Suboptimality of Bayes and MDL in Classification

Peter Grünwald CWI/EURANDOM www.grunwald.nl

joint work with John Langford, Toyota Technological Institute, Chicago, www.hunch.net/~jl

Preliminary version appeared at 17^{h} annual Conference On Learning Theory (COLT 2004)

Our Result

- Bayesian and Minimum Description Length (MDL)
 inference are popular methods for machine learning
- Especially suitable for dealing with overfitting
- Arguably, most studied problem in ML is classification
- We show there exist classification domains where Bayes and MDL...

when applied in a standard manner

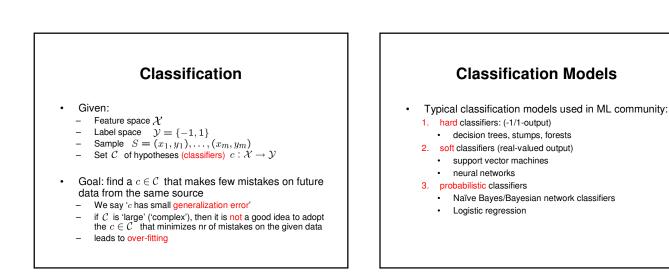
 $\ldots perform \ suboptimally \ (overfit!) \ even \ if \ sample \ size tends to infinity$

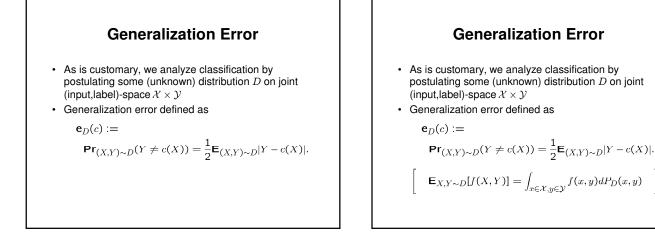
Why is this interesting?

- · Practical viewpoint:
 - Bayesian methods
 - used a *lot* in practice
 - sometimes claimed to be 'universally optimal'
 - MDL methods
 - even designed to deal with overfitting
 - Yet MDL and Bayes can 'fail' even with infinite data
- Theoretical viewpoint
 - How can result be reconciled with various strong Bayesian consistency theorems?

Menu

- 1. Classification
- 2. Abstract statement of main result
- 3. Bayesian learning for classification
- 4. Precise statement of result
- 5. Discussion





Suboptimality of Bayes in classification

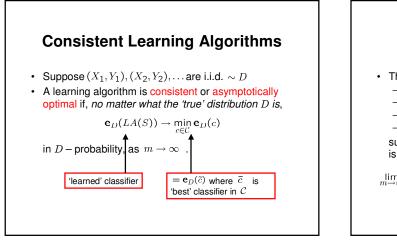
• A learning algorithm LA based on set of candidate classifiers \mathcal{C} , is a function that, for each sample S of arbitrary length, outputs classifier $c \in \mathcal{C}$:

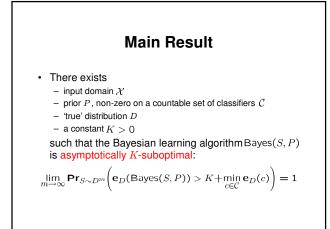
$$LA: \bigcup_{m\geq 0} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{C}$$

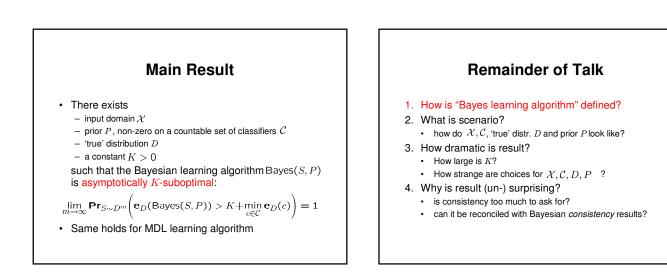
- Suppose $(X_1, Y_1), (X_2, Y_2), \dots$ are i.i.d. $\sim D$
- A learning algorithm is consistent or asymptotically optimal if, no matter what the 'true' distribution D is,

 $\mathbf{e}_D(LA(S)) \to \min_{c \in \mathcal{C}} \mathbf{e}_D(c)$

in $D-{\rm probability},$ as $\ m\to\infty$.

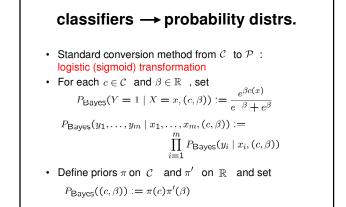


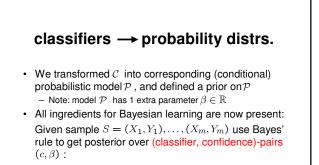




Bayesian Learning of Classifiers

- Problem: Bayesian inference defined for models ${\cal P}$ that are sets of probability distributions
- In our scenario, models are sets of classifiers $\,\mathcal C\,$, i.e. functions $\,c:\,\mathcal X\to\mathbb R\,$
- How can we find a posterior over classifiers using Bayes rule?
- Standard answer: convert each c ∈ C to a corresponding distribution P(· | c) and apply Bayes to the set P of distributions thus obtained





 $P_{\mathsf{Bayes}}(c,\beta \mid S) = \frac{P_{\mathsf{Bayes}}(y^m \mid x^m, (c,\beta))P_{\mathsf{Bayes}}(c,\beta)}{P_{\mathsf{Bayes}}(y^m \mid x^m)}$

Logistic transformation - intuition

- Consider 'hard' classifiers $c: \mathcal{X} \rightarrow \{-1, 1\}$
- For each (c,β) , $\log P(y^m \mid x^m, (c,\beta)) = 2\beta m \hat{e}(c) + m \ln(e^\beta + e^{-\beta})$
- Here

$$\hat{e}(c) = 0.5 \frac{1}{m} \sum_{i=1}^{m} |y_i - c(x_i)|$$

is empirical error that c makes on data, and $m\hat{e}(c)$ is number of mistakes c makes on data

Logistic transformation - intuition

 $\log P(y^m \mid x^m, (c, \beta)) = \beta \frac{1}{2} m \hat{e}(c) + m \ln Z(\beta)$

- where $\ m \widehat{e}(c)$ is number of mistakes c makes on data
- For fixed $\beta > 0$

 log-likelihood is linear function of number of mistakes c makes on data

- maximized for c that is optimal for observed data
- For fixed *c*,
 - log-likelihood maximized for $\hat{\beta} := \ln \hat{e}(c) \ln(1 \hat{e}(c))$
 - \widehat{eta} encodes estimate of quality of c
 - large beta indicates c made few mistakes on training data

- The distribution $P(Y|X,(\hat{c},\hat{\beta}))\in\mathcal{P}$ that maximizes the likelihood of S is such that
 - $\hat{c} \in \mathcal{C}$ minimizes number of mistakes on S
 - $-\ \widehat{\beta}$ encodes how well $\widehat{c}\$ performs on S

A classifier c achieves small error on sample S iff for some β the corresponding distribution $P(Y|X, (c, \beta))$ assigns high probability to S.

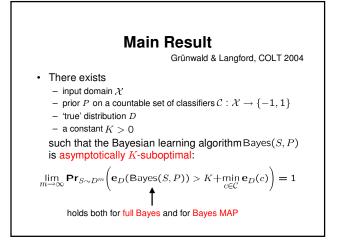
Logistic transformation - intuition

- In case of real-valued classifiers, other intuitions can be given
- In Bayesian practice, logistic transformation is standard tool, nowadays performed without giving any motivation or explanation
 - $-\,$ We did not find it in Bayesian textbooks, \ldots
 - ..., but tested it with three well-known Bayesians!
- Analogous to turning set of predictors with squared error into conditional distributions with normally distributed noise

2 Bayesian learning algorithms

- Posterior distribution still needs to be turned into actual learning/prediction algorithm.
- Two standard ways: given sample S
 - 1. Bayesian MAP (Maximum A Posteriori): pick a single $c \in \mathcal{C}$ that has maximum posterior probability and use it to classify new input value x_{m+1}
 - 2. 'Full' Bayesian classifier

2 Bayesian learning algorithms Posterior distribution still needs to be turned into actual learning/prediction algorithm. Two standard ways: given sample S , 1. Bayesian MAP (Maximum A Posteriori): pick a single c ∈ C that has maximum posterior probability and use it to classify new input value x_{m+1} 2. 'Full' Bayesian classifier (should work better!): P_{Bayes}(Y_{m+1} = 1 | X_{m+1} = x, S) = ∫_{c∈C;β∈ℝ} P(Y = 1 | X_{m+1} = x, (c, θ))P_{Bayes}(c, θ | S)dcdθ Predict 1 iff P_{Bayes}(Y_{m+1} = 1 | X_{m+1} = x, S) > 0.5



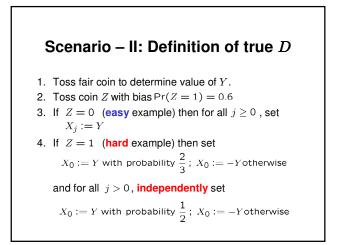
- 1. How is "Bayes learning algorithm" defined?
- 2. What is scenario?
 - how do \mathcal{X}, \mathcal{C} , 'true' distr. *D* and prior *P* look like?
- 3. How dramatic is result?
 - How large is K?
 - How strange are choices for $\mathcal{X}, \mathcal{C}, D, P$?
- 4. Why is result (un-) surprising?
 - is consistency too much to ask for?
 - can it be reconciled with Bayesian consistency results?

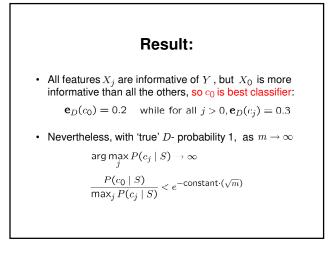
Scenario

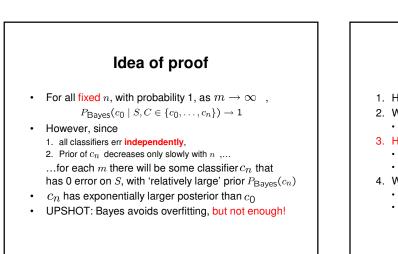
- Definition of *Y*, *X* and *C* : $Y \in \{-1, 1\}$ $X \equiv (X_0, X_1, X_2, ...)$ for all j > 0: $X_j \in \{-1, 1\}$ $C = (c_0, c_1, c_2, ...)$ For all $j \ge 0$: $c_j(X) := x_j$
- Definition of prior:
 - $-\quad \text{for some small } \alpha > 0 \ , \ \text{for all large } n,$

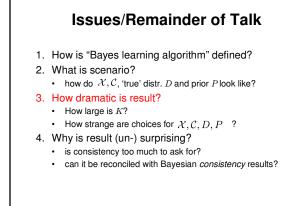
$$P_{\mathsf{Bayes}}(c_n) > \frac{1}{n^{1+\alpha}}$$

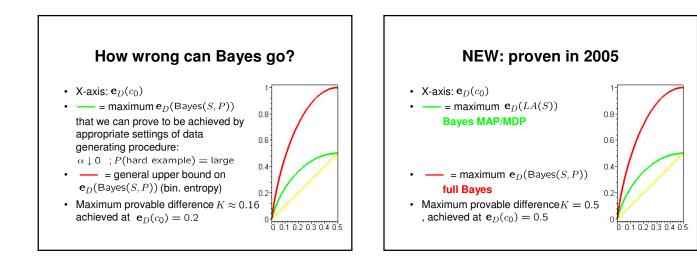
 $- P_{\rm Bayes}(\beta) \mbox{ can be any strictly positive smooth prior} \\ (or discrete prior with sufficient precision)$

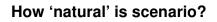












- Basic scenario is quite unnatural
- We chose it because we could prove something about it! But:
 - 1. Priors are natural (take e.g. Rissanen's universal prior)
- 2. Clarke (2002) reports practical evidence that Bayes
- performs suboptimally with large yet misspecified models in a regression context 3 Bayesian inference is consistent under very weak
- Bayesian inference is consistent under very weak conditions. So even if unnatural, result is still interesting!

Issues/Remainder of Talk

- 1. How is "Bayes learning algorithm" defined?
- What is scenario?
 - how do \mathcal{X}, \mathcal{H} , 'true' distr. D and prior P look like?
- 3. How dramatic is result?
 - How large is K?
 - How strange are choices for $\mathcal{X}, \mathcal{H}, D, P$?
- 4. Why is result (un-) surprising?
 - is consistency too much to ask for?
 - can it be reconciled with Bayesian consistency results?
- 5. What about MDL?

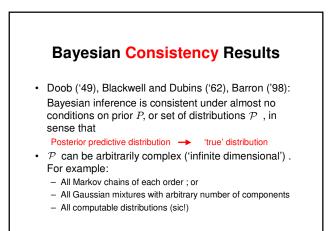
Is consistency relevant?

"Among all 'optimality properties' of statistical procedures, consistency may be the one whose relevance is the least disputed" (Kleijn and van der Vaart 2004, others)

Is consistency achievable?

- Methods for avoiding overfitting proposed in statistical and computational learning theory literature *are* consistent
 - Vapnik's methods (based on VC-dimension etc.)
 McAllester's PAC-Bayes methods
- These methods invariably punish 'complex' (low prior) classifiers much more than ordinary Bayes – in the simplest version of PAC-Bayes,

 $P_{\mathsf{PAC-Bayes}}(c_j) \approx \left(P_{\mathsf{Bayes}}(c_j)\right)^{\sqrt{m}}$



Bayesian Consistency Results

- Doob (1949, special case):
 - $\text{Suppose } \mathcal{P}$
 - Countable
 - Contains 'true' conditional distribution $\Pr_D(Y|X)$
 - Then with D -probability 1,

 $P_{\mathsf{Bayes}}(Y_{m+1} \mid X_{m+1}, S) \to \mathbf{Pr}_D(Y | X)$

• Doob (1949, special case): Suppose \mathcal{P} - Countable - Contains 'true' conditional distribution $\Pr_D(Y|X)$ Then with D -probability 1, $P_{\text{Bayes}}(Y_{m+1} \mid X_{m+1}, S) \rightarrow \Pr_D(Y|X)$ **t** weakly/in Hellinger distance $P_{\text{Bayes}}(Y_{m+1} = 1 \mid X_{m+1} = x, S) = \int_{c \in \mathcal{C}: \beta \in \mathbb{R}} P(Y = 1 \mid X_{m+1} = x, (c, \theta)) P_{\text{Bayes}}(c, \theta \mid S) dcd\theta$

- If $P_{\text{Bayes}}(Y_{m+1} | X_{m+1}, S) \rightarrow \Pr_D(Y|X)$...then we must also have $\mathbf{e}_D(\text{Bayes}(S, P)) \rightarrow \min_{\text{all classifiers!}} \mathbf{e}_D(c)$
- Our result says that this does not happen in our scenario. Hence the (countable!) *P* we constructed must be misspecified:

 $\mathbf{Pr}_D(Y|X) \notin \{ P(Y|X, (c, \beta) \mid c \in \mathcal{C}, \beta \in \mathbb{R} \}$

• If $\Pr_D(Y|X) \notin \mathcal{P}$, then under 'mild' generality conditions, Bayes still converges to distribution $\tilde{P}(Y|X) \in \mathcal{P}$ that is closest to $\Pr_D(Y|X)$ in KL-divergence (relative entropy), defined as

 $\mathsf{KL}(\mathsf{Pr}_D(Y|X) \| P(Y|X, (c, \beta))) = E_{(X,Y) \sim D} \left[\log \frac{\mathsf{Pr}_D(Y|X)}{P(Y|X, (c, \beta))} \right]$

Bayesian consistency under misspecification

- Suppose we use Bayesian inference based on 'model' $\ensuremath{\mathcal{P}}$
- If $\mathbf{Pr}_D(Y|X) \notin \mathcal{P}$, then under 'mild' generality conditions, Bayes still converges to distribution $\tilde{\mathcal{P}}(Y|X) \in \mathcal{P}$ that is closest to $\mathbf{Pr}_D(Y|X)$ in KL-divergence.
- By the logistic transformation, for all c, $\min_{\beta} \mathsf{KL}(\mathsf{Pr}_D(Y|X) || P(Y|X, (c, \beta))) = -\mathbf{e}_D(c) \log \mathbf{e}_D(c) - (1 - \mathbf{e}_D(c) \log(1 - \mathbf{e}_D(c)) + \text{const.}$ which is increasing in $\mathbf{e}_D(c)$

Bayesian consistency under misspecification

- In our case, Bayesian posterior does not converge to distribution with smallest classification generalization error, so it also does not converge to distribution closest to 'true' D in KL-divergence
- Apparently, 'mild' generality conditions for 'Bayesian consistency under misspecification' are violated!
- Conditions for 'consistency under misspecification' are much stronger than conditions for consistency!

Misspecification

- The way we generate data, noise is heteroskedastic
- Combined with hard classifiers, the logistic transformation amounts to the assumption that the 'noise level' is independent of *X* (homoskedastic):
 P(*Y*|*X*, (*c*, β)) expresses that

$$Y = c(X) + Z$$

Where Z is a noise bit, $P(Z = 1) = \frac{e^{\beta}}{e^{-\beta} + e^{\beta}}$ independently of X

Consistency and Data Compression - I

- Our inconsistency result also holds for (various incarnations of) MDL learning algorithm
- MDL is a learning method based on data compression; in practicte it closely resembles Bayesian inference with certain special priors
-however...

Consistency and Data Compression - II

- There already exist (in)famous inconsistency results for Bayesian inference by Diaconis and Freedman
- For some highly non-parametric \mathcal{P}^{-} , even if "true" Dis in $\ensuremath{\mathcal{P}}$, Bayes may not converge to it
- These type of inconsistency results do not apply to MDL, since Diaconis and Freedman use priors that do not compress the data
- With MDL priors, if true D is in \mathcal{P} , then consistency is guaranteed under no futher conditions at all (Barron '98)

Conclusion

- Bayesian may argue that the Bayesian machinery was never intended for misspecified models
- After all, the 'prior' on $\mathcal{P}' \subset \mathcal{P}$ indicates your subjective degree of belief that \mathcal{P}' contains true state of nature; if you know a priori that \mathcal{P}' does not contain true state of
- nature, you should assign it prior 0 !
- Yet, computational resources and human imagination being limited, in practice Bayesian inference is applied to misspecified models all the time.
- Our result says that in this case, Bayes may overfit even in the limit for an infinite amount of data

Thank you for your attention!