Time-Driven Algorithms for Distributed
Control

Paul M.B. Vitanyi
C.W.l., Kruislaan 413, 1098 S5J Amsterdam

Distributed algorithms are investigated for clock synchronization, spanning tree construction
and leader-finding in large store-and-forward networks of processors communicating by
message passing. In the synchronization algorithm the clocks are allowed to drift in both
value and speed; the message delivery delay is unknown and may change with time. The
algorithm for distributed elections and distributed spanning tree construction uses time, yet
is logically time independent. Using time, we oblain better performance in terms of
message-passes and passed bits than is possible otherwise, and better performance than
by any other known algorithm. The algorithm works correctly for any network topology,
under any asynchronicity in the network, and assumes no global knowledge about the
network,

1980 Mathematics Subject Classification: 68C08, 68C25, 68A05, 68B20, 94C99

CR Calegories: C.2, D.4, F.2.2, G.2.2,

Keywords & FPhrases. distributed clock synchronization, distributed spanning tree,
distributed elections, algorithms using time, time-independent correctness and termination,
robustness, accelerated efficiency by improved synchronicity, distributed control, cdmputer
networks, network topology.

Note: this paper is meant for publication elsewhere

1. INTRODUCTION

As large multiprocessor systems communicating by message passing start to be actually
constructed (we give some examples in a later section), and on a geographically grander
scale very large computer networks, synchronization problems connected with the operation
of such complexes are bound to become acute. We exhibit clock synchronization
algorithms, for synchronizing the local clocks of the processors, using less assumptions on
clock drift and communication delay than has previously been done. .

Another problem which gets crucial for very large computer complexes is the number of
message passes. Without efficient congestion control the system will be swamped by
communication messages effectively blocking throughput. The most efficient congestion
control consists in designing message-thrifty algorithms. We exhibit an algorithm for
distributed leader-finding and distributed spanning tree construction which works for any

" Report CS-RB510

Centre for Mathematics and Computer Science
P.Q. Box 4079, 1009 AB Amsterdam, The Netherlands

2

network, under any asynchronous behavior, with only local information, and is more thrifty
in message passes and passed bits than any other known algorithm. In fact, the algorithm
performs within a (small) constant multiplicative factor of the lower bounds.

The networks we consider are point-to-point (store-and-forward) communication networks
described by an undirected communication graph G=(V,E), with the set of nodes V
representing the processors of the network, and the set of links £ representing bidirectional
noninterfering communication channels between them. No common memory is shared by
the node-processors. Each node processes messages received from its neighbors, performs
local computations on messages and sends messages to neighbors. All these actions take a
finite time. All messages have a finite length according to the finite amount of information
they carry. Each message sen;i/ by a node to its neighbor arrives there in a finite time.
Messages over a given link arrive in the order in which they are send, and are stored in a
receiving queue of unbounded length at the destination. We may think of messages as being
chopped into fixed-length packets at the sender which are reassembled by the receiver. A
message pass consists of the sending of a message from one node to one of its direct neighbors.

Synchronicity. Problems resulting from lack of synchronization are dealt with using logical
time [13] or by constructing algorithms which can deal with unlimited asynchronism. Such
algorithms can surely deal with any environment in which there is knowledge about
processor speed and message delivery time. Unlimited asynchronous models have been
thoroughly investigated, as have purely synchronous models. Physical systems are usually
somewhere in between: they are neither purely synchronous nor unlimited asynchronous. It
therefore is an interesting exercise to develop algorithms which do not use knowledge about
the relative progress of time in the system, yet perform superior under realistic conditions
about time. The usual logically time-independent algorithms do not assume anything
about the rate at which time flows in different locations. This is unnecessary harsh with
respect to many problems arising in the actual world. The algorithm for approximate clock
synchrontzation below sends three messages in a Z-leg between a pair of adjacent neighbors
and computes the relative local times and timerates from the collected information. The
reason why this algorithm is satisfactory is because whatever happens in the system happens
with a certain smoothness. So also clock drift [16]. Abrupt changes are rare in nature. The
distributed elections and spanning tree constructions presented below are other examples of
which the superior performance relies on well-behaved nature, Unlike the mentioned
synchronization, however, these algorithms are robust. They remain correct and terminate
under any behavior of time in the systemn. Using time, the algorithms are yet logically
time-independent; only their efficiency depends on the behavior of time. With more
synchronous well-behaved time in the system the performance of the algorithms improves
ever faster. If the asynchronicity of the system is known then the algorithm can be made to
perform as well as in the synchronous case. Under practical assumptions about clock
speeds these algorithms use less message passes than is possible by any other known method.
This is an initial investigation into the concept of time-driven algorithms for distributed
control in synchronous or asynchronous systems. The algorithms for distributed spanning
tree and distributed elections have a good performance on paper; yet it is unlikely that they
are, in their present form, useful in a real environment. This question is addressed in more
detail later. The primary goal of the present investigation is to demonstrate the existence of

3

competitive time-driven algorithms with the desirable properties as mentioned. We expect
that genuinely more efficient algorithms, than the unlimited asynchronous ones, exist in
between the pure synchronous and unlimited asynchronous ones.

Clock Synchronization. For synchronization purposes in multiprocessor systems the
individual processors often need to maintain clocks that are synchronized with one another.
Physical clocks cannot keep perfect time; therefore clocks can drift with respect to one
another both in the time they indicate and the rate at which time flows. Clock
synchronization algorithms have been studied extensively [15,1], Recent work [16] contains
solutions for difficult problems of distributed synchronization in the presence of faults, These
algorithms must deal with the malicious presence of “two-faced” clocks which present one

" time to one observer and another time to another observer simultaneously. See also [6,7].

Although we investigate milder irregularities of clocks than [16], the assumptions we make
about the clocks are weaker.

Distributed Spanning Tree. Consider a connected undirected graph G with N nodes and E
edges. Each node has a unique name and knows the names of its direct neighbors,
Requested is an asynchronous distributed algorithm which determines a spanning tree (ST)
of the graph. Each node performs the same local algorithm, consisting of exchanging
messages with the adjacent nodes, and processing received messages. Messages can be
transmitted independently in both directions over an edge. After each node completes its
local algorithm, it knows which adjacent nodes are in the tree and also which edge leads to
a particular node designated as the core of the tree. For the present purposes each node is
initially asleep. One or more nodes may wake up spontaneously or upon receiving a
wakeup message from a neighbor and will then proceed with their private algorithms. The
problem occurs in connection with broadcasting in computer networks. There are many
potential control problems for networks whose communication complexity is reduced by
having a known spanning tree [11].

A distributed system can adapt to failures in different ways. One way is to temporary halt

- normal operation and to take some time out to reorganize the system. Such a

reorganization is managed by a single node we may call the leader. Hence, as a first step in
a reorganization the still operative nodes need to elect such a leader [12]. Part of the
distributed ST algorithm presented below is a distributed election of a leader which forms the
core of a spanning tree (not necessarily the minimal one). In [11] a solution is presented
for distributed minimum spanning tree construction using a total number of message passes of
at most 5N logN + 2F, and a message contains at most one edge weight plus log 8N bits
(logarithms in base 2). Since the core of the spanning tree can be the leader, and below we
find the same order of magnitude lower bound for electing a leader, an order N logN + E
lower bound holds for distributed spanning tree (with a designated core) construction too.
In fact, the algorithm below finds a drected spanning tree which is minimal with respect to the
node delays.

Distributed Elections. The problem of decentralized elections has received considerable
attention. For general networks [12,10], for complete networks [14,22], and for ring
networks e.g [17,4,8,5,19,14,9,27]. In the asynchronous case the basic results are that
O(N logN') message passes suffice for distributed elections in both an undirected and
directed ring network [5,19], and £2(¥ log N') message passes are needed on the average for

4

both undirected and directed rings [18]. For the synchronous case it was shown that O(N)
message passes are sufficient [27,9]. The latter paper shows that the O(N logN) lower
bound holds also for the synchronous case if the distinct names of the processors are used
only in comparisons. In a complete graph, distributed elections can be conducted in
O(N log N} message passes, and (N logN) is necessary, if the nodes “know” the graph is
complete [14]. If the nodes do not “know” the topology of a graph then the election
problem is @(E +N log N) for asynchronous graphs [10, 22]..

We exploit a natural property of computer networks, that the ratio of two elapsed time
spans anywhere in the network is always finite, in order to obtain a solution which is more
frugal in number of message passes than is possible under the harsh assumption of
unlimited asynchronicity. For synchronous systems the technique gives better performance
than any earlier known method. For synchronous ring networks related ideas have been
used in [9,27], and related work for limited asynchronous ring networks in [27]. The
limitation on unlimited asynchronism we require is but a minor one which is generally
satisfied and which we term “Archimedean asynchronicity”.

2. DisTrIBUTED SYSTEMS AND PrysicarL Time

In asynchronous distributed systems each processor has its own clock. Although these clocks
may not be synchronized, and the clocks may not indicate the same time, there should be
some proportion between the clock rates. That is, if an interval of time has passed on the
clock for processor A, a proportional period of time has passed on the clock for processor
B. This assumption allows us to challenge the (N logN') lower bound on the required
number of message passes in [3]. In [20] a similar concept “tame” is used advantageously
in the context of probabilistic synchronization algorithms.

In the asynchronous networks we consider, the magnitudes of elapsed time satisfy the
axiom of Archimedes. The axiom of Archimedes holds for a set of magnitudes if, for any
pair a,b of such magnitudes, there is a multiple na which exceeds b for some natural
number . It is called Archimedes’ axiom* possibly due to application on a grand scale in
The Sand-Reckoner.

We assume that the magnitudes of elapsed time, for instance as measured by local clocks
amongst different processors or by the clock of the same processor at different times, as well
as the magnitudes consisting of communication delays between the sending and receiving of
messages, measured in for instance absolute physical time, all together considered as a set of
magnitudes of the same kind, satisfy the Archimedean axiom. In physical reality it is always
possible to replace a magnitude of elapsed time, of any clock or communication delay, by a
corresponding magnitude of elapsed absolute physical time, thus obtaining magnitudes of
the same kind. We assume a global absolute time to calibrate the individual clocks; using
relative time by having the clocks send messages to one another yields the same effect - for
the purposes at hand. If we do not restrict ourselves, so to speak, to Archimedean

* In Sphere and Cylinder and Quadrature of the Parabola Archimedes formulates the postulate as follows. “The
larger of two lines, areas or solids exceeds the smaller in such a way that the difference, added to itself, can
exceed any given individual of the type to which the two mutually compared magnitudes belong”. The
axiom appears earlier as Definition 4 in Book 5 of Euclid’s Elements.

5

distributed systems, then the processors in the system may not have any sense of time or
have clocks which keep purely subjective time, so that the unit time span of each processor
is unrelated to that of another. That is, the set of time units is non-Archimedean by the
length of every time unit not being less than a finite times that of any other in the absolute
global time scale; or the communication delays having no finite ratio among themselves or
with respect to subjective processor clocks. As a consequence distributed elections or any
other type of synchronization in a deterministic fashion becomes impossible:

-Any process, pausing indefinitely long with respect to the time-scale of the others, between
events like the receiving and passing of a message, and also any unbounded communication
delay, effectively aborts activities such as an election in progress. A process can never be
sure that it is the only one which considers itself elected.

-Without physical time and clocks there is no way to distinguish a failed process from one
just pausing between events,

-A user or a process can tell that a system has crashed only because he has been waiting
too long for a response. The nature of time and clocks in distributed systems is discussed in
detail in [17,15,16], where the notion of a distributed system, in which elections as
described are at all possible, agrees with that of an Archimedean distributed system as
defined below. Distributed systems in the sense of physically distributed computer networks
communicate by sending signed messages and setting timers. If an acknowledgement of safe
receipt by the proper addressee is not received by the sender before the timer goes off, the
sender sends out a new copy of the message and sets a corresponding timer. This process is
repeated until either a proper acknowledgement is received or the sender concludes that the
message cannot be communicated due to failures. Thus, clocks and timeouts are necessary
attributes of real distributed systems [26] and non-Archimedean time in the system is
intolerable outright. Whereas unlimited asynchronism would prevent a system from
functioning properly, pure synchronism in a system cannot exist: the clocks of distinct
processors drift apart in both indicated time and running speed and have to be
resynchronized by algorithms running in Archimedean time as defined below.

" Definition. A distributed system is Archimedean from time ty to time ¢y if the ratio of the
time intervals between the ticks of the clocks of any pair of processors, and the ratio
between the communication delay between any adjacent pair of processors and the time
interval between the ticks of the clock of any processor, is bounded by a fixed integer
during the time interval from ¢, to ¢o.

Below we treat algorithms for clock synchronization and distributed spanning tree and
distributed elections. While the former are time-driven by cause of their very subject
matter, the latter are time-driven by design.

3. CLOCK SYNCHRONIZATION

Assume a Newtonian timeframe in which there exists one “real” time. Since we consider a
multiprocessor system in isolation, this real time should be local to the system, and system-
dependant in a sense explained below. A clock is a function C from real time ¢ to logical or
indicated time T, or the inverse function ¢ = C !, Viz., there are clocks used for timing
events, like keeping user accounts in a CPU, and such clocks are most profitably viewed as
mapping real time ¢ to the observed or “clocked” time T'=C(t). On the other hand, there

6

are clocks used for instigating events such as a clock used for timeouts or to dial other
computers to exchange electronic mail. Those clocks are better viewed as mapping the
clock time 7 to the real time ¢ =¢(7T). Thus, |¢(T)—¢(T")| should correspond to the
predestined real time interval for a timeout. Capital clock functions are the inverses of the
corresponding lower case cleck functions,

To reset a clock means replacing a a clock function ¢ by another clock function ¢’, and
therefore also C by C’. Assume for simplicity that a reset is instanitaneous and precise. A
reset replaces clock time C(¢) by C'(¢), with C’'(¢)—C(t)=Z. If £>0 then clock time has
disappeared, and actions scheduled for time T € (C(¢),C’(¢)] are not initiated unless
special measures are taken, If 2<0, similarly, actions scheduled for time T € (C'(¢),C(¢)]
are initiated once more. Worse, timestamps from this location will have a timewarp. For
each t; € (t,¢'(T)] with T =C(t) (that is, T,E€(C'(¢),C(t)]) the timestamp T, will
precede any earlier timestamp T, which was issued at 5 € (¢(T),¢(T)]. Thus, the logical
order of the timestamps does not correspond witf actual order in which they are issued. In
a distributed airline reservation system the priority of reservations from even a single
branch office may not correspond with reality. Special measures should be taken to
prevent such anomalies. One solution [15] to prevent this is resetting clocks only forward
(2=>0).

We view clocks as continuous increasing funct10ns We also assume that a clock C is a
true physical clock and the ¢lock rate drift is not too large:

2 ()
| C t | <x, (PC1)
with k<1, If the clock rate drift is 1arger then we consider the clock faulty.
We consider two clocks C; and C; synchronized if

G0 4G
| dt de
|GO-GO] <« . (PC3)

| <&, (PC2)

Since we have no way to establish the physical true time in an isolated n-processor system,
we settle for a spstem true time. By definition, the system time ¢ is given by

=2 3G0 - S (Y
If (PC2), (PC3) hold then, for i =1, . . . ,n, by (PC4),
G0 5 PC2
= <, ()
1Gi)—t| <e . (PC3)

Clocks may go run faster and faster or slower and slower without violating property
(PC1). If the C’s are continuous and differentiable then similar properties with about the
same constants will hold for the inverse functions ¢; and ¢,.

It is more customary to assume that the clocks may drift, but that the rate at which time
is measured by a given clock stays within bounds: L 9\
O R R ®Cr)
dt 7

with @<<1. (For good crystal clocks one would like #<<10%) Synchronization then

requires only PC3, cf [15].. Clock property (PCI’) is usually postulated at the outset,

and not the result of resynchronisation of clock rates as below. Customarily, clock

property (PC1) holds for all k>0, and ¢ indicates the physical true time. We can argue

with a physical true time in the system only if its rate is not subject to change as is the

common assumption. Our problem is more general in making less assumptions about

the rate at which time flows. It may be novel to identify the real time with a system true

time as does (PC4), but we need to do so. '
Finally, the transmission delay D;;(¢) between processors P; and P; is the real time it takes for
a message, which is sen;d’ off at real time ¢, to arrive at its destmatlon We assume that the
transmission delay Dy;(t) between two processors ;, F; is a quantity which is direction
independent and does satisfy (PC5).

| dD; (1)
d:

with »<<1. If the communication delay drift is larger then we consider the communication
link faulty. This latter assumption, of course, may not be satisfied in a real network where
connections may deteriorate abruptly. However, ‘with the “nearly infinite” bandwidth
communication links which promise to be feasible in the near future, the assumption may
well be justified. Moreover, if we cannot say anything about the change of comimunication
delay between 3 pairs of processors in a network then obviously synchronization is
impossible outright.

Below, we first consider the problem for a pair of processors and then generahzc the
solution.

| <» , (PC5)

3.1. Synchronizing Two Processors '

We have two processors, Py and Pj, with clocks C; and Cy. For simplicity we assume that
reading the clocks at their location is instantaneous, and similarly the processing of a
message and the resetting of a clock. This is justified because by the smoothness of the clock
time (PCl), the processor concerned can add/subtract the proper amounts from the
quantities concerned. We also do not consider the inevitable small errors which may creep
in. For convenience we denote the communication delay D, by just D.

The Z-Algorithm. Each processor P; (1<xi=<2) initiates after each A-length elapsed time
interval a synchronization round between itself and its direct neighbors (here the other
processor). Since the processors can not measure real time, the elapsed time A is measured
on the local clock C;. Since according to (PC2’) a local clock speed can not be off by more
than 6, the real time interval ¢ in which an synchronization takes placc is bounded as
follows.

x -t x+i x+t
[U=®d < [dC@) < [(1+8)d , (PAL1)

8

which yields:

J%L <5 .

Another problem is presented by the possibillity in the algorithm below that the clock of a
processor is reset during such an interval. We measure the time A by running a timer
according to the time rate of the current clock, independent of the clock value, thus
maintaining (PAl). Synchronizations serve to maintain the synchronized condition (PC2),
(PC3) and therefore (PC2’) and (PC3’). The value of A must gua.rant% that this happens.
Obviously, this can only be achieved if the value of D is not too great relative to the value
A. In the following algorithm, in each interval ¢, each processor resets its clock value once
in a resynchronization initiated by itself and once in each resynchronization initiated by
each neighbor (the only neighbor in the two-processor case). Moreover, the clock rate is
adjusted once to the rate of each neighbor for each resynchronization initiated by that
neighbor.

Phase 1. Let a synchronizaiion be started by P at time {=¢(T). A message stamped
with P;’s clock time Ty is send to processor Py, and arrives at time ¢, =¢3+D (). Clock
time on arrival at P, is 7,=C5(¢;). Processor P, now knows that P; has send off the
message at his local time Ty, and that the current clock time at processor P is given by

Ci(eao(T1)) = Ci(er(To)+D(2g)))

with D (29)>0. .

Phase 2. The message is stamped again, now with P,’s current clock time 7', and send
back to P;. It arrives there at time {9=¢5(T)+D(cy(T,)). Clock arrival time at P; is
T9=C\(t3). Processor P; now can deduce various things. In the first place, by (PC5),

| D(t)—D ()| < v(ty—tp) -
However, P; also knows that
ti—t = Do)
and that therefore,
2—-v)D(ty) < D(@ty)+D(t) < (Q+v)D(to) .
Also,
c1(T2)—cy(To) = Do)+ D(ty)
and therefore,

tz_to
2—y

fg—ig
oty = 62(7‘[) - tl == 50+D(t0) = t0+

It follows from (PC2’) that, at ¢y when (PC2) held,
| [dcl(t)

tot+

1] <8,

t=io

d:

and therefore, the uncertainty T in the clock value of processor P; at time ¢; is

141 t 42
d-¢
wr= f|4C0 |y ;(T)dfrdt
[dt =ty io d°r
ti— o
= [x0+8d0 [f=t—t]
6=0
2 L—t
= i-I-69-i—con.ﬁsta.nt
2 8=0
Kk(t;—to)
= KO L -ty

2
We can now express the time C,(¢,), indicated on the clock of P, at real time ¢, in terms
of the clock time T at processor P; and elapsed real time:
Ci(ty)) = To + (t1—tp) =T .

Using the estimate for ¢; above,

ta—1p K(tz—12p)
ot 55 22 +7)

= Ci(t) <

fa—tg k(i3 —1tg)
Ty + 1+86+
0" 29—y 22—w)]

By (PC3), the clock values on clock C; at real times ¢, ¢, satisfy
|(To—Tp)—(ta—tp)| < 2e. Therefore, we. can express the time with value 7 on the
clock of Py (actually C(¢,) on the clock of P;) in terms of the clock values at P, as follows:

To—Tp—2¢ _§— k(To—Ty—2¢)
2+ 2(2+r)

TP = Ty +

< C1(t)) = CileoTY))) =

Tz_T0+2£
2—p

K(T2 - T{) + 26)

TR = T, +
: 0 22—7)

We now have an estimate for the difference in clock times between P; and P, at system
time ¢;. ’
(PC3’) is satisfied if

[T —Ty| <2, | (PA2)

10
| T =T | < 2,
| Tin —T/ax | < 2¢ .
The algorithm conditions (PA1} and (PA2) induce a set of constraints among A, D, §, ¢, K,

v.
We now reset the clock of P; by replacing C; by C';:

Case (T]"" + T3 /2 = T, then C’; « Cy;
Case (T +T[*) /2 > T, then C’; « C,; #processor P, has to be reset too#t
Case (TT" + T /2 << T then

T + e

C’l(l‘.) €~ Cl(t)+T1_ 2

By the system time definition (PC4),
|C1(e) — @] < |TP=—TP"| .
Phase 3. The message is stamped once more, with P,’s current clock time T, and send

to Py. It arrives there at time £3=¢(T)+D(¢;(T5)). Clock arrival time is T35 = Cq(t3).
Processor Py can deduce several things. For : =1.2,3, by (PC5):

|1 D) =D (-] < vt —ti-1) ,
t =t tDE-) -
Therefore,
[(t3—211) — (ta—to)| < »(tz—1to) .

The clock rates may differ by at most § by (PC2), and therefore:

t3Ep(ta—1)

7]
| fdCie) — [dCy(t)| < 8(ta—to) -
fo)
Then
| To—To— T3+ Ty=u(Ty— To)| < 8(ty—fp)
= 6(T2_Tg__'_2€) .

This condition is maintained by adjusting the clock rates. Therefore, processor P, must be
capable of adjusting the rate of Py’s clock to the rate of Py’s clock. We assume that clocks
can be reset in the sense that their rate is set to a proportion of the current rate. We reset
both the clock rate and the indicated clock value of Py by replacing C, by C’5. This clock
time is determined by the clock time 775 = C’;(¢3) of the most recent clock C’; at P}, and
by TH", TP, The latter two are determined by the three point bearing using ¢, ¢ and
t3 (just as in Phase 2 the real times g, ¢; and #, determined 7" and T7).
If (PC3’) is satisfied then :

| TP —T7,| <2, (PA3)

11
| T8 —T"| <2 ,
| THin — T | <2¢ .

The algorithm conditions (PAl) and (PA3) induce yet another set of constraints among A,
D,8 ¢k, v
We now reset the clock of Py by replacing C, by C'y:

Case (7§ + T§2*) /2 = T", then

C'yft Coft T2~ T
A6) < O g s
Case (T +TF>) /2 > T’, then
Clo(t Co(t T T
a(t) « Co(t) To—T,
(clock value processor P, needs to be reset too);
Case (T§" +TF*) /2 < T', then
C'o(t Colt Te= T + f' T AT
a(t) « Colt) T, T, 2 2 ;

We can express 7”5 in terms of the clock values at P, as follows:

. Tg_Tl_ZE K(TS_TI_ZG)
min . 4 — — |1 —-8—
&k I 2+ [22+)

< Cyfty) = Cole" (T <

Ty — T, +2 K(T's— Ty +2€
Tpax = 7 + 17 [+3+(3 1129

2—y 2(2—vw)

By the system time definition (PC4),

|Calts) — to] < |TE*—TH |

Analysis of the Algorithm. In a synchronization interval of length ¢, measured as A on a
clock, we have by (PAl) that |A—:] <C 8i. Let the clocks at the start of the interval (say,
t=x) be synchronized to within { of each others clock values, and their clock rates to
within . In a A-length clock-measured interval, starting at ¢ =x the indicated clock values
diverge at most { plus twice the divergence from the system time:

- x+A/(1-8) !
DVALUE() =¢+2 [p+ [wdrde
. t=x T=x
A/(1-8
5 /(1-9)

A 3

+ p6+constant}
4=0

12

2ud kA2
(1—38) + (1—8)?

In a A-length clock-measured interval the clock rates diverge at most:
x4+A/(1-8)
DRATE() =p+2 [«dr.

T=X

_ 2k
BT

In each t-length real-time interval the clock values of P, and P, are adjusted at least
once. Therefore, the new clocks would have been within

def _
of each other at the carlier instant £ (: =1 or { =2) in this interval. Also, in each such
interval the clock rates are adjusted to within
def .
p=|TE =T | /(T5—Ty) .
As long as the clocks are synchronized (PAl) is maintained. To maintain synchronous
clocks it is necessary and sufficient that (PA4) (subsuming (PA2) and (PA3)) stays satisfied.

DVALUE(:)) <e¢ & DRATE() <3 . (PA4)

It is clear therefore that, for fixed parameters €, 8, k, », if D(t) starts to change then ¢, or
rather the clocked synchronization interval A, must change to maintain (PA4). We can
compute from (PC5) how conservative we need to take the fixed parameters above to be
able to adjust in time.

3.2. Spnchronizing n Processors

Let the network be a graph (¥,E) consisting of a set ¥V of n processors connected by a set
E of ¢ bidirectional links. This is a simple extension of the two processor case. If we
synchronize by having each processor P; (i € {1,.,n}) start a synchronization every A
clocked time, then each synchronization takes 6¢ messages per A=e real time. Similarly to
above, we can determine the constraints on the values of the parameters for which the
scheme keeps the n processors synchronized. A more message thrifty method is to have
pairwise synchronization between the nodes connected by an edge (ie., communication
link) in a given spanning tree of the network. The number of messages exchanged by the
synchronizing Z-algorithm in each period of length Az-e then is 6n.

For such n-processor networks we require (PA4) with DVALUE(D:)<<¢, DRATE(D:)<8,
with D the diameter of the network (of the spanning tree in the spanning tree
synchronization, respectively). In the n-processor case (n>>2), not only the clock values
should be reset only forward, but also the clock rates should only be reset higher. This
tactics ensures that, within D) (Az:¢) real time, the highest clock values and the highest
clock rates have swept over the entire network.

13

4. IDnstriBUTED SPANNING TREE AND DisTRIBUTED ELECTIONS

“We study robust algorithms for distributed elections and spanning tree constructions for
arbitrary networks. We analyze in particular the performance for ring networks, networks
of bounded degree (e.g., trees, Cube-Connected-Cycles), n-cube networks and complete
networks. These algorithms are time-driven and outperform any known algorithm in terms .
of message passes and passed bits. For both synchronous and asynchronous networks of
many topologies, the performance is optimal in these communication complexity measures
and can not be improved (in order of magnitude).

4.1. The Algorithm

Let G be an undirected connected graph with N nodes and E edges. Assume first that
each node has a unique name, say an integer between ! and L, 0<</<<L. If the nodes do
not have distinct names, but the edges have distinct weights, then let the name of the node
be the lexicographical order of the integer weights of the incident edges. There are N
nodes, but this is not known to the nodes themselves. Each node contains a clock. The
maximal absolute communication delay for one node to communicate with an adjacent
neighbor, increased with the largest absolute time for a clocked time unit in the system, is
denoted by u. The minimal absolute time for a clocked time unit in the system is denoted
by m. Note that 2 and m may be time dependant. We assume that, from time ¢, to time
ty we have 0 <z /m <s for some constant s, that is, the system is Archimedean [27].
The idea for the algorithm is to have a distributed election where the winner is the core of
the ST. To be thrifty in message passes, we have to prevent messages originating from
future losers to make many message passes before they are eliminated. Election bids have to
be stamped by the name of the originator; apart from using the names only for
comparisons we also use them to slow down messages from future losers. A program for this
Algorithm is given in the Appendix. Below we informally describe the Algorithm, prove it
correct, and supply an analysis of the complexity in terms of message passes and passed
bits. Subsequently, we study its performance for networks with particular topologies.

Phase 1. Initially each node is asleep. When a node awakes it starts by transmitting a
wakeup message to all its neighbors, except the one it received the wakeup message from. A
node awakes spontaneously or because it receives a wakeup message. So after the first node
awakes it takes O(uD) time to wake up all of the graph, where D is the diameter of the
graph, that is, the maximum of the set of m1mma1 length paths between pairs of nodes in
G. After a node ¢ has been woken up, and sen‘d the wakeup messages over the appropriate
edges, it tarries /() of its local time units. It then transmits an election message, signed with
its name, across all edges it is connected to. After having woken up, a node cannot start a
new election until after it has received a viciory message from the elected leader, or after it is
itself elected leader, Each node : has a name register containing the least name i, it has
ever seen, originally i,;,=¢, and the edge /ink this name first came from. Originally
link =:. Let the register i,;, of node ¢ containf J and let node ¢ be hit by a message M;
ariving over an edge ¢. If £=i then i, does not change and a reflected message R; is sent
back over ¢, cf. Phase 2. If k<(j then i, <k ;link<e. Subsequently, node i counts to
S(£) and only then transmits M; over all edges but the edges over which copies of M,
have arrived at this node. That is, if £ has not been replaced in i.;, yet by a still lower

14

name. The basic trick is that for sufficiently fast increasing functions f the other messages
are slower than M; and all other messages together will not account for significantly more
message passes than does M;. Concentrating for the moment on the winning message M;
which traverses al/l edges, we need to argue that the above strategy establishes a unique
leader in the network.

Within «D(1+£(!)) absolute time all nodes in the graph have received message M.
Consequently, there is no copy of a message Af;, i <</, left in the system. It remains to
assess the maximal number of messages which can be passed throughout the system in the
meantime, For the passing of a message M;, originating from a node 7, from one node to
another we need at least m f () time units. Each message M; basically propagates along a
private spanning tree with the core in node ;. The number of message passes copies of M;
can do depends on the shape of this tree. We assume, that the worst-case forking is
bounded by the node degree d <N. Therefore, in ¢ time there can be at most

sy e /EIO)Jd(d—l)’—l
Jj=

message passes of M;. (Here we take (4 —1)"!=0.) So the total number of message passcs
M (G) in the system is bounded by 7

| XRALSD)

mf (i) .
M(G)<?2E + 3 > d@d-—1y 1.
iel—{I} j=1

where I denotes the set of processor names. For S j& a sufficiently fast increasing function,
the sum converges, cf. below, '
We have now elected a unique leader, but neither the leader nor the others are aware of
this yet. Hence, we refine the algorithm as follows.

Phase 2. Each election message M; leaves a pointer /ink to where it comes from in each
pass. Since more than one copy of M; can hit a node j it has to be resolved which edge is
the sink. This can be done when all copies are present; the node then can also determine
all incident edges over which new copies of M; have to be transmitted.

Lemma 1. If a node j is hit by more copies of M; then the last copy hits node j while the first one
ts stell being held. -

Proof. After the retention time of the earlier copy of M; copies of the message are send to
all nodes from which such a copy was not received yet. By the definition of the algorithm
none of the edges in G are used twice to transmit copies of the same message. [

A message M; retraces its steps to the origin, through the chain of /inks, in three cases. (It
retraces its steps in the form of a standard reflected message R. For clarity we designate the
reflected message of M; by R;. It will appear later that this reflected message need carry no
identification.)

Case 1. If message M; hits a node which already contains a message M; then it is send
back in reflected mode R;.

Case 2. If message M; hits a node which has but one edge then it is send back in reﬂected
mode R;.

15

Case 3. If a node j with j;,=i has send out messages M; over the set of edges E{j,i),
and it has received back copies of the reflected message R; over all edges from E(j,7), then
it sends a message R; over its edge link forthwith.

Lemma 2. Each node j which sends out the least message M, over the collection of incident edges

E(j 1) recewves eventually the reflected message Ry back over all edges in E (7).

Progf. The copies of M; are stopped only by a node with only one edge or a node
connected only to nodes which have already been visited by a copy of A, all of which
send back R; over their links. The lemma follows by induction. O

Lemma 3. Let | be the least number identifying a node in the network. In an election according to
the above algorithm, only the node numbered | receives its own reflected message R, back over all its
incident edges.

Progf. First we have to argue that / receives M; on all incident edges. This follows from

Lemma 2. Consequently, the algorithm defines a spanning tree with / as its core, and the
reflected messages come from the tips of this tree. Therefore ! receives copies of R; on all
incident edges over which it has initially sent Af;.
Second, a node ¢ (¢54/) does not receive reflected messages on all of its incident edges.
Suppose it did, then none of the created copies of M; ever meets a node through which a
lower numbered message has passed. So no created copy of M; ever is destroyed, except by
the reflecting phase, which means that Af; traverses all of the network. But then M; also
hits node / which destroys it: contradiction. O

The reflecting stage can pass the messages along without undue delay. It can also create
the converse link for every link it passes. Thus, each edge in the constructed spanning tree
consists of an uplink and a downlink. The number of message passes is obviously
My(G)=N—-1.

Lemma 4. A reflected message R; does not need to contain a number but can consist of a _few bits.

Proof. R; is eliminated by any election message M; on its path, This is justified because
J <t (j=i is excluded by Lemma 1); otherwise M; would have been eliminated by the
node it just passed through. R; cannot meet another reflected message R; in a node since
that node would have passed both Mf; and M; at an earlier time, which would result in the
previous case. [

When the lkast node / has reccived messages R; back from all incident edges, it knows
that it is the leader, that there are no other election messages (reflected or not) left in the
network, and that all nodes in the network know the identity of the leader. That is, i, =!
for all nodes ¢ in the network.

Phase 3. The leader [now sends a viclory message along the ST. This stage takes not
more than M3(N) = N —1 message passes of a few bits each.

4.1.1. Cost Analysis
Let f be a nondecreasing function with f(7)=¢. The overall number of message passes for
the algorithm is:”

M(G) = M(G)+MyG)+M3(G)
< AE+N-1) + §

16
with
thl*’r!llll
=y .
§= 3 > d@d—-1y™!

ier—{} j=1

oL, SPRAE-
luD(l-’_“an .
< ————((d—l) mE) T — 1) [ford#2] .

iei—uy 42
We split the range R =7—{/} of sum § into Ry and R;:
Ry = {i€R | i>f"l@Dn™ (1 +f())} ,
Ry = {i€R | I<i<[T'@Dm '1+f ()}
Then § = S5+ 5, and

AGTON
So= 2 —((a'—l) we T -1)=0,
IER; d 2
|LDES (D) _
$1< == 3 @-n" 7O 1y
z ER,
Here §, decreases with faster increasing f. E.g., for f(i)=2' we obtain
1
d ""_(+orte)
Ky —L _anm 2 2
1 d 2]
for each €>0. If the algorithm is allowed knowledge concerning the asynchronicity u /m
in the network, then we have

1, 1
d D(—2_+F+E)
< —d
o d—2 ’
for each €>0. If we choose f such that f(Z)m >uD(l +f(l)) for all ;&l—{{} then
§1,=0 and the message pass complexity M(G) < 2(E +N —1). This necessitates that f is
both very fast increasing and very dependant on the parameters of the network
The relation between N, E, d and D is given by

N<l+d+dd—1)+ - +dd—-1P"'=d’P |
and
E < %dN = %Pt .

These inequalities are sharp. Hence, in the borderline cases where inequality can be
replaced by equality, we have 4 topologies for which we can find the least possible upper
bounds on § as expressed in terms of N:

I. !l-i-i_‘!!!!J

d myr
§< 3 —= 2(ND fE) T —1)

iel—(1}

17

In general, however, the relation between N, d and D is such that the inequalities can not
be replaced by equalities, and the value of S| in terms of N is far worse than above. For
instance, for ring networks ¢ =2¥/2 and E=N. For Cube-Connected-Cycles, where
E=15N (cf below), ¢?=3%8N=N317 = For n-dimensional cubes (n=logN,
E =#%N logN) d° =n" = N88N Byt for complete networks, ¢” =N —1. Yet we shall see
in the sequel that, in all these networks, a barely superlinear function f already gives an
optimal behavior, which is better than what can be achieved by other known algorithms.
Note also, that the performance is achieved by an algorithm which uses only local
knowledge.

The communication or bit complexity of an algorithm measures the total number of bits
passed - among adjacent nodes in the network. Assume that a message M; is encoded in
=z 2log: bits*, by reserving a special pattern to begin and end the message. The wakeup
messages, reflected messages and victory messages can then be encoded in 3 bits each.
Therefore, the bit complexity B(G), the total number of passed bits in the Election, is
bounded by:

Lu.Dg1+[!!“J
i @) .
B(C)<E@3+2logl)+6N—6+ 3 2logi S dd—1y~! .
iel—{i} j=

4.1.2. Minimum Spanning Tree _

It is not difficult to see that the constructed spanning tree is, for practical purposes, a
minimum spanning tree insofar as the delay in the processing nodes is concerned.

4.1.3. Synchronous Systems ¢

For synchronous systems we assume that the message delivery time is negledgible with
respect to the time used by the prdcms clocks; in particular that the “asynchronicity
coefficient” u /m is equal to 1. This means that for such systems, if we choose f such that

S@) =D+
for all : €1 —{/} then the message pass complexity M (G) and the bit complexity B(G) are
MG)<2E+N—-1) & B(G)<E(2log! + 3) + 6(N—1) .

Even if f does not rise quite so fast, we shall see below that the contributions from the
future losers in the election (the sum in the expressions for M (G) and B(G) in the previous
section) does not contribute much. Indeed, for most network topologies investigated below it
appears that, for synchronous networks, for f(i)=2' or f(;) =% the total contribution
from future losers is not essentially more than the contribution from the single winner.

* For convenience, we always simply denote ‘[logo(i +1)] +1° by ‘log*.

18

4.2. Ring Networks

On the macroscopic scale of computer networks a popular configuration is a physical or
virtual ring [21]. An example of a multiprocessor system organized in a ring is the
University of Maryland’s ZMOB, a cabinetsized 256 processor ring network [24].
networks are often one-directional. For one-directional ring networks, since the single leaf
of the directed spanning tree is the node adjacent to the root, the reflection phase can be
dropped setting M,=0. This only marginally reduces the total. We prefer to stick to the
general method above for the estimate. For a ring network we have D=N /2, E=N and
d = 2. Therefore,

ME)<aN-2+ 3 o NUESE),
ier—{l) 2mf ()
In case f is superlinear, that is, £ € Q(;' *€) with €0, the sum converges.
As example, let £(i) = i'*¢, €>0. Then (to obtain the 5th line split the sum 32, in{
subsums 2k[_;]=1 with k[}]—z mod ! (0<<j <<!), and majorize the subsums by an integral):

M(C) < 4N ~2 + A+ EY 1
m iei-y S @)

NOES@) S L)
4N —2+ :
SO 300

1+e
<4N—2+ ——(1+1 argy 3 |4
i=I+1

<aN—2+ i1 f ;i ~(+9g;
m

i=1

g 4 NI
me

<4N—2 + “N;:l (=1).

The number of passed bits is also low. Recall, that a message M; is encoded in =~ 2log:
bits, by reserving a special pattern to begin and end the message. The wakeup messages,
reflected messages and victory messages can then be encoded in 3 bits each. The b
complexity B(G), for f(i) = i'*¢ (e>0) then turns out to be (for the second line split the
sum in / subsums as above and notice that 1+log;: =log/ /log!)

1+e¢ o0
B(G) < 33N ~2)+ 2N log! + el_“*1 9 log)i —(1+9
g m g
S i={+1

. —€
< 9N—6+2Nlogl + 2N“(l+ni Mog!

=]
[(1+logi)i~(1+9di
i=1

6Nu{l+1)log!
me

< 9N —6+2Nlog! + (=1) .

19

For different functions f we obtain ever better performance, as tabulated below.

S@)= worst-case message | worst-case passed bits
passes
constant O(N?) O(N%ogL)
i (e>1) 0(%"—) o¥tlegl,
€ me
2 Ve o(Mlogl,
(2u /m) O(N) O(N log!)

Table. N is the number of processors in the ring network; u is the maximum unit time
among the processors increased with the greatest communication delay between adjacent
processors; m is the minimum unit time among the processors; / is the least integer name
of a processor; L is the greatest integer name of a processor.

Therefore, if f increases fast enough, the number of messages/bits needed for an election in
the ring network hits the rock bottom. In particular, for f(1) =2' we actually have
M(G)<4N+um™IN, and for f(i)=(2um™'Y we have M(G)<5N and
B(G)<9N +4N log!. For the particular case of elections in a ring (the spanning tree
construction is then less relevant) we can dispense with the reflected messages [27]. In the
latter reference we also express the average number of message passes or passed bits used in
an this manner of distributed election in a ring.

4.2.1. Synchronous Case
In the synchronous case the results are simply those in the Table above with z /m set to 1.
In particular, for f(:)=2" we have M(G)<6N and B(G)<9N +6N log!.

3. Networks of Bounded Degree
If all nodes in the network have degree bounded by a constant d>>2 then the general
solution needs:

|LRAFaY
mf (i) .
M@G)<2E+N-D+ 3 S d@d—-1y 1.
iel—{} j=1

This is the case for tree networks and X-tree networks, but also for various fast permutation
networks like the Cube-Connected-Cycles, the shuffie-exchange network, or the butterfly |
(FFT) network, cf {2].. An example of a multiprocessor systems along these lines is the
Bolt, Beranek & Newman Butterfly; 128 processors in a butterfly network. Another
example is New York Universitys ULTRAcomputer [23,13], a shuffle-exchange
multiprocessor. The most easily explained type is the Cube-Connected-Cycles (CCC)

20

network. It consists of basically an n-dimensional cube, with each rn-degree corner node
replaced by a n-node cycle. Each node on such a cycle has one edge incident of the »
edges which were incident on that corner before. The degree d of all nodes in the CCC
network is therefore 3, E =1.5N and the diameter D is 2log N. Therefore we obtain:
L2usl+)_‘!l.!!log£j
MEG)<5N—-2+3 3 (2 %O —1) .
i€I—{l)

For the values of i for which the exponent in the sum is 0 there is no contribution by the
corresponding term. Therefore we may assume that

2u(1+fU)logN _ |
mf (2)
Then, we can majorize M(G) by
| 2e(EL O logN |
M@G)<5N-2+33@2 7O ~1) ,
- icR

with

R ={i|I+1<i<f 'Qum™'A+f())logN)} .
43.1. f@)=i?

Split the sum over range R in subsums over disjoint subranges R, R;:
Ri={ | I+Isi<2/+1}
Ry, = {i| 20 +1<i<<f ' Qum 1+ f(I))log N)

Then,

2u(1+5 u
M(G) < 5N =2 + 3(+1)[N "¢+ + (N7 2um logN)#] .

The bit complexity B(G), under the same encoding scheme as in the previous section, is
estimated by

B(G) < 105N + 3N log{ —6 + 6(/ +1)log/ NZ= 'A+H+FDT 4

-
6(+1)V2um ™ ogN log ((I +1)V2um 'logN)N 2™ .

432. f(i)=3 .
The influence of the choice of { disappears since the sum is only over um logN terms.
The range R is now

R = {i| I+1<i<logs(2um'(1+3")logN)} .

21

L2mgl+3"'!log£!J
MG)<5N—-2+33@2 ™ —1) .
iER
2ug1+3’!
< 5N—2+ 3N "¥" log;(um!logN)

< 5N—2 + 3N™"" [0<a<l] .

Similarly,
B(G) < 105N +3Nlog!/—6 + & aum™! logllogs (2um ~'log N')
< 105N +3N log! + 6NF™ logl [0<B<1] .

1

433. f@i) =3
Now not only the effect / but also the effect of u /m is removed from the complexity
bounds:

M(G) <8N & B(G)< 105N +9Nlog! .

£.3.4. Synchronous Case _
Let £ (¢)=:2 In the synchronous case (u =m) with also / =1 we therefore have

M(G) < 1IN —2+ 6(2N logN)* .
B(G) < 255N —6 +6(2N log N)*log(2log N Y% .
Let f({)=3%'. Then, with u =m,
M(G)<8N & B(G)< 105N +9Nlog! .

4.4. n-Cubes

The network forms an n-cube, that is, there are N =2" nodes. Each node is incident on n
edges. So the number of edges E=n2""'=(NlogN) /2, the degree of each node is
d=logN, and the diameter D =log/N. An example of a multiprocessor system of that
nature is Caltech’s Cosmic Cube [25], consisting of 64 processors arranged in a binary 6-
cube. Here the effect of many distinct paths leading to the same nodes becomes more
pronounced. In particular, the number of nodes which are i edges or less distant from a

. . . [logN . [logN
given node is 2_; =| ; | The number of edges in between is at most 2}=1 7 |
Therefore,

I-ulogNg1+“I!!J
mf () log
M(G) <2(NlogN + N—-1)+ 3 > il
i€l-{i) =1 J

22

For the solution the following inequality is advantageous.
%N -1 (N N

| alog NAErQ) |
) mf (i) |log
§= X i 2 I

We split the sum

iel—{i) =1
in three parts Sg, §; and §5. In S we collect the message passes for ¢ ERy,
g log N(1+£(1))
Ry = (i] | & - <1},
that is, messages which are not passed at all. In §; we collect the message passes for i ER

for which the messages may pass at least once and so that we can use the binomial
inequality above. ’

ulog N(14+ (1)) log N }

mf(£) 3)
In §, we group the message passes of the messages A; which may pass often. That is,
i ER, such that

Ry={i|1<| | <

R, = {Lulog]’:f(ti-;-f(l))J . logN y,

which is the case for a small number of i’s for which, moreover, i —{ is small, Then:

SO=0 .

lulogNgl-i-lgan
mf (£) |log
iER, j=1

5 2 logN
<
s Blog N

<7 Hum A+ f(ONogN) — £ 7! Gum T A+ FONIN

LulogNgl+[g!!)J

mf (i) [log
§2= 2 2 I
iER, i=1
< X NlogN
I ER>

< (f Y Bum 1+ £()) —)NlogN .

23

Therefore,
M(G) <2(NlogN + N—-D + 8§ + 8, .
The number of bits is given by
B(G) < 2NlogN(log! + 3) + 6(N—1) + §1 + 8§, ,
with

8’ < 28 log (f “Hum ~'(A+£ () logN) .

+{

S’y < 28,log [

2
NlogN

In the Table below we give the §; component and the §; component of M (G), for
different choices of f. '

@)= Sy < | $) <

i (Bum " Y(1-+1)—= N logN um ~Y(1+1)N logN

2 (V3um ' (1+2) —)NlogN N Vum Y(1+1%)logN

2! NlogN log (3um ™) N loglog N
_ (2u /),"_, 2N logN N loglog N

Table. N is the number of processors in the r-cube, ¥ is the maximum unit time among
the processors increased with the greatest communication delay between adjacent
processors; m is the minimum unit time among the processors; { is the least integer name
of a processor.

4.4.1. Synchronous Case
With # / m =1 we have, very roughly, the following upper bounds.
For f(i)=i%

M(G) < (20 +5)NlogN + 2N ,
B(G) < 2(5+log! +2{log{)N logN + 6N .
For f(i)=2":
M(G) <4NlogN + 2N & B(G) < 2NlogN(4logl +3) + 6N .

24

4.5. Logarithmic Branching Trees
The network is an ¥ node tree with N —1 edges and all internal nodes of degree d =log N,
diameter D =2loglog N and of approximately (log N) / (loglog N) levels.

Then

L2u!1+1‘ glnlogNJ

' mf ({ Noglog N]
M@G)<AE+N—-1)+ 3 > log/ N
{eI—{1} i=1
2u(1+f (I PlogN

<2AE+N-1)+ T 2(logh) ™ @loglogN
i€l—{1)

Zu(E+£()
<AE+N-1)+2 ¥ N 7O
ier—{i)

For f(i)=2' this gives a crude upper bound

2u

1, 1
M(G) < 22N —2) + 2N ™

(2+21+| +e)

[e=0] .

In the synchronous case for f(i)=2', as well as in the asynchronous case with
S(E)=Qu /m)’, we can set u /m =1 in this formula for §. For such a very fast branching
network, the efficiency of the method depends more critically on the choices of processor
names and function f than the previous examples. This effect culminates in the fastest
branching networks: complete networks.

4.6. Complete Networks

If each node in the network is connected with every other node then we have a complete
network. Here we have N nodes of degree d =N —1 each, E=N(N —1) /2 edges and the
diameter D =1. Owing to the sharp rise of the number of point-to-point connections with
increasing N this is not a popular topology for large networks based on message passing.
Since the diameter of the network is a constant, which means that the node degree d(G)
must be linear in N, the method is very sensitive to the u /m ratio, and performs poorly in
the worst case. More interesting is to analyse the more or less synchronous case.

So let # /m be a constant near 1. If £(i)>um ~!(1+f({)) then the wakeup message
from any node i wakes up node / so quick, that the election message from / has reached all
other nodes before their election messages are transmitted. Pick a function f such that this
happens, e.g., f()=2'. Then

M(G)=2E+N—1) = N*+N—-2 ,
B(G) = 0.5(N2—N)2logl{+3) + 6N —6 .

25

4.7, Optimality

For both distributed elections and distributed spanning tree construction, an obvious lower
bound on the message pass complexity M (G) is formed by the number of edges E of the
network G. Each untraversed edge in the network could have been be the only edge
leading to a particular node thus preventing both valid elections and spanning trees.
Similarly, the bit complexity B(G) of the elections is bounded below by E log!, since the
name [of the choosen Leader has to be communicated to all nodes in the network.

For most synchronous networks we have examined, the upper bounds come within a
(small) constant multiplicative factor of these lower bounds for functions £ (7)=¢’ (¢.=2,3).

For most asynchronous networks we have examined, the upper bounds come within a
(small) constant multiplicative factor of these lower bounds for functions f(:)=(cu /m)'
(¢=2,3). Here u /m can be viewed as the asynchronicity factor which typically should be
low, eg. u /m <2,

The algorithm is less suited for networks which branch out very quickly. For the
logarithmic branching tree we need faster increasing f, or the worst case behavior in
message passes may rise to order N2, while for the complete network the worst case
behavior can rise to order N° message passes.

The time complexity T(G) of the solutions in a network G is,

T(G) < 3uD + f(IuD ,

where we can take uD to be the maximum of the set of minimal communication delays
between any pair of nodes in the network. Therefore, T'(G) is within a multiplicative factor
S(2)+3 of the optimal time solution as well. For the considered functions f (/) this is very
good if ! is low. Obviously, in a dynamic changing network, where nodes which are
inserted have to choose an as yet nonexisting name, node insertion can only decrease {. If
a node which is taken out exchanges names with a remaining neighbor, in case that
neighbors name is higher, then node deletion also does not increase {. Hence, under this
strategy / tends to decrease as N increases, which improves the time performance. Yet, if
the processors get real names, like “mcvax” or “ihnp4”, the translation into numbers is
unlikely to yield a small number for the least name. Hence, to obtain a reasonable time
performance, we should hash the names to positive integers to be used as names in the
algorithm. This requires a hash function with properties not easily met elsewhere. Viz.,

1. All names should be mapped to different integers. Actually, for correctness of the
algorithm it is only required that the name mapping to the least integer be unique.
Mapping more names to the other integers only degrades performance.

2. The least integer mapped to should be small, preferably 1.

3. The performance of the algorithm is best if the range of integers the names are mapped
into is as large as possible, and the images of the names are evenly distributed over this
range.

Finally, the algorithm is robust in the sense that it always works, in networks of any
topology, without knowing the topology of the network, and under any asynchronity in the
network. Yet it performs often as well or better than known algorithms in synchronous
networks where the topology is known to each node. Amongst algorithms which do not

26

assume any global knowledge of the network, it seems the most efficient one known, in
terms of message passes and passed bits. With increasing function () and decreased
u /m and /, the performance of the method smoothly improves at accelerated speed.

5. APPENDIX

Let G be a network consisting of a set N of processor nodes and a set £ of bidirectional
communication links between pairs from N. Initially all processor nodes are functioning
happily in their normal mode which we, for the present purposes, call being askep.
Suddenly, one or more awake, that is, become aware that an election is due. Between this
time and the time the Leader is determined, and all processors have been notified thereof,
any processor which awakes executes the Protocol below. Processes awake spontaneously,
and in any event when they receive a wakeup message from a neighbor. On notification of a
successful election by a victory message a process falls asleep again,
The local node on which the Protocol runs is node :. Node 7, is the currently and locally
designated winner of the election and Znk is the edge the first election message of the
current winner arrived over. The set of edges E(i) denotes the set of edges incident on
node z. The set of edges R(z) is, initially, the set of edges incident on node ¢ over which no
copies of the currently winning election bid have yet arrived. After the appropriate wait,
node ¢ sends out copies of the currently winning election bid over the nodes in R(i).
Subsequently, R(z) is the set of edges incident on node i on which the corresponding
reflected messages R have not yet arrived. The set of edges ST'(i) is the set of edges
incident on node ¢ in the currently constructed spanning tree. There are four types of
messages: wakeup messages W, election messages M; (stamped with the name j of the
bidder), reflected messages R and victory messages V. To distinguish these messages we can
code them in 3 bits each plus the attached 2log; bits for coding j in each election message
M; (I<j<L).

Protocol to be executed when processor i awakes.

Send messages W to all adjacent nodes except the one from which a W message waking ¢ came
from; Set i, and /ink equal to 7 and set timer equal to £(1);
REPEAT IN EACH (LOCAL) TIME “UNIT":
for 1 =1 step 1 until #E(¢)
do ’
Read incoming message M (possibly M = @) from the next edge ¢ in E(i);
if I am awake and timer =0 and M =R and R(i)—{¢}= @ then send a ¥ message over all
edges in E(z): the election is finished; #for all nodes j in G currently j .. =i#
if I am awake and M =¥ then
begin
Leader « 1;,;
send V over all edges in ST(7) — {/nk} and go to sleep
end :

if I am awake and M =R then

27
hegin
if timer = 0 then
begin
REO<RE)—{e}; ST« STE)U{e);
if R(i) = & then send R over link;
end
if I am awake and M = M; then
begin
if j <<i,;, then
begin
tmin$—7 ; fink «—¢; ST(i)« {link};
R(G)—E(E)—{e}; timer < f (imin)
end
if j =i, or E(i)={e¢} then send R over edge ¢
if j =i, then
begin
timer « timer —1;
if timer = O then send M, _ over the edges in R(7);
end

end
end

od

REFERENGES

[1]
[2]
[3]
[4]

[3]
[6]
[7]

(8]

“Several papers,” in Proceedings 3rd ACM Symposium on Principles of Distributed
computing,

Broomel, G. and J.R. Heath, “Classification categories and historical development of circuit
switching topclogies,” ACM Computing Surveys, vol. 15, pp.95-133, 1983,

Burns, J.E., “A formal model for message passing systems”, Technical Report No. 91,
Computer Science Department, Indiana University, May 1980.

Chang, E. and R. Roberts, “An improved algorithm for decentralized extrema-finding in
circular configurations of processes,” Communications of the Ass. Comp. Mach., vol. 22, pp.281 -
283, 1979.

Dolev, D., M. Klawe, and M. Rodeh, “An O(n log n) unidirectional distributed algorithm for
extremafinding in a circle,” Journal of Algorithms, vol. 3, pp.245-260, 1982.

Dolev, D., J. Halpern, B. Simons, and H.R. Strong, “Fault-tolerant clock synchronization,” in
3rd ACM Symposium on Principles of Distributed Computing (1984).

Deolev, D,, J. Halpern, and H.R. Strong, “On the possibility and impossibility of achieving
clock synchronization,” pp. 504-511 in 16th ACM Symposium on Theory of Computing
(1984). .

Franklin, R., “On an improved algorithm for decentralized extrema finding in circular
configurations of processors,” Communications of the Ass. Comp. Mach., vol. 25, pp.336-337, 1982.

28
[91

[10]
[L1]
[£2]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]
[27]

Frederickson, G.N. and N.A. Lynch, “The impact of synchronous communication on the
problem of electing a leader in a ring,” pp. 493-503 in Proceedings 16th Annual ACM
Symposium on Theory of Computing (1984).

Gallager, R.G., “Finding a leader in a network in O(e)+Of{n log n) messages”, Internal
Memo, MIT, 1979,

Gallager, R.G., P.A. Humblet, and P.M. Spira, “A distributed algorithm for minimum weight
spanning trees,” ACM Transactions on Programming Languages and Systems, vol. 5, pp.66-77, 1983.
Garcia-Molina, H., “Elections in a distributed computing system,” IEEE Transactions on
Computers, vol. C-31, pp.48-59, 1982,

Gottlieb, A., R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolf, and M. Snir, “The NYU
Ultracomputer - Designing a MIMD shared memory parallel computer,” IEEE Transactions on
Computers, vol, C-32, pp.175-190, 1983. .

Korach, E., 8. Moran, and S8 Zacks, “Tight lower and upper bounds for distributed
algorithms for a complete network of processors,” in 3rd Annual ACM Symposium on
Principles of Distributed Computing (1984).

Lamport, L., “Time, clocks, and the ordering of events in a distributed system,” Communications
of the Ass. Comp. Mach., vol. 21, pp.558-565, 1978.

Lamport, L. and P.M. Melliar-Smith, “Synchronizing clocks in the presence of faults,” f. Ass.
Comp. Mach., vol. 32, pp.52-78, 1985, '

LeLann, G., “Distributed systems - Towards a formal approach,” pp. 155-160 in Information
Processing 77, ed. B. Gilchrist, North Holland, Amsterdam (1977).

Pachl, J., E. Korach, and D. Rotem, “Y ower bounds on distributed maximum-finding
algorithms,” J. Ass. Comp. Mack., vol. 31, pp.905-919, 1984.

Peterson, G.L., “An O(n log n) unidirectional algorithm for the circular extrema problem,”
ACM Transactions on Programming Languages and Systems, vol. 4, pp.758-762, 1982,

Reif, JH. and P.G. Spirakis, “Real-time synchronization of interprocess communications,”
ACM Transactions on Pregramming Languages and Systems, vol. 6, pp.215-238, 1984

Saltzer, J.H., K.T.Pogran, and D.D. Clark, “Why a ring?,” Computer Networks, vol. 7, pp.223-
231, 1983.

Santoro, N., “Sense of direction, Topological Awareness and Communication Complexity,”
SIGACT News, vol. 16, no. 2, pp.50-56, 1384.

Schwartz, J.T., “Ultracomputers,” ACM Trans. on Programming Languages and Systems, vol. 2,
pp-484-521, 1980,

Seitz, Ch,L., “Concurrent VLSI architectures,” IEEE Transastions on Computers, vol. C-33,
pp.1247-1265 , 1984,

Seitz, Ch.L., “The cosmic cube,” Communications of the Ass. Comp. Mach., vol. 28, pp.22-33,
1985.

‘Tanenbaum, A.S., Computer Networks. Englewood Cliffs, New Jersey:Prentice-Hall, 1981.

Vitanyi, P.M.B., “Distributed elections in an Archimedean ring of processors,” pp. 542-547 in
Proceedings 16th ACM Symposium on Theory of Computing (1584).

