Strong Entropy Concentration, Game Theory and Algorithmic Randomness

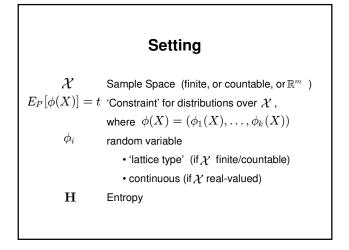
> Peter Grünwald CWI and EURANDOM www.cwi.nl/~pdg

1. Strong Entropy Concentration

- The Maximum Entropy Principle
- Jaynes' Concentration Phenomenon
- Cover/Campenhout's Conditional limit theorem
- The Strong Concentration Phenomenon

2. Applications

- Universal Models (MDL)
- Game Theory / Log-Loss Prediction
- Algorithmic Randomness / General Prediction



Maximum Entropy Principle

Jaynes 1957

Suppose we only know that

 $X \sim P ; E_P[\phi(X)] = t$

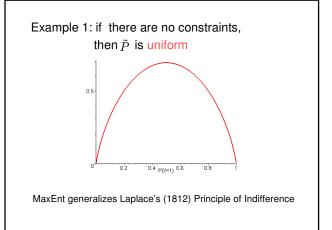
We are asked to make probabilistic predictions/ decisions about \boldsymbol{X}

According to 'MaxEnt', we should predict using the \tilde{P} that maximizes entropy under the constraint:

$$ilde{P} = rgmax_{P:E_P\left[\phi(X)
ight]=t} \mathbf{H}(P)$$

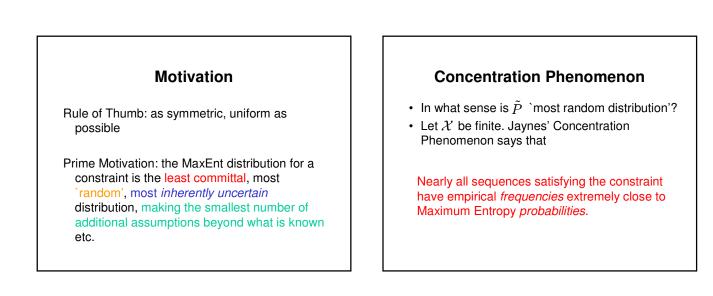
$$\begin{split} \tilde{P} &= \underset{P:E_P}{\arg} \max_{[\phi(X)]=t} \mathbf{H}(P) \\ \bullet \text{ where, if } \mathcal{X} \text{ is finite,} \\ \mathbf{H}(P) &:= E_P[-\ln P(X)] = -\sum_{x \in \mathcal{X}} P(x) \ln P(x) \end{split}$$

- Under mild conditions on $\phi(X) \, {\rm and} \, t$, a unique MaxEnt \tilde{P}_{-} is guaranteed to exist.



Example 2: Brandeis Dice (Jaynes 1962) $\mathcal{X} = \{1, 2, 3, 4, 5, 6\}$ $E_P[X] = 4.5$ $\tilde{P}(X = x) = \frac{1}{Z(\beta)}e^{-\beta x}$ $Z(\beta) = \sum_{x \in \mathcal{X}} e^{-\beta x}$ $\beta = -0.345 \dots$ Example 2: Brandeis Dice, continued (Jaynes 1962) In practice, given $X_1, X_2, ..., X_n$ Observe empirical averages of some function(s) of X : $\frac{1}{n} \sum_{i=1}^n \phi(X_i) = t$ in dice case: $\frac{1}{n} \sum_{i=1}^n X_i = 4.5$

Strong Entropy Concentration, Game Theory and Algorithmic Randomness



Concentration Phenomenon

$$\mathbb{P}^{(n)}(x)$$
 empirical frequency of $x \in \mathcal{X}$ in (x_1,\ldots,x_n)

$$C^{(n)} \equiv \{(x_1, \dots, x_n) \in \mathcal{X}^n : |\frac{1}{n} \sum_{i=1}^n \phi(x_i) = t\}$$

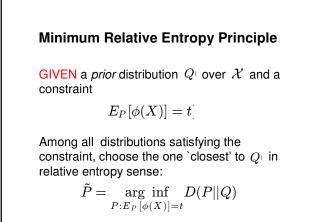
For all $\epsilon > 0$ there exists $c_{\epsilon} > 0$ such that $\frac{\#\{(x_1,...,x_n) \in \mathcal{C}^n : \exists x \in \mathcal{X} | \mathbb{P}^{(n)}(x) - \tilde{P}(x)| > \epsilon\}}{\#(\mathcal{C}^n)} = O(e^{-c_{\epsilon}n})$

Nearly all sequences satisfying the constraint have empirical *frequencies* extremely close to Maximum Entropy *probabilities*.

Concentration Phenomenon

Dice Example:

Sequences consisting of 50% 4's and 50% 5's ($\mathbb{P}^{(n)}(4) = \mathbb{P}^{(n)}(5) = 0.5$) satisfy the constraint but are **extremely** rare!



Concentration and Conditioning

- If Q uniform, then MinRelEnt becomes MaxEnt
- Concentration phenomenon can be restated as:

For all $\epsilon > 0$ there exists $c_{\epsilon} > 0$ such that

$$\begin{aligned} Q^{n}(\text{there exists } x \in \mathcal{X} \ : |\mathbb{P}^{(n)}(x) - \tilde{P}(x)| > \epsilon \mid \frac{1}{n} \sum_{i=1}^{n} \phi(x_{i}) = t) \\ & \leq O(e^{-c_{\epsilon} n}) \end{aligned}$$

Concentration and Conditioning

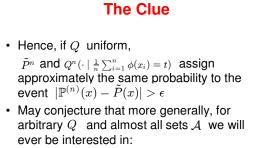
- If Q uniform, then MinRelEnt becomes MaxEnt
- Concentration phenomenon can be restated as:

For all $\epsilon > 0$ there exists $c_\epsilon > 0$ such that

$$Q^{n} \text{(there exists } x \in \mathcal{X} : |\mathbb{P}^{(n)}(x) - \tilde{P}(x)| > \epsilon \mid \frac{1}{n} \sum_{i=1}^{n} \phi(x_{i}) = t)$$
$$\leq O(e^{-c_{\epsilon} n})$$

Note, by Chernoff bounds:

$$\tilde{P}^n$$
 (there exists $x \in \mathcal{X} : |\mathbb{P}^{(n)}(x) - \tilde{P}(x)| > \epsilon) \leq O(e^{-c_{\epsilon}n})$



$$\tilde{P}^{n}(\mathcal{A}) \approx Q^{n}(\mathcal{A} \mid \frac{1}{n} \sum_{i=1}^{n} \phi(x_{i}) = t)$$

Theorem 1. (the concentration phenomenon for typical sets, lattice case) Assume we are given a constraint $E_P[\phi(X)] = t$ and a prior Q such that

- 1. ϕ is a k-dimensional lattice random vector
- $\phi(x) = (\phi_1(x), \dots, \phi_k(x))$ with span $h = (h_1, \dots, h_k);$
- 2. t is in the interior of the convex hull of the range of ϕ ;
- 3. a Minimum Relative Entropy P for the constraint exists and has invertible covariance matrix Σ ,

Then there exists a sequence $\{c_i\}$ satisfying

$$\lim_{n \to \infty} c_n = \frac{\prod_{j=1}^k h_j}{\sqrt{(2\pi)^k \det \Sigma}}$$

such that the following holds:

Let A_1, A_2, \ldots be an arbitrary sequence of sets with $A_i \subset \mathcal{X}^i$. For all n with $Q(T_n = \tilde{t}) > 0$, we have:

$$ilde{P}(\mathcal{A}_n) \geq n^{-k/2} c_n Q(\mathcal{A}_n \mid \frac{1}{n} \sum_{i=1}^n \phi(x_i) = t).$$

Corollary: Strong Concentration Phenomenon, Part I

Suppose $\mathcal{B}_1, \mathcal{B}_2, \ldots$ is a sequence of sets with $\mathcal{B}_i \subset \mathcal{X}^i$ that are 'typical' in the sense that the probability $\tilde{P}(\mathcal{B}_n)$ tends to 1 'fast enough', that is:

$$1 - \tilde{P}(\mathcal{B}_n) = O(f(n)n^{-k/2})$$

for some function $f : \mathbf{N} \to \mathbf{R}$; f(n) = o(1).

Then $Q(\mathcal{B}_n|_n^1 \sum_{i=1}^n \phi(x_i) = t)$ tends to 1 in the sense that $1 - Q(\mathcal{B}_n|_n^1 \sum_{i=1}^n \phi(x_i) = t) = O(f(n)).$

Corollary: Strong Concentration Phenomenon, Part I: typical sets

- Our bound is tight.
- Proof technique uses 'local' central limit theorem for lattice random vectors; can be extended to realvalued continuous random vectors
- Previous, similar results made use of Stirling's approximation

approximation - get bound of form $\tilde{P}(\mathcal{A}_n) \ge n^{-|\mathcal{X}|} c_n Q(\mathcal{A}_n | \frac{1}{n} \sum_{i=1}^n \phi(x_i) = t)$

- Not tight; applicable only to finite sample spaces (cardinality of sample space has nothing to do with the phenomenon)

Strong Concentration Phenomenon, Part II: arbitrary (measurable) sets Theorem 2. Strong Concentration Phenomenon/ Strong Conditional Limit Theorem Assume we are given a prior distribution Q and a constraint $E_P[\phi(X)] = t$ such that 1. ϕ is a lattice random vector or a continuous function $\phi : \mathcal{X} \to \mathbf{R}^k$; 2. t is in the interior of the convex hull of the range of ϕ ; 3. A minimum relative entropy P exists. Let $\{m_i\}$ be an increasing sequence with $m_i \in \mathbf{N}$, such that $\lim_{n\to\infty} m_n/n = 0.$

Then as $n \to \infty$, $Q^{m_n}(\cdot \mid \frac{1}{n} \sum_{i=1}^n \phi(x_i) = t)$ converges to $\tilde{P}^{m_n}(\cdot)$ (in the sense of weak convergence).

Strong Concentration Phenomenon, Part II: arbitrary (measurable) sets

- Note *m* can grow quite fast as *n* tends to infinity, e.g. $m = \lfloor n/\log n \rfloor$ will do.
- Generalizes Van Campenhout and Cover's (1981) Conditional Limit Theorem (they only consider fixed m as n tends to infinity)
- Relation to Large Deviations (Sanov's Thm.)

Applications

- Universal Codes/Models for exponential families (MDL)
 - Use Theorem 1 to construct 2-part codes achieving the Shtarkov-Rissanen minimax ('normalized maximum likelihood') code lengths
- Game-Theoretic Characterization of MaxEnt
 Sequential prediction wrt log loss
- MaxEnt and Algorithmic Randomness – Sequential prediction wrt general loss

Consequences for Sequential Prediction

- Let x₁,..., x_n be any sequence satisfying the constraint. Then sequential prediction of the x_i based on MaxEnt P̃ is worst-case optimal if prediction error is measured using log-loss.
- Let x_1, x_2, \ldots be a sequence that is algorithmically random with respect to the constraint. Then sequential prediction of the x_i based on \tilde{P} is 'almost' optimal for *every* loss function.

Game-Theoretic Characterization of MaxEnt

Theorem 3. Let \mathcal{X} be a countable sample space. Assume we are given a constraint $E_P[\phi(X)] = t$ such that ϕ is a lattice random vector and t is in the interior of the convex hull of the range of ϕ . Let $\mathcal{C}^{(n)} = \{(x_1, \ldots, x_n) \mid \frac{1}{n} \sum_{i=1}^n \phi(x_i) = t\}.$

Let \tilde{P} be the distribution minimizing D(P||Q) (over P). Then the in-mum in

$$\inf_{\in \mathcal{P}(\mathcal{X}^{\infty})} \sup_{\{n \ : \ \mathcal{C}^{(n)} \neq \emptyset\}} \sup_{x^{(n)} \in \mathcal{C}^{(n)}} - \frac{1}{n} \log \frac{P(x_1, \ldots, x_n)}{Q^n(x_1, \ldots, x_n)}$$

is achieved by the distribution $\tilde{P},$ and is equal to $\mathbf{H}(\tilde{P}).$

P

Game-Theoretic Characterization of MaxEnt

- Generalizes previous game-theoretic justification/characterization of MaxEnt as minimax-optimal prediction strategy over all *distributions* satisfying constraint...
 - Topsoe 1979, Grunwald 1998
- ...to minimax-optimal prediction strategy over all *sequences* satisfying constraint
 - more `COLT-style'

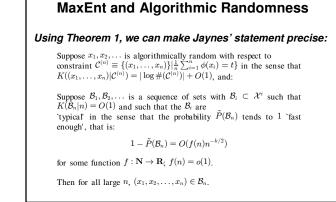
MaxEnt and Algorithmic Randomness

`If the information incorporated into the maximum-entropy analysis includes *all the constraints actually operating in the random experiment*, then the distribution predicted by maximum entropy is overwhelmingly the most likely to be observed experimentally' - Jaynes, 1996.

MaxEnt and Algorithmic Randomness

`If the information incorporated into the maximum-entropy analysis includes *all the constraints actually operating in the random experiment*, then the distribution predicted by maximum entropy is overwhelmingly the most likely to be observed experimentally' - Jaynes, 1996.

What the ... does this mean?



Consequences for Sequential Prediction

- Let x₁,..., x_n be any sequence satisfying the constraint. Then sequential prediction of the x_i based on MaxEnt P̃ is worst-case optimal if prediction error is measured using log-loss.
- Let x_1, x_2, \ldots be a sequence that is algorithmically random with respect to the constraint. Then sequential prediction of the x_i based on \tilde{P} is 'almost' optimal for *every* loss function.

Thank you for your attention!