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Overview

1. Strong Entropy Concentration
* The Maximum Entropy Principle
Jaynes’ Concentration Phenomenon
Cover/Campenhout’s Conditional limit theorem
The Strong Concentration Phenomenon

2. Applications
¢ Universal Models (MDL)

www.cwi.nl/~pdg .
*  Game Theory / Log-Loss Prediction
« Algorithmic Randomness / General Prediction
Setting Maximum Entropy Principle
Jaynes 1957
X Sample Space (finite, or countable, or R™ ) Suppose we only know that

Ep[¢p(X)] =t ‘Constraint for distributions over X ,
where ¢(X) = (¢1(X), ..., ¢ (X))
b random variable
« ‘lattice type’ (if X’ finite/countable)
« continuous (if X’ real-valued)
H Entropy

X ~P; Eplp(X)] =t
We are asked to make probabilistic predictions/
decisions about X
According to ‘MaxEnt’, we should predict using

the P that maximizes entropy under the
constraint:

P = arg max H(P)
P:Ep [¢(X)]=t
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~ Example 1:if there are no constraints,
P = arg max H<P) then p is uniform
P:Ep[p(X)]=t
* where, if X is finite, ”

H(P):= Ep[-InP(X)] = -3 cx P(z) In P(x).

* Under mild conditions on ¢(X)and ¢, a !
unique MaxEnt P is guaranteed to exist.

0z o4 F‘(X:W)DE 08 1

MaxEnt generalizes Laplace’s (1812) Principle of Indifference

Example 2: Brandeis Dice Example 2: Brandeis Dice,continued
(Jaynes 1962) (Jaynes 1962)

X ={1,2,3,4,5,6}

In practice, given X, X,,..., X,
Ep [X ] =4.5 Observe empirical averages of some
D 1 function(s) of X
P(sz)zz(ﬁ_)e Pz (1) .
_ Bz ZZi:1 d(Xi) =t
Z(ﬂ) N erx ‘ in dice case
in di :
B=-0.345...

LY X = 45
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Motivation

Rule of Thumb: as symmetric, uniform as
possible

Prime Motivation: the MaxEnt distribution for a
constraint is the least committal, most
, most inherently uncertain
distribution, making the smallest number of
additional assumptions beyond what is known
etc.

Concentration Phenomenon

« In what sense is P "most random distribution’?

+ Let X be finite. Jaynes’ Concentration
Phenomenon says that

Nearly all sequences satisfying the constraint
have empirical frequencies extremely close to
Maximum Entropy probabilities.

Concentration Phenomenon

P(")(z) empirical frequency of & € X in(z1,...,2n)
CM ={(21,...,20) €X" + |20 | @(2:) =1t}

For all € > 0 there exists ¢, > 0 such that

#{(z1,....va)eC" : FzeX [P (2)—P(a)|>e} _ cen
- Fcn) =0(e™"")
Nearly all sequences satisfying the constraint

have empirical frequencies extremely close to
Maximum Entropy probabilities.

Concentration Phenomenon

Dice Example:

Sequences consisting of 50% 4’s and 50% 5’s
( P (4) =P (5)=0.5 ) satisfy the constraint
but are extremely rare!
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Minimum Relative Entropy Principle Concentration and Conditioning

« If @ uniform, then MinRelEnt becomes MaxEnt

GIVEN a prior distribution @ over X and a - Concentration phenomenon can be restated as:
constraint
) For all € > 0 there exists ¢, > 0 such that
Ep[¢p(X)] =1t
Q" (there exists z € X : [P (z) — P(z)| > ¢| = Z(ﬁ(zl =1t)
Among all distributions satisfying the < O _en
constraint, choose the one “closest’ to ) in <O(e )
relative entropy sense:

P= arg inf D(P||Q)
P:Ep[¢(X)]=t

Concentration and Conditioning The Clue

« |f @ uniform, then MinRelEnt becomes MaxEnt
« Concentration phenomenon can be restated as: * Hence, if Q uniform,
Prand Q'(-| £ Y7, ¢(x:) =) assign

For all th ists such that
or all € > 0 there exists c. > 0 such tha approxmatelv the same probability to the

Q" (there exists z € X : |[P™) (z) — P(z)| > €] = Zd) x;) =1t) event HP) ( ) — ( )| > e
Cen » May conjecture that more generally, for
S O( <) arbitrary @ and almost all sets 4 we will

Note, by Chernoff bounds: ever be interested in:

PrA) = Q" A L0 ¢(z) =1)

P (there exists z € X : [P (z) — P(z)| > ¢) < O(e_cfn)

Strong Entropy Concentration, Game
Theory and Algorithmic Randomness 4
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Theorem 1. (the concentration phenomenon for typical sets,
lattice case) Assume we are given a constraint Ep[¢(X)] =t and
a prior @ such that

1. ¢ is a k-dimensional lattice random vector
o(x) = (¢1(x),...,or(x)) with span h = (hy, ..., h);

2. tis in the interior of the convex hull of the range of ¢;

3. a Minimum Relative Entropy P for the constraint exists and has
invertible covariance matrix &,

Then there exists a sequence {¢i} satisfying

k
i _ Lk
im ¢, = ———=x
n—toa V/(2m)F det

such that the following holds:

Let A1, Az, ... be an arbitrary sequence of sets with Ai C X", For all
n with Q(T, =1t) >0, we have:

. , Lo
P(A) 20 PeQ(An | = o) = 1),
i=1

Corollary: Strong Concentration
Phenomenon, Part |

Suppose Bi,Ba, ... is a sequence of sets with Bi C X’ that are
‘typical' in the sense that the probability P(B.) tends to 1 “fast
enough', that is:

1- P(B,) = O(f(n)n""?)
for some function f: N —= R; f(n) = o(1).

Then Q(Ba|: Y"1, ¢(x:) =t) tends to 1 in the sense that
1= Q(Bul2 Y1, ¢(m:) = 1) = O(f(n)).

Corollary: Strong Concentration
Phenomenon, Part I: typical sets

* Our bound is tight.

» Proof technique uses “local’ central limit theorem for
lattice random vectors; can be extended to real-
valued continuous random vectors

» Previous, similar results made use of Stirling’s
approximation ) 1
— getbound of form  P(A,) > n e, Q(A| = >~ o) =1)

i=1

— Not tight; applicable only to finite sample spaces
(cardinality of sample space has nothing to do with
the phenomenon)

Strong Concentration Phenomenon,
Part ll: arbitrary (measurable) sets

Theorem 2. Strong Concentration Phenomenon/

Strong Conditional Limit Theorem

Assume we are given a prior distribution @ and a constraint
Ep[¢(X)] =t such that

1. ¢is a lattice random vector or a continuous function ¢ : X — RF;
2. tis in the interior of the convex hull of the range of @;

3. A minimum relative entropy P exists.

Let {mi} be an increasing sequence with m; € N, such that
lim,, o m,, /7 = 0,

Then as n — 00, Q" (- | £ 321, ¢(z:) = t) converges to P ()
(in the sense of weak convergence).

Strong Entropy Concentration, Game
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Strong Concentration Phenomenon,

Part ll: arbitrary (measurable) sets Applications
« Note m can grow quite fast as ntends to + Universal Codes/Models for exponential
infinity, e.9. m = [n/logn] will do. families (MDL)

— Use Theorem 1 to construct 2-part codes
achieving the Shtarkov-Rissanen minimax
(‘normalized maximum likelihood’) code lengths

» Game-Theoretic Characterization of MaxEnt
— Sequential prediction wrt log loss

» MaxEnt and Algorithmic Randomness
— Sequential prediction wrt general loss

» Generalizes Van Campenhout and Cover’s
(1981) Conditional Limit Theorem

(they only consider fixed m as n tends to infinity)
» Relation to Large Deviations (Sanov’s Thm.)

Consequences for Sequential Prediction Game-Theoretic Characterization of MaxEnt
* Let L1y Tn be any s.equenc_e S.atISfylng the Theorem 3. Let X be a countable sample space. Assume we are
constraint. Then sequential prediction of the x; given a constraint Ep[¢(X)] = ¢ such that & is a lattice random
based on MaxEnt p is worst-case Optima| vector and t is in the interior of the convex hull of the range of ¢.
. L . . Let C™ = {(w1,...,2,) | 1300, o(@:) = ).
if prediction error is measured using log-loss. :
. Let be a sequence that is algorithmicall Let P be the distribution minimizing D(PI|Q) (over P). Then the
1‘1,$2,.... q i g y in"mum in
random with respect to the constraint. Then | P o)
. L ~ . . . 2 JEEERE) n
sequential prediction of the x; based on pis peil . 2, Tn ¥ T F——

‘almost’ optimal for every loss function. i X
is achieved by the distribution P, and is equal to H(P),

Strong Entropy Concentration, Game
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Game-Theoretic Characterization of MaxEnt

» Generalizes previous game-theoretic
justification/characterization of MaxEnt as
minimax-optimal prediction strategy over all
distributions satisfying constraint...

— Topsoe 1979, Grunwald 1998

« ...to minimax-optimal prediction strategy over

all sequences satisfying constraint
— more 'COLT-style’

MaxEnt and Algorithmic Randomness

*If the information incorporated into the maximum-entropy
analysis includes all the constraints actually operating in
the random experiment, then the distribution predicted by
maximum entropy is overwhelmingly the most likely to be
observed experimentally’ - Jaynes, 1996.

MaxEnt and Algorithmic Randomness

*If the information incorporated into the maximum-entropy
analysis includes all the constraints actually operating in
the random experiment, then the distribution predicted by
maximum entropy is overwhelmingly the most likely to be
observed experimentally’ - Jaynes, 1996.

What the ... does this mean?

MaxEnt and Algorithmic Randomness

Using Theorem 1, we can make Jaynes’ statement precise:

Suppose 1, T2, .. - is algorithmically random with respect to
constraint c™ = {(Il-, ceey 1‘11)}‘% Z,”:l o(xi) = t} in the sense that
K((x1,...,z)|C™) = [log #(C™)| + O(1), and:

Suppose Bi,Bs,... is a sequence of sets with Bi C X" such that
K(Bn\n) = 0(1) and such that the Bi are .

‘typical in the sense that the probability P(B.) tends to 1 “fast
enough', that is:

1— P(B,) = O(f(n)n~"?)
for some function f: N —= R; f(n) = o(1).

Then for all large 7, (21,22,.. ., Z,) € By,
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Consequences for Sequential Prediction

* Let z1,...,x, be anysequence satisfying the
constraint. Then sequential prediction of the x;

based on MaxEnt p is worst-case optimal Thank you for your attention!
if prediction error is measured using log-loss.

* Letzy,29,...be asequence that is algorithmically
random with respect to the constraint. Then
sequential prediction of the x; based on Pis
‘almost’ optimal for every loss function.
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