MDL and Classification

Peter Grünwald CWI and EURANDOM www.grunwald.nl

Part IV of a series of Lectures on 'modern MDL'; Extended and Revised September 24th, 2003

Classification: Overview

- 1. Introduction
- 2. MDL for classification, basic approach
- 3. The Promise
 - · Basic approach has some great properties!
- 4. The Problem
 - · Basic approach shows problematic behaviour
- 5. Conclusions

Introduction

- MDL mostly developed and studied for probability models
- Yet often applied to models/model classes that are not (directly) interpretable as probability distributions
- Here we apply it to models that are families of classifiers
 - decision trees
 - · support vector machines
 - neural networks...

Introduction - II

- There is no unique definition of 'the' MDL Principle for classification
- Yet there is a certain standard approach that has been employed by most authors:
 - Quinlan and Rivest (1989),
 - Rissanen & Wax (1989),
 - Kearns et al. (1997);
 - several others...

Introduction - III

- Standard approach has pleasant but also unpleasant properties:
 - strange experimental results (Kearns et al. 1997 (?))
 - can be inconsistent! (Grünwald & Langford, 2003)
 - Even with infinite data, MDL does not identify the classifier with the smallest 'generalization error' (probability of making a wrong prediction) it asymptotically overfits!
- · Several adjustments exist
 - Barron (1991), Yamanishi (1998), McAllester's PAC-Bayes (1999)
 - these are provably consistent
 - · but loose some of the pleasant properties of standard

Classification: Overview

- 1. Introduction
- 2. MDL for classification, basic approach
- 3. The Promise
 - · Basic approach has some great properties!
- 4. The Problem
 - · Basic approach shows problematic behaviour
- 5. Conclusions

Classification

- Given:
 - Feature space ${\mathcal X}$
 - Label space $\mathcal{Y} = \{0, 1\}$

 - data $D=((x_1,y_1),\ldots,(x_n,y_n))$ countable set $\mathcal H$ of hypotheses (classifiers) $h:\mathcal X\to\mathcal Y$
- Goal: find a $h \in \mathcal{H}$ that makes few mistakes on future data from the same source
 - We say 'h has small generalization error'
 - if data are noisy, then it is not a good idea to adopt the hthat minimizes nr of mistakes on the given data
 - leads to over-fitting

Example: intervals (toy) domain Kearns et al., 1995 y = 0 $-x \longrightarrow$ $\mathcal{X} = [0, 1]$ \mathcal{H}_k : set of functions $h:\mathcal{X} \to \{0,1\}$ that switch value k times $\mathcal{H} = \bigcup \mathcal{H}_k$ k=1,2,...

Two-part code MDL

- We use the oldest, crudest version of MDL (two-part code MDL, Rissanen '78)
- Problematic aspects of MDL for classification are not solved by using modern versions of MDL such as normalized maximum likelihood
 - Grünwald & Langford, 2003
- Using two-part code allows us to keep our story as simple as possible

Two-Part Code MDL

Two-part code MDL:

- Let \mathcal{H} be a set of hypotheses. Given data D pick the $h \in \mathcal{H}$ that minimizes the sum of
 - ullet the description length of the hypothesis $\,h\,$
 - \bullet the description length of the data D when encoded 'with the help of the hypothesis h '

Two-Part Code MDL

Pick $h \in \mathcal{H}$ minimizing

 $\mathsf{DL}(h) + \mathsf{DL}(y_1, \dots, y_n \mid h, x_1, \dots, x_n)$

Two-Part Code MDL

Pick $h \in \mathcal{H}$ minimizing

$$\mathsf{DL}(h) + \mathsf{DL}(y_1, \ldots, y_n \mid h, x_1, \ldots, x_n)$$

Encoding of x_1, \dots, x_n takes $\mathsf{DL}(x_1, \dots, x_n)$ bits; this term does not involve h. Therefore it plays no role in minimization and can be dropped!

Two-Part Code MDL

Pick $h \in \mathcal{H}$ minimizing

$$\mathsf{DL}(h) + \mathsf{DL}(y_1, \dots, y_n \mid h, x_1, \dots, x_n)$$

Any function on ${\cal H}$ satisfying Kraft inequality

Coding Hypotheses

- $DL(h) = -\log W(h)$, W can be thought of as 'prior'; many reasonable possibilities
- example code for intervals domain: encode $h \in \mathcal{H}$ in three steps:
 - 1. Encode number of switches \boldsymbol{k}
 - 2. Encode 'granularity' \boldsymbol{d}
 - 3. Code location of k switches within

$$\{0, \frac{1}{d}, \frac{2}{d}, \dots, \frac{d-1}{d}\}$$

Coding Data

Pick $h \in \mathcal{H}$ minimizing

$$\mathsf{DL}(h) + \mathsf{DL}(y_1, \dots, y_n \mid h, x_1, \dots, x_n)$$

Code y_1,\dots,y_n by coding

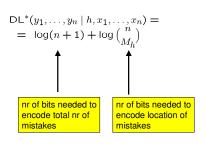
a. number of mistakes

b. location (index) of mistakes

Coding Data: $DL(y^n \mid x^n, h)$

- · Define:
 - mistake count $\ M_h$ number of mistakes h makes on D
 - 0/1-loss: for $y, \hat{y} \in \{0, 1\}$: $L_{01}(y, \hat{y}) := |y \hat{y}|$
- Formally, $M_h := \sum_{i=1}^n L_{01}(y_i, h(x_i))$

Standard approach to coding data



2p-code length intervals domain

$$\min_{h \in \mathcal{H}} \left\{ \ \mathsf{DL}(y^n \mid x^n, h) + \mathsf{DL}(h) \right\} = \\ \min_{h_{k,d} \in \mathcal{H}} \left\{ \ \log {n \choose M_h} + \log gk + \log gd + \log {d \choose k} \right\} \\ \\ \text{error term}$$

- · familiar trade-off between error and complexity
- we can and did leave out $\log(n+1)$ term

MDL Version C0

 We call the coding scheme for 'coding data with the help of hypothesis' MDL Version C0.

5

- · (slight variations of) MDL C0 used by
 - Quinlan and Rivest (1989),
 - Rissanen & Wax (1989),
 - Kearns et al. (1997);
 - even Wallace & Boulton (1968)
- But is it the 'right' way to do things?

Potential Problems:

- 1. Many different coding schemes of data given hypothesis $DL(y^n|h,x^n)$ possible
 - Comparison strongly indicates that MDL C0 is basically the 'right' coding scheme.
- 2. Theoretical results on MDL C0
 - (in sharp constrast to probabilistic MDL), analysis strongly indicates that nevertheless something's wrong with MDL C0

Classification: Overview

- 1. Introduction
- 2. MDL for classification, basic approach
- 3. The Promise
 - · Basic approach has some great properties!
- 4. The Problem
 - · Basic approach shows problematic behaviour
- 5. Conclusions

1. Alternative coding schemes

- Two other coding schemes have been proposed in the literature.
 - seemingly very different, they both lead to same hypothesis selection criterion as MDL C0
 - shows that MDL C0 is special case of general procedure, applicable to arbitrary loss functions
- · Evidence that what we're doing is o.k.!

MDL C1: *entropification*

Rissanen 1989, implicit in Vovk 1990 Meir and Merhav 1995, Yamanishi 1998 Grünwald 1998

6

Suppose we have a code such that for all h, all
(xⁿ, yⁿ), the code length is an increasing affine
function of the loss:

$$DL(y^n \mid x^n, h) = \beta \sum_{i=1}^n L_{01}(y_i; h(x_i)) + \alpha$$
$$= \beta M_h + \alpha$$

• Here $\beta > 0$; α may depend on n, but not on h

Peter Grünwald

MDL C1: entropification

Rissanen 1989, Meir and Merhav 1995 Yamanishi 1998, Grünwald 1998, implicit in Vovk 1990 and others

 Suppose we have a code such that for all h, all (x^n, y^n) , the code length is an increasing affine function of the loss:

$$DL(y^n \mid x^n, h) = \beta \sum_{i=1}^n L_{01}(y_i; h(x_i)) + \alpha$$
$$= \beta M_h + \alpha$$

• then 'error term' in $DL(y^n|x^n,h) + DL(h)$ expresses exactly the error function we are interested in!

entropification

September 2003

We can construct a code satisfying

$$DL(y^n | x^n, h) = \beta \sum_{i=1}^n L_{01}(y_i; h(x_i)) + \alpha$$

by first constructing a conditional probability distribution:

$$P(y|x,h,\beta) := \frac{1}{Z(\beta)} e^{-\beta L_{01}(y;h(x))}$$

$$Z(\beta) := \sum_{y \in \{0,1\}} e^{-\beta L_{01}(y;h(x))}$$

Note: $Z(\beta)$ does not depend on h or X!

entropification

· We can construct a code satisfying

$$DL(y^n | x^n, h) = \beta \sum_{i=1}^n L_{01}(y_i; h(x_i)) + \alpha$$

by first constructing a conditional probability distribution:

$$P(y|x,h,\beta) := \frac{1}{Z(\beta)} e^{-\beta L_{01}(y;h(x))}$$

$$Z(\beta) := \sum_{y \in \{0,1\}} e^{-\beta L_{01}(y;h(x))}$$

$$Z(\beta) := \sum_{y \in \{0,1\}} e^{-\beta L_{01}(y;h(x))}$$
$$P(y^n | x^n, h, \beta) := \prod_{i=1}^n \frac{1}{Z(\beta)} e^{-\beta L_{01}(y_i;h(x_i))}$$

$$-\ln P(y^{n}|x^{n},h,\beta) = \beta \sum_{i=1}^{n} L_{01}(y_{i};h(x_{i})) + n \ln Z(\beta)$$

entropification

For each h, β we constructed a corresponding conditional probability distribution satisfying , for all $D = (x^n, y^n)$,

$$-\ln P(y^n|x^n,h,eta) = eta \sum_{i=1}^n L_{01}(y_i;h(x_i)) + n \ln Z(eta)$$

By Kraft inequality, there must also exist a (conditional) code defined on data sequences of length n, satisfying

$$DL(y^n|x^n, h, \beta) = \beta \sum_{i=1}^n L_{01}(y_i; h(x_i)) + n \ln Z(\beta)$$

· This is the code we'll use!

entropification

- For each h,β we constructed a corresponding conditional probability distribution satisfying , for all $D=(x^n,y^n)$, $-\ln P(y^n|x^n,h,\beta)=\beta\sum_{i=1}^nL_{01}(y_i;h(x_i))+n\ln Z(\beta)$
- By Kraft inequality, there must also exist a (conditional) code defined on data sequences of length n, satisfying

$$DL(y^n|x^n,h,\beta) = \beta \sum_{i=1}^n L_{01}(y_i;h(x_i)) + n \ln Z(\beta)$$

- Code length measured in nats
- Important: no claim that $P(\cdot \mid \cdot, h, \beta)$ generates the data; purely artificial construction to make sure that code length of data given h = linear function of loss h makes on data

entropification

• MDL now becomes: select $h \in \mathcal{H}$ minimizing

$$\beta \sum_{i=1}^{n} L_{01}(y_i; h(x_i)) + n \ln Z(\beta) + DL(h)$$

- Problem: how to choose β ?
 - different β lead to different choices of h
 - β measures how strongly the 0/1-error should be weighted compared to the 'complexity' of h
 - $-\ \beta$ viewed as learning rate, inverse 'temperature'

entropification

• MDL now becomes: select $h \in \mathcal{H}$ minimizing

$$\beta \sum_{i=1}^{n} L_{01}(y_i; h(x_i)) + n \ln Z(\beta) + DL(h)$$

- Problem: how to choose β?
 - different β lead to different choices of h
 - β measures how strongly the 0/1-error should be weighted compared to the `complexity' of h
- Intuitive Solution
 - learn not just h, but also β from the data

entropification

• MDL now becomes: select $h \in \mathcal{H}$ achieving

$$\min_{h \in \mathcal{H}, \beta \in [0,\infty]} \ \left\{ \beta \sum_{i=1}^n L_{01}(y_i; h(x_i)) + n \ln Z(\beta) + \mathrm{DL}(h) + \mathrm{DL}(\beta) \right\}$$

 We'll see in a minute that this does (almost) exactly the same as MDL C0 ...

Don't worry about $DL(\beta)$ for now!

entropification

• MDL now becomes: select $h \in \mathcal{H}$ achieving

$$\min_{h \in \mathcal{H}, \beta \in [0,\infty]} \ \left\{ \beta \sum_{i=1}^n L_{01}(y_i; h(x_i)) + n \ln Z(\beta) + \mathrm{DL}(h) + \mathrm{DL}(\beta) \right\}$$

- We'll see in a minute that this does (almost) exactly the same as MDL C0 ...
- ...we do this by giving a third coding scheme easily shown to be equivalent with MDL C0 and MDL C1 ('entropification')

MDL C2: Probabilistic coding

- Original two-part code MDL (Rissanen '78) was really designed for probability models:
 - Let $\mathcal P$ be a countable set of (conditional) distributions on $\mathcal Y$ given $\mathcal X$
 - Then probabilistic two-part code MDL tells us to select the $P \in \mathcal{P}$ achieving

$$\min_{P \in \mathcal{P}} -\log P(y^n \mid x^n) + \mathsf{DL}(P)$$

MDL Version C2: Probabilistic coding

- Original two-part code MDL (Rissanen '78) was designed for probability models only:
 - Let $\mathcal P$ be a countable set of (conditional) distributions on $\mathcal Y$ given $\mathcal X$
 - Then $\operatorname{probabilistic}$ two-part code MDL tells us to select the $P \in \mathcal{P}$ achieving

$$\min_{P \in \mathcal{P}} - \ln P(y^n \mid x^n) + \mathsf{DL}(P)$$

· We'll recast classification in probabilistic terms

MDL C2

• Define for each $h \in \mathcal{H}$ and 'noise level' $\theta \in [0,1]$ associated Boolean regression model, i.e.

$$Y_i = h(X_i) \text{ xor } Z_i$$

where

$$Z_i \in \{0,1\}, P(Z_i = 1) = \theta, X_i, Y_i, Z_i \text{ i.i.d.}$$

• Let $P(\cdot, | \cdot, h, \theta)$ be the associated conditional distribution:

$$P(y^n|x^n, h, \theta) = \theta^{M_h} (1 - \theta)^{n - M_h}$$

MDL Version C2

• MDL C2 tells us to pick (h,θ) minimizing $-\ln P(y^n|x^n,h,\theta) + \mathrm{DL}(h) + \mathrm{DL}(\theta) = \\ -M_h \ln \theta - (n-M_h) \ln (1-\theta) + \mathrm{DL}(h) + \mathrm{DL}(\theta)$

MDL C2

• MDL C2 tells us to pick (h,θ) minimizing $-\ln P(y^n|x^n,h,\theta) + \mathrm{DL}(h) + \mathrm{DL}(\theta) = \\ -M_h \ln \theta - (n-M_h) \ln (1-\theta) + \mathrm{DL}(h) + \mathrm{DL}(\theta)$

• MDL C1 tells us to pick (h,β) minimizing $\beta \sum_{i=1}^n L_{01}(y_i;h(x_i)) + n \ln Z(\beta) + \mathrm{DL}(h) + \mathrm{DL}(\beta) = \\ \beta M_h + n \ln(1+e^{-\beta}) + \mathrm{DL}(h) + \mathrm{DL}(\beta)$

• substituting $\beta_{\theta} := \ln \frac{1-\theta}{\theta}$ shows this is the same!

MDL C2 = MDL C1

- · Conclusion:
 - MDL C1 and C2 yield exactly the same hypothesis for the same data, even though codes were motivated differently:
 - version 1: code length of data linear function of loss
 - version 2: probabilistic assumption that data generated by some deterministic process + noise
 - Can encode β by encoding corresponding θ , using $\ln(n+1)$ nits

MDL C2 vs MDL C0

• MDL C2 tells us to pick (h, θ) minimizing

$$\begin{split} &-\ln P(y^n|x^n,h,\theta) + \mathrm{DL}(h) + \mathrm{DL}(\theta) = \\ &-M_h \ln \theta - (n-M_h) \ln(1-\theta) + \mathrm{DL}(h) + \mathrm{DL}(\theta) \end{split}$$

 $\bullet \min_{\theta \in [0,1]} \left\{ -M_h \ln \theta - (n-M_h) \ln (1-\theta) \right\}$

is achieved for maximum likelihood
$$\widehat{\theta}$$
:
$$\widehat{\theta} := \frac{M_h}{n} = \frac{1}{n} \sum_{i=1}^n L(y_i, h(x_i))$$
 so that

$$\min_{\theta} \left\{ -M_h \ln \theta - (n - M_h) \ln(1 - \theta) \right\} = n[-\hat{\theta} \ln \hat{\theta} - (1 - \hat{\theta}) \ln(1 - \hat{\theta})] = n\mathbf{H}(\hat{\theta})$$

where H(heta) is the binary entropy of a coin with bias heta

MDL C2 vs MDL C0

• MDL C2 tells us to pick h minimizing $-\ln P(y^n|x^n,h,\theta)+\mathrm{DL}(h)+\mathrm{DL}(\theta)=\\n\mathrm{H}(\hat{\theta})+\mathrm{DL}(h)+\ln(n+1)$

MDL C2 vs MDL C0

Recall: for MDL Version C0 we had $\begin{array}{l} \operatorname{DL}(y_1,\ldots,y_n\mid h,x_1,\ldots,x_n) = \\ = & \ln(n+1) + \ln \binom{n}{M_h} = \\ = & \ln(n+1) + \operatorname{H}\Bigl(\frac{M_h}{n}\Bigr) - \frac{1}{2} \ln n + O(1) = \\ = & \operatorname{H}(\widehat{\theta}) + \frac{1}{2} \ln n + O(1) \end{array}$

• standard application of Stirling's approximation

MDL C2 vs MDL C1

- MDL C2 tells us to pick h minimizing $-\ln P(y^n|x^n,h,\theta) + \mathrm{DL}(h) + \mathrm{DL}(\theta) = \\ n\mathrm{H}(\hat{\theta}) + \mathrm{DL}(h) + \ln(n+1)$
- MDL C0 tells us to pick h minimizing $n\mathbf{H}(\hat{\theta}) + \mathbf{DL}(h) + \frac{1}{2} \ln n \quad \left[+ O(1) \right]$
- · (almost) the same!

MDL C0 = MDL C1 = MDL C2

- Conclusion: all three versions essentially the same!
- Henceforth take MDL C1 as canonical since
 - 1. it suggests how to extend the approach to different settings (predictors, loss functions)
 - 2. useful to learn not just h, but also β

More on β .

• MDL C1 tells us to minimize

$$\beta \sum_{i=1}^{n} L_{01}(y_i; h(x_i)) + n \ln Z(\beta) + \mathrm{DL}(h) + \mathrm{DL}(\beta)$$

- Keeping h fixed and minimizing only over β , min is achieved for $\ \widehat{\beta}=\ln(1-\widehat{\theta})-\ln\widehat{\theta}$ with $\widehat{\theta}=M_h/n$
 - \widehat{eta} implicitly represents loss that h makes on data
 - Maybe can be used as estimate of h's loss on future data?
- $\hat{\beta}_h < 0$ corresponds to h that makes > 50% mistakes
 - then \overline{h} is a better predictor than h for given data

Extensions

- Approach can be generalized to (quite) arbitrary symmetric loss fns (Grünwald 98)
 - Example: for the squared error, an analogous story has been known for many years
- Recently, shown that approach can even be generalized to non-symmetric loss functions
 - e.g. L(1;1) = L(0;0) = 0; L(1;0) = 1; $L(0;1) = 10^6$
 - · considerably more complicated

Does it 'work'?

• Would like to show some consistency or rate-of-convergence results, saying that 'assuming that data are distributed according to some distribution P^* , then with high P^* probability, the hypothesis inferred by MDL C0 converges to the 'best' hypothesis in (closure of) \mathcal{H} '

Does it 'work'?

 $\begin{array}{lll} \textbf{Baby-Theorem} & \textbf{(Grünwald 1998, others)} & \textbf{Suppose} \\ \textbf{data} & (X_1,Y_1),(X_2,Y_2),\dots, \text{ are independently and identically} \\ \textbf{distributed according to some distribution} & P^* \text{ on } \mathcal{X} \times \mathcal{Y}. \end{array}$

Let $\tilde{\theta}:=\inf_{h\in\mathcal{H}}E_{P^*}[L_{01}(Y;h(X))]=\inf_{h\in\mathcal{H}}P^*(Y\neq h(X)).$ Let $\tilde{\beta}:=\ln(1-\tilde{\theta})-\ln\tilde{\theta}.$

Let $\mathcal H$ be **finite**, let DL be a code length function such that DL(h) is finite for all $h\in \mathcal H$. Let $(\tilde h_n, \tilde \beta_n)$ be the hypothesis inferred by MDL-CS based on the first n outcomes. Then with $P^*\text{-probability }1$,

$$\begin{split} E_{P^*}[L(Y;\hat{h}_n(X))] &\to \inf_{h \in \mathcal{H}} E_{P^*}[L(Y;h(X))] \text{ as } n \to \infty. \\ \hat{\beta}_n &\to \tilde{\beta} \text{ as } n \to \infty. \end{split}$$

Does it 'work'?

```
Let \tilde{\theta}:=\inf_{h\in\mathcal{H}}E_{P^*}[L_{01}(Y;h(X))]=\inf_{h\in\mathcal{H}}P^*(Y\neq h(X)). Let \tilde{\beta}:=\ln(1-\tilde{\theta})-\ln\tilde{\theta}.
```

Let $\mathcal H$ be **finite**, let DL be a code length function such that DL(h) is finite for all $h\in \mathcal H$. Let $(\hat h_n,\hat \beta_n)$ be the hypothesis inferred by MDL-C0 based on the first n outcomes. Then with P^* -probability 1,

```
\begin{array}{ll} E_{P^*}[L(Y;\hat{h}_n(X))] \to \inf_{h \in \mathcal{H}} E_{P^*}[L(Y;h(X))] \ \ \text{as} \quad n \to \infty. \\ \\ \hat{\beta}_n \to \tilde{\beta} \ \ \text{as} \quad n \to \infty. \end{array} MDL is asymptotically optimal
```

Does it 'work'?

- In words, MDL-C0 is 'consistent':
 - MDL-C0 is capable of finding the 'best' hypothesis, with smallest 'generalization error' (optimality)
 - $\hat{\beta}_n$ can be interpreted as consistent estimator of $P^*(Y \neq \hat{h}_n(X))$, the generalization error of the hypothesis output by MDL-C0 (reliability).

Does it work?

- Baby-theorem can be extended to infinite ${\cal H}$ with finite VC-dimension, or to various forms of 'parametric' ${\cal H}$
- More generally, theorem holds for any type of ${\cal H}$ satisfying uniform law of large numbers
- But these are typically ${\it not}$ the type of ${\mathcal H}$ we want to apply MDL to!
 - • Example: intervals domain/decision trees: ${\cal H}$ has infinite VC-dimension

Part IV: Overview

- 1. Introduction
- 2. MDL for classification, basic approach
- 3. The Promise
 - · Basic approach has some great properties!
- 4. The Problem
 - · Basic approach shows problematic behaviour
- 5. Conclusions

Problems for MDL-CS

- What about grown-up versions of our babytheorem for arbitrary countable with DL(h) arbitrary codes
- For probabilistic MDL, general consistency/rate of convergence results exist
 - e.g., Barron and Cover 1991
 - · related to Bayesian consistency proofs
- · For MDL-C0, no such results exist
- · ...and in fact, they do not hold!

The Problem

- MDL C1 may be interpreted as applying MDL to a set of countable conditional probability distributions...so it may seem that Barron and Cover's results are still applicable...
- ...but they aren't!

The Problem

- Why aren't standard consistency results applicable?
 - These all assume that the 'true' distribution $\,P^*$ is in (the information closure of) $\,{\cal P}\,$
 - Our constructed probability distributions implicitly assume that misclassification probability is independent of X:
 - We have, for all $\mathcal{R}_1,\mathcal{R}_2\subset\mathcal{X}$ with $P^*(X\in\mathcal{R}_i)>0$

 $P(Y \neq \tilde{h}(X) \mid X \in \mathcal{R}_1, \tilde{h}, \tilde{\beta}) = P(Y \neq \tilde{h}(X) \mid X \in \mathcal{R}_2, \tilde{h}, \tilde{\beta})$

- Only if this also holds for 'true' distribution, i.e. if $P^*(Y \neq \tilde{h}(X) \mid X \in \mathcal{R}_1) = P^*(Y \neq \tilde{h}(X) \mid X \in \mathcal{R}_2)$ can B&C's result be applied
- But this is a very strong and unrealistic assumption!

The Problem

- In fact, none of the existing proofs of consistency of MDL or Bayesian procedures for countable models (sets of prob. distributions) can be applied without making unreasonable assumptions on P*
- Very recently, we showed that in fact, two-part code MDL can indeed be inconsistent!
 - Grunwald & Langford, 2003 (under submission/revision)
- Problem not just for MDL but also for 'Bayesian classification under misspecification'

The Problem - II

- We strongly suspect that also more sophisticated versions of MDL (based on normalized maximum likelihood, Bayesian marginal likelihood) can be inconsistent
- · ...but no proof yet.

Adjusting MDL-C0

- Barron (1991) and Yamanishi (1998) consider adjustments of the MDL-complexity penalty that are provably consistent for inference of predictors for a given loss function
 - · classification as special case
- PAC-Bayes: McAllester (1998, 1999, 2001) considers adjustments of Bayesian inference for classification that are provably consistent 'under misspecification'
- Freund, Mansour, Shapire (2003) another pseudo-Bayesian, provably consistent inference method for classification

Previous Solutions

- All these adjustments typically punish complexity of hypothesis much more heavily than ordinary MDL
- Advantage:
 - this ensures that no asymptotic overfitting takes place...
- · Disadvantages:
 - no (straightforward) coding interpretation
 - learning 'slow' compared to ordinary MDL...perhaps slower than necessary?

cf Tsybakov 1999

Example: Yamanishi's MLC

Yamanishi 1998

• MDL-CS:

$$\min_{\beta \in \mathbb{R}, h \in \mathcal{H}} \ \beta L_{01}(D; h) + n \psi(\beta) + \mathrm{DL}(h) =$$

$$\min_{h \in \mathcal{H}} \ \hat{\beta}_h L_{01}(D; h) + n \psi(\hat{\beta}_h) + \mathrm{DL}(h)$$

where $\hat{\beta}_h = \ln(1 - \hat{\theta}_h) - \ln \hat{\theta}_h$ stays away from 0!

• Yamanishi's MLC:

$$\min_{h \in \mathcal{H}} \beta_n L_{01}(D; h) + n\psi(\beta_n) + \mathsf{DL}(h)$$

where $\beta_n = \Theta(\sqrt{\frac{\ln n}{n}})$ goes to 0!

Example: Yamanishi's MLC

Yamanishi 1998

· Yamanishi's MLC:

$$\min_{h \in \mathcal{H}} \beta_n L_{01}(D; h) + n\psi(\beta_n) + DL(h)$$
$$\beta_n = \Theta(\sqrt{\frac{\ln n}{n}})$$

· Equivalently,

$$\min_{h \in \mathcal{H}} \ L_{01}(D;h) + \frac{1}{\beta_n} \mathsf{DL}(h)$$

• Compare to Barron's (1991) regularization:

$$\min_{h \in \mathcal{H}} \ L_{01}(D;h) + \lambda \sqrt{n \mathsf{DL}(h)}$$

where λ is some positive constant

Ubiquitous \sqrt{n} !

- McAllester's PAC-Bayes also leads to a model selection criterion with \sqrt{n} factor in front of complexity term
 - · some important refinements though
- \sqrt{n}\text{ also hidden in Freund, Mansour, Shapire's work

Problems

- Approaches that are provably consistent have $\beta_n \to 0$ as n increases. Problems (in my view):
 - There is no clear coding interpretation any more (following Rissanen, I would like to keep the coding interpretation if at all possible)
 - 2. β_n cannot be interpreted as an estimator of the loss h will make on future data any more (following intuition, I would like to keep this interpretation if at all possible!)
 - 3. Complexity penalties may (?) sometimes be larger than necessary (viz Tsybakov's recent work)
 - Smaller penalties may give better rates of convergence for certain classes of 'true' P^{\ast}

Classification - Conclusion I

- Two-part code MDL can fail for classification
- More sophisticated versions of MDL/Bayes can fail as well (did not discuss this in detail)
- In practice though, MDL often slightly underfits rather than overfits!
 - Possible reason: code length based on local rather than global optima in error surface (?)

Classification - Conclusion II

- 'raw' MDL suited and designed for probability models
 - typically consistent if well-specified, i.e. if 'true' data-generating distribution in (closure) of model ${\cal M}$
 - Consistent under misspecification under certain conditions, e.g. if $\mathcal M$ is a convex set of distributions
- MDL turns non-probability models (e.g. classifiers) into codes (probability distributions) first; the resulting model is typically misspecified and, unfortunately not convex...so that we may get inconsistency

Thank you for your attention!