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Introduction

« MDL mostly developed and studied for probability models
+ Yet often applied to models/model classes that are not
(directly) interpretable as probability distributions
» Here we apply it to models that are families of classifiers
« decision trees
« support vector machines
* neural networks...

Introduction - i

» There is no unique definition of ‘the’ MDL
Principle for classification
* Yet there is a certain standard approach that
has been employed by most authors:
* Quinlan and Rivest (1989),
* Rissanen & Wax (1989),
» Kearns et al. (1997) ;
« several others...

Introduction - lll

+ Standard approach has pleasant but also unpleasant
properties:
« strange experimental results (Kearns et al. 1997 (?))
« can be inconsistent! (Griinwald & Langford, 2003)
— Even with infinite data, MDL does not identify the classifier
with the smallest ‘generalization error’ (probability of making
a wrong prediction) — it asymptotically overfits!
+ Several adjustments exist
« Barron (1991), Yamanishi (1998), McAllester’'s PAC-
Bayes (1999)
« these are provably consistent

* but loose some of the pleasant properties of standard
approach
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Classification

+  Given:
+  Feature space X’

Label space Y = {0,1}

data D= ((x1,91),- -, (Zn,yn))

countable set 7 of hypotheses (classifiers) h: X — Y

+ Goal:find a h € H that makes few mistakes on future
data from the same source
We say ‘h has small generalization error’
if data are noisy, then it is not a good idea to adopt the i
that minimizes nr of mistakes on the given data
leads to over-fitting
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Example: intervals (toy) domain
Kearns et al., 1995

y=1 %% Yk k1 kb oy
| R T
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1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
P I N M
0 — T — 1
X =[0,1]
Hj, : setoffunctions h : X — {0, 1} that switch value k times
H= U Hx
k=12,..

Example: intervals domain
Kearns et al., 1995

y=1 r** * PR = e
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
y=0 e & L o ==
0 — T —> 1
X =[0,1]
Hj, : setoffunctions h : X — {0, 1} that switch value k times
H = U Hp the h in picture is in He and makes
k=1.2... 1 classification error on data D

Two-part code MDL

» We use the oldest, crudest version of MDL
(two-part code MDL, Rissanen '78)

» Problematic aspects of MDL for classification
are not solved by using modern versions of
MDL such as normalized maximum likelihood

» Grinwald & Langford, 2003

+ Using two-part code allows us to keep our

story as simple as possible

Two-Part Code MDL

Two-part code MDL:
— Let H be a set of hypotheses. Given data D
pick the h € H that minimizes the sum of
« the description length of the hypothesis h

« the description length of the data D when
encoded ‘with the help of the hypothesis h ’

MDL and Classification

Two-Part Code MDL

Pick h € H minimizing

DL(h) + DL(yl’ - Yn | h,CC]_,.. . 7$TL)
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Two-Part Code MDL Two-Part Code MDL
Pick h € H minimizing Pick h € H minimizing
DL(h) + DL(yl’ s Yn | h,CC]_, e 7$TL) DL(h) + DL(yl’ s Yn | h,CC]_, e 7$TL)
Encoding of X1,-..,Z%n takes DL(z1,...,zn) _ — : :
bits; this term does not involve h . Therefore it plays no | Any function onH satisfying Kraft inequality
role in minimization and can be dropped!

Coding Hypotheses Coding Data
* DL(h) = —logW(h) , W can be thought of as Pick h € H minimizing
‘prior’ ; many reasonable possibilities
+ example code for intervals domain:
y . ! DL(h) 4+ DL(y1,--,yn | h,1,. ., @n)
encode h € H in three steps:
1. Encode number of switches k T
2. Encode ‘granularity’ d I
3. Code location of k switches within gor?fmzéé; of m7|sg{gk2); coding
{0, %% o %} b. location (index) of mistakes
Coding Data: DL (y" | =™, h) Standard approach to coding data

» Define:

— mistake count Mp,
number of mistakes h makes on D

DL*(y1,..-»yn | hy@y,... ,2n) =
n
= lo 1 lo
g(n+1)+ Q(Mh)

—0/1-loss: for y, g € {0,1}: I [
L y) =ly—7y
01 (y’ y) |y y' nr of bits needed to nr of bits needed to
encode total nr of encode location of
mistakes mistakes

+ Formally, Mj, := ", Loi(y, h(z;))

MDL and Classification 3
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2p-code length intervals domain

heH { DL(y

. n d
“min_{log(." )+ loggk + loggd 4 log (V) }
hp g€H % \IVh/ N i

error term complexity term
« familiar trade-off between error and complexity
« we can and did leave out log(n + 1) term
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MDL Version C0

» We call the coding scheme for ‘coding data
with the help of hypothesis’ MDL Version CO.

+ (slight variations of) MDL CO used by

* Quinlan and Rivest (1989),

» Rissanen & Wax (1989),

* Kearns etal. (1997) ;

« even Wallace & Boulton (1968)
+ Butis it the ‘right’ way to do things?

Potential Problems:

1. Many different coding schemes of data given
hypothesis DL(y"|h,z™) possible
» Comparison strongly indicates that MDL CO is
basically the ‘right’ coding scheme.
2. Theoretical results on MDL CO

» (in sharp constrast to probabilistic MDL), analysis
strongly indicates that nevertheless something’s
wrong with MDL CO

Classification: Overview
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1. Alternative coding schemes

» Two other coding schemes have been
proposed in the literature.

» seemingly very different, they both lead to same
hypothesis selection criterion as MDL CO

« shows that MDL CO is special case of general
procedure, applicable to arbitrary loss functions

+ Evidence that what we're doing is o0.k.!

MDL and Classification

MDL C1: entropification

Rissanen 1989, implicit in Vovk 1990
Meir and Merhav 1995, Yamanishi 1998
Griinwald 1998

» Suppose we have a code such that for all 4, all

(z" ,y™ , the code length is an increasing affine

function of the loss:

DL(y" | 2™ h) = 8371 Lo1(yis h(x)) +
=My +

* Here3 > 0; a may depend on n, but noton h
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MDL C1: entropification

Rissanen 1989, Meir and Merhav 1995,
Yamanishi 1998, Griinwald 1998,
implicit in Vovk 1990 and others
» Suppose we have a code such that for all 4, all
(z" ,y™ , the code length is an increasing affine
function of the loss:

DL"™ | 2", h) = 8371 Lo1(yi: h(z;)) +
=M+«

 then ‘error term’ in DL(y"|z", h) 4+ DL(h) expresses
exactly the error function we are interested in!

entropification

* We can construct a code satisfying
DL(y™ | 2", h) = B f—q Lo1(yi; h(z:)) + a
by first constructing a conditional probability distribution:
P(y|z, h, B) 1= Tlme—ﬁLm(y:h(x))

Z(B) = Zye{O,l} e—BLo1(yih(x))

‘ Note: Z(3) does notdependonhor X ! ‘

entropification

» We can construct a code satisfying
DI (2] »1 B — R3S Tomalars b)) L
I M L \*2/7 0

O

“=\Y vy = i=1 ~01\Hi 7t (]
by first constructing a conditional probability distribution:
P(y|z, h, B) := Z(lg)efﬁLm(y;h(z))

Z(8) = Yyeo1) e—BLo1(y:h(z))
n
Py ZII”,h,,ﬁ = Ti — e*ULOI(yi;”'\wi))
" ) il:1 A0)
* then
—InP(y"|a", h, B) = BY=q Lo1(yi; h(wi))+nin Z(B)

entropification

+ Foreach h,[3 we constructed a corresponding conditional
probability distribution satisfying , forall D = (2™, y™)

—InP(y™|a", h, B) = B Lo1(yi: h(z;))+niIn Z(B)

< By Kraft inequality, there must also exist a (conditional) code
defined on data sequences of length n , satisfying

« This is the code we'll use!

entropification

« Foreach h,[3 we constructed a corresponding conditional
probability distribution satisfying , forall D = (z™,4") ,

—InP(y"a" b, B) = B 71 Lo1(yi: h(x:))+nIn Z(B)

« By Kraft inequality, there must also exist a (conditional) code
defined on data sequences of length n , satisfying

DL(y"[z", h, B) = B3]—1 Lo1(yi; h(2:))+nIn Z(B)

— Code length measured in nats

— Important: no claim that P(- | -, h, 3) generates the data;
purely artificial construction to make sure that code length of
data given h = linear function of loss h makes on data

entropification

* MDL now becomes: select k € H minimizing
B Loi(yi: h(x;)) +nln Z(8) + DL(h)
i=1
+ Problem: how to choose 3 ?

« different 3 lead to different choices of &

* 3 measures how strongly the 0/1-error should be
weighted compared to the ‘complexity’ of h
— Bviewed as learning rate, inverse ‘temperature’

MDL and Classification
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entropification

* MDL now becomes: select k € H minimizing
15 Vn‘ Tnsla-hi(ae N LnlnZ(R)Y LDIL(AK)
2L, HOINYn e\ T Te i ANy T Yy
i=1
+ Problem: how to choose 3 ?
« different 3 lead to different choices of h
* 3 measures how strongly the 0/1-error should be
weighted compared to the “complexity’ of A
« Intuitive Solution
« learn not just i, but also 3 from the data

entropification

* MDL now becomes: select h e 7 achieving

o {ﬁi; Lot (yii h(wa)+nin Z(ﬂ)+DL(h)+DL(ﬁ)}

+ We’'ll see in a minute that this does (almost)
exactly the same as MDL CO ...

‘Don’t worry about DL(8) for now! ‘

entropification

» MDL now becomes: select h ¢ H achieving

min {85 Lov(uii b))+ 1n Z(8)4DL(W+DL(H) |

heH,Bel000] | /=1 )

+ We'll see in a minute that this does (almost)
exactly the same as MDL CO ...

* ...we do this by giving a third coding scheme
easily shown to be equivalent with MDL CO and
MDL C1 (‘entropification’)

MDL C2: Probabilistic coding

« Original two-part code MDL (Rissanen '78)
was really designed for probability models:
» Let P be a countable set of (conditional)
distributions on Y given X
» Then probabilistic two-part code MDL tells us to
select the P € P achieving

min —log P(y" | 2™ DL(P
min —log P(y" | =") + DL(P)

MDL Version C2: Probabilistic coding

* Original two-part code MDL (Rissanen '78)
was designed for probability models only:
» Let P be a countable set of (conditional)
distributions on Y given X’
« Then probabilistic two-part code MDL tells us to
select the P € P achieving

Ir;weig—lnP(y | ™) 4 DL(P)

+ We'll recast classification in probabilistic terms

MDL C2

+ Define for eachh € # and ‘noise level’ 6 € [0, 1]
associated Boolean regression model, i.e.
Y = h(X;) xor Z;
where

Z €{0,1}, P(Z; =1) = 0,X,,Y;, Z; i.id.

* Let P(-,| -, h,0) be the associated conditional
distribution:
P(y"|2", h,0) = 6" (1 — )"~

MDL and Classification
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MDL Version C2 MDL C2
» MDL C2 tells us to pick (h,6) minimizing » MDL C2 tells us to pick (h,6) minimizing
—inP{y"|z", h,0) + DL(h) + DL(0) = —inP{y"|z", h,0) + DL(h) + DL(0) =
—MpIn6 — (n— M) In(1 — 0) + DL(h) + DL(0) —MjIn0 — (n— M) In(1 — 6) + DL(h) 4+ DL(0)

« MDL C1 tells us to pick (h, 8) minimizing

BMy, +nin(1 + e~”) + DL(h) 4+ DL(B)
+ substituting 8y := In17? shows this is the same!

MDL C2 = MDL C1 MDL C2 vs MDL CO
« Conclusion: » MDL C2 tells us to pick (h,6) minimizing
—MDL C1 and C2 yield exactly the same —in P(y"f+", h, 6) + DL{h) + DL{®) =
hypothesis for the same data,even though =M In0 — (n— My) In(1 - 6) + DL(h) + DL(6)
codes were motivated differently: eMiNaera 11 {— My 100 — (n— M) In(1 — 0)}

— version 1: code length of data linear function of loss
— version 2: probabilistic assumption that data generated _ M, 1
by some deterministic process + noise " t9 = b =00 Ly, h(xy)
. . S0 thal
— Can encode 8 by encoding corresponding 4,

min {—=Mp,In0 — (n — M) In(1 —0)} =
i i 0
using In(n + 1) nits n[—0Ind — (1 — ) In(1 — )] = nH(A)

is achieved for maximum likelihood é :

N—

where H(0) is the binary entropy of a coin with bias 0

MDL C2 vs MDL CO MDL C2 vs MDL CO

Recall: for MDL Version CO we had
DL(y1,---sYn | hyz1,...,2n) =
n
In(n+ 1) +In (Mh) =

» MDL C2 tells us to pick » minimizing
—In P(y"[a", h, 6) + DL(h) + DL(0) =
nH(9) + DL(h) + In(n + 1)

My, 1
In(n+ 1) —|—H(Th) —5Inn+0(1) =

H(D) +%Inn+ o)

« standard application of Stirling’s approximation

MDL and Classification 7
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MDL C2 vs MDL C1

» MDL C2 tells us to pick » minimizing

—in P(y"|z", h,0) + DL(h) + DL(0) =
nH(A) + DL(h) + In(n + 1)

» MDL CO tells us to pick A minimizing

nH(9) 4+ DL(h) + élnn [+o(1)]

* (almost) the same!

MDL CO = MDL C1 = MDL C2

» Conclusion: all three versions essentially the
same!
» Henceforth take MDL C1 as canonical since

1. it suggests how to extend the approach to
different settings (predictors, loss functions)

2. useful to learn not just A , but also 3

More on 3.

+ MDL C1 tells us to minimize

83" Loi(yi; h(z))+nin Z(8)+DL(h)+DL(8)
i=1
+ Keeping h fixed and minimizing only over 8, minis
achieved for 3=1In(1 —8) — Indwithd = M, /n
. B implicitly represents loss that A makes on data
» Maybe can be used as estimate of i’s loss on future data?

* By, <0 corresponds to h that makes > 50% mistakes
« then h is a better predictor than & for given data

Extensions

» Approach can be generalized to (quite)
arbitrary symmetric loss fns (Griinwald 98)
» Example: for the squared error, an analogous
story has been known for many years
» Recently, shown that approach can even be
generalized to non-symmetric loss functions

*eg 7(1-1N\=7(00\=0" {10y =1 - Y =1
Q.11 =4L(0;0)=0; L{(1;0)=1 I(0)1)=1

» considerably more complicated

Does it ‘work’?

» Would like to show some consistency or rate-
of-convergence results, saying that
‘assuming that data are distributed according
to some distribution P*, then with high P*
probability, the hypothesis inferred by MDL
CO0 converges to the ‘best’ hypothesis in
(closure of) H*

Does it ‘work’?

Baby-Theorem (Griinwald 1998, others) Suppose
data (X1,Y1),(X2,Y2),..., are independently and identically
distributed according to some distribution P* on X x ).

Let § := infhep Ep[Lo1(Y; h(X))] = infrep P*(Y # h(X)).

Let 3:=In(1—8) —Ind.

Let H be finite, let DL be a code length function such that
DL(h) is finite for all h € H. Let (hn,(3,) be the hypothesis
inferred by MDL-CS based on the first n outcomes. Then
with P*-probability 1,

Ep.[L(Y; ha(X))] — :EQL Ep[L(Y;h(X))] as n — co.

ﬁnﬂﬁas n — o0.

MDL and Classification
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Does it ‘work’?

Baby-Theorem (Grinwald 1998, others) Suppose
data (X1,Y1),(X2,Y2),..., are independently and identically
distributed according to some distribution P* on X x ).

Let 0 := infuey Ep-[Lo1 (Y h(X))] = infrep P*(Y # h(X)).
Let 3:=In(1—6)—Ind.

Let H be finite, let DL be a code length function such that
DL(h) is finite for all h € H. Let (h,,B3,) be the hypothesis
inferred by MDL-CO based on the first n outcomes. Then
with P*-probability 1,

Ep- (LY ha(X))] = Inf Bp-[L(Y R(X))] @ n — oo

he'
Bn — B as n — oco. MDL is asymptotically
. . optimal
MDL is asymptotically
reliable

September 2003

Does it ‘work’?

* In words, MDL-CO is ‘consistent’:

—MDL-CQO is capable of finding the ‘best’
hypothesis, with smallest ‘generalization
error’ (optimality)

— B can be interpreted as consistent
estimator of P*(Y # hn(X)) , the
generalization error of the hypothesis
output by MDL-CO (reliability).

Does it work?

+ Baby-theorem can be extended to infinite 1
with finite VC-dimension, or to various forms
of ‘parametric’ H

» More generally, theorem holds for any type of

‘H satisfying uniform law of large numbers

+ But these are typically not the type of Hwe

want to apply MDL to!

» Example: intervals domain/decision trees:
‘H has infinite VC-dimension

Part IV: Overview

1. Introduction
2. MDL for classification, basic approach
3. The Promise

» Basic approach has some great properties!
4. The Problem

« Basic approach shows problematic behaviour
5. Conclusions

Problems for MDL-CS

» What about grown-up versions of our baby-
theorem for arbitrai}fcountable ~ with PL(%)
arbitrary codes ?

+ For probabilistic MDL, general
consistency/rate of convergence results exist

* e.g., Barron and Cover 1991

« related to Bayesian consistency proofs
* For MDL-CO, no such results exist
+ ...and in fact, they do not hold!

MDL and Classification

The Problem

« MDL C1 may be interpreted as applying MDL to a set
of countable conditional probability distributions....so
it may seem that Barron and Cover’s results are still
applicable...

+ ...but they arent!
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The Problem

« Why aren’t standard consistency results applicable?
— These all assume that the ‘true’ distribution P*is in (the
information closure of) P

— Our constructed probability distributions implicitly assume
that misclassification probability is independent of X :

— We have, forall Ry, Ro ¢ X with P*(X € R;) >0
P(Y #MX) | X € R1,h,B) = P(Y # h(X) | X € Ra,h, )
Only if this also holds for ‘true’ distribution, i.e. if
PYY #£R(X) | X € Ry) = P*(Y £ h(X) | X € Rp)
can B&C’s result be applied
« But this is a very strong and unrealistic assumption!

September 2003

The Problem

« In fact, none of the existing proofs of consistency of
MDL or Bayesian procedures for countable models
(sets of prob. distributions) can be applied without
making unreasonable assumptions on p*
Very recently, we showed that in fact, two-part code
MDL can indeed be inconsistent!

+ Grunwald & Langford, 2003 (under submission/revision)
Problem not just for MDL but also for ‘Bayesian
classification under misspecification’

The Problem - 1

» We strongly suspect that also more
sophisticated versions of MDL (based on
normalized maximum likelihood, Bayesian
marginal likelihood) can be inconsistent

* ...but no proof yet.

Adjusting MDL-CO

« Barron (1991) and Yamanishi (1998) consider
adjustments of the MDL-complexity penalty that are
provably consistent for inference of predictors for a
given loss function

« classification as special case

+ PAC-Bayes: McAllester (1998, 1999, 2001) considers
adjustments of Bayesian inference for classification
that are provably consistent ‘under misspecification’

+ Freund, Mansour, Shapire (2003) — another pseudo-
Bayesian, provably consistent inference method for
classification

Previous Solutions

+ All these adjustments typically punish
complexity of hypothesis much more heavily
than ordinary MDL

» Advantage:

« this ensures that no asymptotic overfitting takes
place...

» Disadvantages:
* no (straightforward) coding interpretation

« learning ‘slow’ compared to ordinary
MDL...perhaps slower than necessary?

cf Tsybakov 1999

MDL and Classification

Example: Yamanishi’s MLC

Yamanishi 1998

« MDL-CS:
Lmin - BLo1(Di k) + n(8) + DLW =

min  B,Lo1(D; h) + nip(By) + DL(R)
heH

where 3, =In(1 - 6,) — I8, |stays away from 0!

* Yamanishi’'s MLC:
]r‘r"lgi_}r_} BnLo1(D; h) + n(Bn) + DL(R)

where 5, = ©(,/2)

10
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Example: Yamanishi’s MLC Ubiquitous /1 !
‘Yamanishi 1998

+ Yamanishi’'s MLC: » McAllester's PAC-Bayes also leads to a

min fnLo1(D;h) +ni(fn) + DL(h) model selection criterion with /7 factor in

front of complexity term
= /Inn
n = O(/%") + some important refinements though

+ Equivalently, « /nalso hidden in Freund, Mansour,

min  Lo1(D;h) + ﬁlDL(h) Shapire’s work

» Compare to Barron’s (1991) regularization:
hrréiﬂ Lo1(D; h) + X\y/nDL(h)

where A is some positive constant

Problems Classification — Conclusion |

. » Two-part code MDL can fail for classification
« Approaches that are provably consistent have 3, — 0 Y histicated ) f MDL/B tail
as n increases. Problems (in my view): ore sophisticated versions o I ayes can 1ail as
. -~ ! well (did not discuss this in detail)
1. There is no clear coding interpretation any more I . .
(following Rissanen, | would like to keep the coding + In practice though, MDL often slightly underfits rather
interpretation if at all possible) than overfits!
2. [3p cannot be interpreted as an estimator of the loss h « Possible reason: code length based on local

will make on future data any more (following intuition, | X h P
would like to keep this interpretation if at all possible!) rather than global optima in error surface ()

3. Complexity penalties may (?) sometimes be larger than
necessary (viz Tsybakov’s recent work)

« Smaller penalties may give better rates of convergence
for certain classes of ‘true’ P*

Classification — Conclusion Il

» ‘raw’ MDL suited and designed for probability models
« typically consistent if well-specified, i.e. if ‘true’
data-generating distribution in (closure) of model M
+ Consistent under misspecification under certain
conditions, e.g. if M is a convex set of
distributions
» MDL turns non-probability models (e.g. classifiers)
into codes (probability distributions) first; the resulting
model is typically misspecified and, unfortunately not
convex...so that we may get inconsistency

Thank you for your attention!
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