coding Data

• Define:
– mistake count       : 

number of mistakes " makes on �

– 0/1-loss: for 

• Formally,

Coding Data:              .

nr of bits needed to
encode total nr of 
mistakes

nr of bits needed to
encode location of
mistakes

Standard approach to coding data

• familiar trade-off between error and complexity 
• we can and did leave out                    term

2p-code length intervals domain

complexity termerror term
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• We call the coding scheme for ‘coding data 
with the help of hypothesis’ MDL Version C0.

• (slight variations of) MDL C0 used by
• Quinlan and Rivest (1989), 
• Rissanen & Wax (1989), 
• Kearns et al. (1997) ; 
• even Wallace & Boulton (1968)

• But is it the ‘right’ way to do things?

MDL Version C0 Potential Problems:

1. Many different coding schemes of data given 
hypothesis                          possible

• Comparison strongly indicates that MDL C0 is 
basically the ‘right’ coding scheme.

2. Theoretical results on MDL C0
• (in sharp constrast to probabilistic MDL), analysis 

strongly indicates that nevertheless something’s 
wrong with MDL C0

Classification: Overview

1. Introduction
2. MDL for classification, basic approach 
3. The Promise

• Basic approach has some great properties!

4. The Problem
• Basic approach shows problematic behaviour

5. Conclusions

1. Alternative coding schemes

• Two other coding schemes have been 
proposed in the literature.

• seemingly very different, they both lead to same 
hypothesis selection criterion as MDL C0

• shows that MDL C0 is special case of general 
procedure, applicable to arbitrary loss functions

• Evidence that what we’re doing is o.k.!

MDL C1: entropification

• Suppose we have a code such that for all ", all 
���#,��) , the code length is an increasing affine
function of the loss:

• Here                  may depend on �, but not on "

Rissanen 1989, implicit in Vovk 1990
Meir and Merhav 1995, Yamanishi 1998
Grünwald 1998

MDL C1: entropification

• Suppose we have a code such that for all ", all 
���#,��) , the code length is an increasing affine
function of the loss:

• then  ‘error term’  in expresses 
exactly the error function we are interested in!

Rissanen 1989, Meir and Merhav 1995, 
Yamanishi 1998, Grünwald 1998,
implicit in Vovk 1990 and others
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entropification

• We can construct a code satisfying

by first constructing a conditional probability distribution: 

Note:              does not depend on " or $####### !

entropification

• We can construct a code satisfying

by first constructing a conditional probability distribution: 

• then

entropification

• For each             we constructed a corresponding conditional 
probability distribution satisfying , for all , 

• By Kraft inequality, there must also exist a (conditional) code 
defined on data sequences of length �#, satisfying

• This is the code we’ll use!

entropification

• For each             we constructed a corresponding conditional 
probability distribution satisfying , for all , 

• By Kraft inequality, there must also exist a (conditional) code 
defined on data sequences of length �#, satisfying

– Code length measured in nats
– Important: no claim that                       generates the data; 

purely artificial construction to make sure that code length of 
data given " = linear function of loss " makes on data

entropification

• MDL now becomes: select             minimizing

• Problem: how to choose    ?
• different     lead to different choices of "
• measures how strongly the 0/1-error should be 

weighted compared to the ‘complexity’ of "###
– viewed as learning rate, inverse ‘temperature’

entropification

• MDL now becomes: select             minimizing

• Problem: how to choose    ?
• different     lead to different choices of "
• measures how strongly the 0/1-error should be 

weighted compared to the c̀omplexity’ of "
• Intuitive Solution 

• learn not just " , but also    from the data
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entropification

• MDL now becomes: select achieving

• We’ll see in a minute that this does (almost) 
exactly the same as MDL C0 …

Don’t worry about               for now! 

entropification

• MDL now becomes: select achieving

• We’ll see in a minute that this does (almost) 
exactly the same as MDL C0 …

• …we do this by giving a third coding scheme 
easily shown to be equivalent with MDL C0 and 
MDL C1 (‘entropification’)

MDL C2: Probabilistic coding

• Original two-part code MDL (Rissanen ’78) 
was really designed for probability models:

• Let       be a countable set of (conditional) 
distributions on     given 

• Then probabilistic two-part code MDL tells us to 
select the              achieving

MDL Version C2: Probabilistic coding

• Original two-part code MDL (Rissanen ’78) 
was designed for probability models only:

• Let       be a countable set of (conditional) 
distributions on     given 

• Then probabilistic two-part code MDL tells us to 
select the              achieving

• We’ll recast classification in probabilistic terms

• Define for each           and ‘noise level’      with 
associated Boolean regression model, i.e.

where

• Let                     be the associated conditional 
distribution:

" � � � � ��� ��
�

%� � "�$�� #
� &�

&� � ��� ��� ��&� � �� � ��$�� %�� &� �$�$�$

MDL C2

• MDL C2 tells us to pick          minimizing

MDL Version C2
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• MDL C2 tells us to pick          minimizing

• MDL C1 tells us to pick          minimizing

• substituting                    shows this is the same!

MDL C2

• Conclusion:
– MDL C1 and C2 yield exactly the same 

hypothesis for the same data,even though 
codes were motivated differently:

– version 1: code length of data linear function of loss
– version 2: probabilistic assumption that data generated 

by some deterministic process + noise

– Can encode    by encoding corresponding   , 
using                  nits

MDL C2 = MDL C1

• MDL C2 tells us to pick          minimizing

•
is achieved for maximum likelihood      : 

so that

where             is the binary entropy of a coin with bias 

MDL C2 vs MDL C0

• MDL C2 tells us to pick " minimizing

MDL C2 vs MDL C0

• standard application of Stirling’s approximation

MDL C2 vs MDL C0

Recall: for MDL Version C0 we had • MDL C2 tells us to pick " minimizing

• MDL C0 tells us to pick " minimizing

• (almost) the same!

MDL C2 vs MDL C1
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• Conclusion: all three versions essentially the 
same!

• Henceforth take MDL C1 as canonical since 
1. it suggests how to extend the approach to 

different settings (predictors, loss functions)
2. useful to learn not just     , but also   

MDL C0 = MDL C1 = MDL C2 More on     .    

• MDL C1 tells us to minimize

• Keeping " fixed and minimizing only over     , min is 
achieved for with      

• implicitly represents loss that " makes on data
• Maybe can be used as estimate of "’s loss on future data?

• corresponds to " that makes             mistakes 
• then        is a better predictor than " for given data  

Extensions

• Approach can be generalized to (quite) 
arbitrary symmetric loss fns (Grünwald 98)

• Example: for the squared error, an analogous 
story has been known for many years

• Recently, shown that approach can even be 
generalized to non-symmetric loss functions

• e.g.
• considerably more complicated

Does it ‘work’?

• Would like to show some consistency or rate-
of-convergence results, saying that
‘assuming that data are distributed according 
to some distribution       , then with high 
probability, the hypothesis inferred by MDL 
C0 converges to the ‘best’ hypothesis in  
(closure of)     ‘

Does it ‘work’? Does it ‘work’?

MDL is asymptotically
reliable

MDL is asymptotically
optimal
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Does it ‘work’?

• In words, MDL-C0 is ‘consistent’:
– MDL-C0 is capable of finding the ‘best’ 

hypothesis, with smallest ‘generalization 
error’ (optimality)

– can be interpreted as consistent 
estimator of                            , the 
generalization error of the hypothesis      
output by MDL-C0 (reliability).

Does it work?

• Baby-theorem can be extended to infinite    
with finite VC-dimension, or to various forms 
of ‘parametric’     

• More generally, theorem holds for any type of       
satisfying uniform law of large numbers

• But these are typically not the type of     we 
want to apply MDL to!

• Example: intervals domain/decision trees:                
has infinite VC-dimension

Part IV: Overview

1. Introduction
2. MDL for classification, basic approach 
3. The Promise

• Basic approach has some great properties!

4. The Problem
• Basic approach shows problematic behaviour

5. Conclusions

Problems for MDL-CS

• What about grown-up versions of our baby-
theorem for arbitrary countable     with 
arbitrary codes             ?

• For probabilistic MDL, general 
consistency/rate of convergence results exist 

• e.g., Barron and Cover 1991
• related to Bayesian consistency proofs

• For MDL-C0, no such results exist
• …and in fact, they do not hold!

The Problem

• MDL C1 may be interpreted as applying MDL to a set 
of countable conditional probability distributions….so 
it may seem that Barron and Cover’s results are still 
applicable…

• …but they aren’t!

The Problem
• Why aren’t standard consistency results applicable?

– These all assume that the ‘true’ distribution        is in (the 
information closure of) 

– Our constructed probability distributions implicitly assume 
that misclassification probability is independent of $ :

– We have, for all                        with
,

• Only if this also holds for ‘true’ distribution, i.e. if

can B&C’s result be applied
• But this is a very strong and unrealistic assumption!
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The Problem

• In fact, none of the existing proofs of consistency of 
MDL or Bayesian procedures for countable models 
(sets of prob. distributions) can be applied without 
making unreasonable assumptions on 

• Very recently, we showed that in fact, two-part code 
MDL can indeed be inconsistent!

• Grunwald & Langford, 2003 (under submission/revision)

• Problem not just for MDL but also for ‘Bayesian 
classification under misspecification’

The Problem - II

• We strongly suspect that also more 
sophisticated versions of MDL (based on 
normalized maximum likelihood, Bayesian 
marginal likelihood) can be inconsistent

• …but no proof yet.

Adjusting MDL-C0

• Barron (1991) and Yamanishi (1998) consider 
adjustments of the MDL-complexity penalty that are 
provably consistent for inference of predictors for a 
given loss function

• classification as special case

• PAC-Bayes: McAllester (1998, 1999, 2001) considers 
adjustments of Bayesian inference for classification 
that are provably consistent ‘under misspecification’

• Freund, Mansour, Shapire (2003) – another pseudo-
Bayesian, provably consistent inference method for 
classification

Previous Solutions

• All these adjustments typically punish 
complexity of hypothesis much more heavily 
than ordinary MDL

• Advantage: 
• this ensures that no asymptotic overfitting takes 

place…
• Disadvantages: 

• no (straightforward) coding interpretation
• learning ‘slow’ compared to ordinary 

MDL…perhaps slower than necessary?
cf Tsybakov 1999

Example: Yamanishi’s MLC

• MDL-CS:

where 
• Yamanishi’s MLC:

where

Yamanishi 1998

goes to 0!

stays away from 0!

Example: Yamanishi’s MLC

• Yamanishi’s MLC:

• Equivalently,

• Compare to Barron’s (1991) regularization:

Yamanishi 1998

where      is some positive constant



Peter Grünwald September 2003 

Five Lectures on ‘modern’ MDL 28

Ubiquitous        !            

• McAllester’s PAC-Bayes also leads to a 
model selection criterion with          factor in 
front of complexity term 

• some important refinements though

• also hidden in Freund, Mansour, 
Shapire’s work

Problems

• Approaches that are provably consistent have            
as �##increases. Problems (in my view):

1. There is no clear coding interpretation any more 
(following Rissanen, I would like to keep the coding 
interpretation if at all possible)

2. cannot be interpreted as an estimator of the loss "
will make on future data any more (following intuition, I 
would like to keep this interpretation if at all possible!)

3. Complexity penalties may (?) sometimes be larger than 
necessary (viz Tsybakov’s recent work)

• Smaller penalties may give better rates of convergence 
for certain classes of ‘true’ 

Classification – Conclusion I

• Two-part code MDL can fail for classification
• More sophisticated versions of MDL/Bayes can fail as 

well (did not discuss this in detail)
• In practice though, MDL often slightly underfits rather 

than overfits! 
• Possible reason: code length based on local 

rather than global optima in error surface  (?)

Classification – Conclusion II

• ‘raw’ MDL suited and designed for probability models
• typically consistent if well-specified, i.e. if ‘true’ 

data-generating distribution in (closure) of model
• Consistent under misspecification under certain 

conditions, e.g. if         is a convex set of 
distributions

• MDL turns non-probability models (e.g. classifiers) 
into codes (probability distributions) first; the resulting 
model is typically misspecified and, unfortunately not 
convex…so that we may get inconsistency
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Part V: Overview

• MDL in practice: does it work?
– practical justification of MDL?

• MDL and frequentist statistics;
– frequentist justification of MDL

• MDL and Bayesian statistics
– Bayesian justification of MDL, or MDL 

justification of Bayes?

• MDL and other information-theoretic 
methods

– MML, Maximum Entropy, Kolmogorov MSS
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MDL in practice: does it work?

• Distinguish between
– MDL for probability models: 

by and large, yes!!!

– MDL for general predictors/loss functions: 
• problematic behaviour; 
• not very well-developed yet! (different talk)

MDL in practice: does it work?

MDL for probability models:
• MDL/Bayes with Jeffreys prior for discrete data-

problems (e.g. Markov chain model selection) –
works extremely well! (www.mdl-research.org)

• Predictive/prequential MDL: generally works 
very well!

• The ‘parameter space boundary problem’ has 
plagued NML-MDL applications a lot…

• Use of asymptotic approximations – very mixed 
results; sometimes not so good

MDL in practice: does it work?

• MDL has been quite helpful in cognitive 
psychology since it could help explain 
observed differences in model flexibility 
between different models with the same 
number of parameters

• Much more experimentation with non-
Bayesian universal models needs to be done!

Part V: Overview

• MDL in practice: does it work?
– practical justification of MDL?

• MDL and frequentist statistics;
– frequentist justification of MDL

• MDL and Bayesian statistics
– Bayesian justification of MDL, or MDL 

justification of Bayes?

• MDL and other information-theoretic 
methods

– MML, Maximum Entropy, Kolmogorov MSS

Does it ‘work’ in frequentist sense?
• Main concern: consistency / rates of convergence

– Suppose data are actually distributed according to 
a distribution       in one of the models under 
consideration (       is the ‘true’ distribution)

– Roughly speaking, a learning method is consistent 
if, with high      -probability , the distribution    
inferred by the procedure converges to 

– This should hold for ‘all’ 
– Definition slightly adjusted for model selection

Does it ‘work’ in frequentist sense?
• Two-Part code MDL: we can apply Blackwell & Dubins (1962) 

famous result about consistency of Bayes with countable family 
of otherwise almost completely arbitrary distributions

• small prior (large code length) for true distribution means that
learning takes longer, but eventually, MDL will select the true 
distribution

• Provides external motivation for taking ‘minimax’ priors/code-
lengths!

• Extended and elaborated by Barron & Cover (1991): 
‘sophisticated’ two-part code MDL is consistent under very
general conditions

• two-part code MDL is consistent  also if true distribution is only 
a limit of distributions with finite code length

• Gives instructions on how to discretize continuous model 
spaces to get good ‘rates of convergence’ 
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Does it ‘work’ in frequentist sense?
• Also, more ‘modern’ versions of MDL (NML, 

Bayes, prequential) are typically consistent
• Rule of thumb: MDL procedures are 

‘consistent’  whenever Bayes’ procedures are 
consistent
– rates of convergence comparable to Bayes.
– Surprising exception: (Csiszár, Shields 2000)

• Means (well…) that, at least asymptotically, 
MDL effectively counters overfitting!

Aside: MDL Philosophy

Rissanen’s extreme position: 
• The assumption that there exists a ‘probability 

distribution generating the data’ is untenable in many 
interesting applications (e.g. speech recognition, 
computer vision)

• Basing a statistical inference procedure on the 
assumption that a true distribution exists, and calculating 
the strategy that finds this distribution as fast as possible, 
is then methodologically flawed. It is based on an 
inherently untestable (!) and probably false assumption, 
and therefore unclear what it does in practice

Aside: MDL Philosophy

• Instead, statistical procedures should be based 
on properties of the data and the model alone
and not on anything inherently unobservable 
such as a ‘true distribution’

– e.g., the NML distribution compresses data most in 
the worst-case over all sequences, relative to a given 
model, independent of whatever process generated 
that data! No assumption that the model (or anything 
else for that matter) generated the data

– if you use MDL for online coding/prediction you have 
guaranteed relative performance on all data 
sequences, and not just with high probability under 
true model!

Aside: MDL Philosophy

• Nevertheless, consistency of a statistical 
method is important also for Rissanen :

– In the idealized case where a true distribution really 
exists and is in our model, the method better finds it 
with high probability, given enough data!

• Rissanen simply insists that the method is not 
constructed under the assumption of an 
idealized and unrealistic state of affairs; but if 
that assumption holds, the method better give 
good results!

– Consistency as a sanity check rather than a design 
principle

Part V: Overview

• MDL in practice: does it work?
– practical justification of MDL?

• MDL and frequentist statistics;
– frequentist justification of MDL

• MDL and Bayesian statistics
– Bayesian justification of MDL, or MDL 

justification of Bayes?

• MDL and other information-theoretic 
methods

– MML, Maximum Entropy, Kolmogorov MSS

MDL and Bayes

• Heated debates galore! (‘MDL is just Bayes’)
• First insight:

– Two tenets of Bayesian statistics:
1. All uncertainty should be handled using 

probability
2. All decisions should be done based on 

(expectations according to) prior/posterior

– MDL sticks with 1, not 2 (NML code!)
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Let’s be careful!

1. Formally there certainly exist some differences
2. Practically

• as long as MDL/Bayes only used for model 
selection, differences are quite small

• If MDL/Bayes are also used for prediction 
against arbitrary loss function, quite different!

3. Philosophically differences are substantial

1. Formal differences

– MDL does not restrict type of universal model 
used; Bayes forces use of Bayesian marginal 
likelihood/2-part code universal model

– MDL has more freedom – can use prequential/NML

– When MDL is implemented as a Bayesian 
universal model, then the used prior is artificially 
constructed to achieve minimax/quasi minimax 
code lengths; it does not reflect prior knowledge

– MDL has less freedom

2(a) Practical Comparison –
model selection

• MDL/Bayes usually give very similar results:
• NML and Bayes universal model with Jeffreys’ prior often 

very similar, even for small sample sizes
• in ‘objective Bayesian’ branch of Bayes, often use the 

same priors as MDL, so MDL very much like Bayes 
• more generally, prior usually does not play a large role –

so still MDL behaves like Bayes
• But there are exceptions – think of NML model with local

maximum likelihood complexity term. There seems to be 
no analogue of that in Bayes!

2(b) Practical Comparison –
minimizing expected loss

• If inferred model is used for prediction, then MDL and 
Bayes become quite different again:

• Let be some loss function; 
suppose data                          observed; have to 
make decision about new outcome    
– Bayes: optimal decision/action is the one 

minimizing posterior expected loss:

. 

2(b) Practical Comparison –
minimizing expected loss

• If inferred model is used for prediction, then MDL and 
Bayes become quite different again:

• Let be some loss function; 
suppose data                          observed; have to 
make decision about new outcome    
– Bayes: optimal decision/action is the one 

minimizing posterior expected loss:

– MDL: this is meaningless! Prior constructed to 
achieve minimax code-length and has no meaning 
beyond that. 

• MDL Priors for Bayesian/2-part universal 
models are artificially constructed to achieve 
minimax code-lengths

• Do not represent degree-of-belief in 
models/distributions

• Do not have long-run frequency interpretation
• Then not at all clear why making predictions 

with small expected loss (according to prior)  
would ever lead to small actual loss 

2(b) Practical Comparison –
minimizing expected loss
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2(c) Philosophical Comparison

• Bayes: 
• prior represents degree of belief in different ‘states of 

nature (distributions)’ ;
• given enough data, posterior concentrates on true state 

of nature (distribution): ‘belief becomes correct’

• MDL – very different:
• there is no such thing as a true distribution; let alone a 

randomized process by which a true state of nature is 
generated; prior is a tool to compress data in stages

• We only assume that data exhibits regularities; and that 
the same regularities will also be present in future data 
coming from the same phenomenon. We try to find those 
regularities by compressing data as much as possible!

• Statisticians and ML researchers often use Bayes for models 
they a priori know to be completely wrong:  

• Naïve Bayes
• Markov models for speech recognition

• If they were strictly Bayesian, they would put prior probability 0 
instead of 1 on these models!

• Most justifications of Bayesian statistics are implicitly based on 
the true distribution having prior density > 0 ; so why does 
Bayes often still work well when you know beforehand this is not 
the case?

• Rissanen answers, angrying the Bayesians: ‘Bayes works well 
because it resembles MDL, which has better justification!’

• Is he right?

2(c) Philosophical Comparison

• In MDL we certainly don’t believe that a hidden Markov 
model generates speech. But we do believe that some 
hidden Markov models allow for substantial 
compression of speech signals. 

• By putting priors on hidden Markov models we can 
create a universal model that, given enough data, lets 
us learn ‘what Markov model best compresses speech’

• We then hope that this most-compressing Markov 
structure leads to good predictions of speech signals

• Strong point: use of priors justified without the need that 
prior of ‘true distribution’ > 0

• Weak point: why should good compression lead to good 
speech recognition?

2(c) Philosophical Comparison But does any of this matter?

• ‘I am a practitioner and I want to use Bayesian model 
selection. Should I also learn about MDL?’

• Yes, because 
– it offers you methods like NML and prequential coding 

which you won’t find in any Bayesian textbook
– it teaches you to be very careful about how to use your 

posterior

• ‘I am a practitioner and I want to use MDL model 
selection. Should I also learn about Bayes?’

• OF COURSE!
– Much more research, much more experience, much better 

developed 

Let’s be even more careful: 
Brands of Bayesian Statistics

‘modern’ Bayesian 
Statistics has 
(at least) three
founding fathers,
each with (quite)
different ideas

B. De Finetti
Theory of Probability (‘1937’,1974)

L. Savage
The Foundations of Statistics (1954)

H. Jeffreys
Theory of Probability (1939, 1961)

MDL and Savage

• Mainstream Bayesian statistics mostly based 
on Savage’s ideas

• But what about De Finetti?
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MDL and De Finetti

• MDL (that is, Rissanen) considers probabilities of 
data as subjective - probabilities are something to be 
used for prediction or description, the ‘true’ 
distribution does not exist other than as a mental 
construct

• … so, in the end, this is very similar to De Finetti’s
ideas: 

De Finetti: ‘Probabilities Do Not Exist’

Rissanen:  ‘There is no such thing as a ‘true distribution’.
We only have the data’

Part V: Overview

• MDL in practice: does it work?
– practical justification of MDL?

• MDL and frequentist statistics;
– frequentist justification of MDL

• MDL and Bayesian statistics
– Bayesian justification of MDL, or MDL 

justification of Bayes?

• MDL and other information-theoretic 
methods

– MML, Maximum Entropy, Kolmogorov MSS

MDL and MML

• MML is a method for hypothesis/model selection that 
is quite similar to MDL in some ways yet very 
different in other ways

• Wallace and Boulton (1968 (!), 1975), 
• Wallace and Freeman (1987), …

• MML bases all inferences on 2-part codes 
• no NML, Bayes mixture

• MML’s two-part codes assign optimal expected code 
lengths 

• Expectation based on a Bayesian subjective prior on 
hypotheses: ’MML is Bayesian!’

Maximum Entropy and MDL

• MDL associates with family of distributions      
a single distribution                     that achieves 
minimax relative code-lengths 

• (logarithmic regret)

• MaxEnt associates with convex family of 
distributions       a single distribution           
that achieves minimax absolute code-lengths 

• (logarithmic loss)
Topsøe 1979 / Grünwald 1998 / 
Grünwald & Dawid 2003

Kolmogorov Complexity/MSS

• Rissanen does not believe that true distributions or 
models exist. He thinks the goal of inductive 
inference should be to pick the model that ‘captures 
the most regularity in the data’ 
– i.e. best summarizes the data,  give the 

meaningful information in the data
– He tries to justify MDL in terms of the 

Kolmogorov Minimal Sufficient Statistic 
• Vereshchagin and Vitányi 2002
• based on lossy rather than lossless compression
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Some General Conclusions

• MDL Principle: inference by minimizing code lengths, 
using codes based on ‘uniform’ (minimax) and ‘quasi-
uniform’ (almost minimax) codes

• Code lengths can be computed in various ways
• Actual codes are never ever constructed!
• Be very careful with using asymptotic expansions!

• Not Bayes, not BIC
• but close in spirit to De Finetti-Bayes

Current/Future Research

• Mainly developed for probability models
• current research, ‘hot topics’:

– What if NML distribution/Jeffreys’ prior undefined? dealing 
with boundaries of parameter space

– nonparametric density estimation
– compare to AIC, cross-validation etc.

• MDL for predictors (classifiers etc.) still problematic
• doesn’t always work! 
• current research: 

– Does it ‘usually’ work?
– Can MDL be adjusted for bad cases?

Additional Topics

• MDL for regression (big topic)
• MDL for time series
• MDL for clustering
• MDL and ‘universal prediction’
• Universal models of the second kind (worst-

case expected rather than actual regret) 
(‘Barron’s MDL’)

Thank you for your attention!


