
vPreface to theFirst Edition We are to admit no more causes of natural things (as we are told byNewton) than such as are both true and su�cient to explain their ap-pearances. This central theme is basic to the pursuit of science, andgoes back to the principle known as Occam's razor: \if presented witha choice between indi�erent alternatives, then one ought to select thesimplest one." Unconsciously or explicitly, informal applications of thisprinciple in science and mathematics abound.The conglomerate of di�erent research threads drawing on an objec-tive and absolute form of this approach appears to be part of a singleemerging discipline, which will become a major applied science like in-formation theory or probability theory. We aim at providing a uni�edand comprehensive introduction to the central ideas and applications ofthis discipline.Intuitively, the amount of information in a �nite string is the size (num-ber of binary digits, or bits) of the shortest program that without ad-ditional data, computes the string and terminates. A similar de�nitioncan be given for in�nite strings, but in this case the program produceselement after element forever. Thus, a long sequence of 1's such as11111 : : :1| {z }10;000 timescontains little information because a program of size about log 10; 000bits outputs it:for i := 1 to 10; 000print 1Likewise, the transcendental number � = 3:1415 : : : ; an in�nite sequenceof seemingly \random" decimal digits, contains but a few bits of infor-mation. (There is a short program that produces the consecutive digitsof � forever.) Such a de�nition would appear to make the amount ofinformation in a string (or other object) depend on the particular pro-gramming language used.Fortunately, it can be shown that all reasonable choices of programminglanguages lead to quanti�cation of the amount of \absolute" informationin individual objects that is invariant up to an additive constant. We callthis quantity the \Kolmogorov complexity" of the object. If an objectcontains regularities, then it has a shorter description than itself. Wecall such an object \compressible."The application of Kolmogorov complexity takes a variety of forms, forexample, using the fact that some strings are extremely compressible;using the compressibility of strings as a selection criterion; using the factthat many strings are not compressible at all; and using the fact that



vi some strings may be compressed, but that it takes a lot of e�ort to doso.The theory dealing with the quantity of information in individual ob-jects goes by names such as \algorithmic information theory," \Kol-mogorov complexity," \K-complexity," \Kolmogorov-Chaitin random-ness," \algorithmic complexity," \stochastic complexity," \descriptionalcomplexity," \minimum description length," \program-size complexity,"and others. Each such name may represent a variation of the basic un-derlying idea or a di�erent point of departure. The mathematical formu-lation in each case tends to re
ect the particular traditions of the �eldthat gave birth to it, be it probability theory, information theory, theoryof computing, statistics, or arti�cial intelligence.This raises the question about the proper name for the area. Althoughthere is a good case to be made for each of the alternatives listed above,and a name like \Solomono�-Kolmogorov-Chaitin complexity" wouldgive proper credit to the inventors, we regard \Kolmogorov complex-ity" as well entrenched and commonly understood, and we shall use ithereafter.The mathematical theory of Kolmogorov complexity contains deep andsophisticated mathematics. Yet one needs to know only a small amountof this mathematics to apply the notions fruitfully in widely divergentareas, from sorting algorithms to combinatorial theory, and from induc-tive reasoning and machine learning to dissipationless computing.Formal knowledge of basic principles does not necessarily imply thewherewithal to apply it, perhaps especially so in the case of Kolmogorovcomplexity. It is our purpose to develop the theory in detail and outlinea wide range of illustrative applications. In fact, while the pure theory ofthe subject will have its appeal to the select few, the surprisingly large�eld of its applications will, we hope, delight the multitude.The mathematical theory of Kolmogorov complexity is treated in Chap-ters 2, 3, and 4; the applications are treated in Chapters 5 through 8.Chapter 1 can be skipped by the reader who wants to proceed immedi-ately to the technicalities. Section 1.1 is meant as a leisurely, informalintroduction and peek at the contents of the book. The remainder ofChapter 1 is a compilation of material on diverse notations and disci-plines drawn upon.We de�ne mathematical notions and establish uniform notation to beused throughout. In some cases we choose nonstandard notation sincethe standard one is homonymous. For instance, the notions \absolutevalue," \cardinality of a set," and \length of a string," are commonlydenoted in the same way as j � j. We choose distinguishing notations j � j,d(�), and l(�), respectively.



Preface to the First Edition viiBrie
y, we review the basic elements of computability theory and prob-ability theory that are required. Finally, in order to place the subjectin the appropriate historical and conceptual context we trace the mainroots of Kolmogorov complexity.This way the stage is set for Chapters 2 and 3, where we introduce thenotion of optimal e�ective descriptions of objects. The length of such adescription (or the number of bits of information in it) is its Kolmogorovcomplexity. We treat all aspects of the elementary mathematical theoryof Kolmogorov complexity. This body of knowledge may be called algo-rithmic complexity theory. The theory of Martin-L�of tests for random-ness of �nite objects and in�nite sequences is inextricably intertwinedwith the theory of Kolmogorov complexity and is completely treated.We also investigate the statistical properties of �nite strings with highKolmogorov complexity. Both of these topics are eminently useful inthe applications part of the book. We also investigate the recursion-theoretic properties of Kolmogorov complexity (relations with G�odel'sincompleteness result), and the Kolmogorov complexity version of infor-mation theory, which we may call \algorithmic information theory" or\absolute information theory."The treatment of algorithmic probability theory in Chapter 4 presup-poses Sections 1.6, 1.11.2, and Chapter 3 (at least Sections 3.1 through3.4). Just as Chapters 2 and 3 deal with the optimal e�ective descriptionlength of objects, we now turn to optimal (greatest) e�ective probabil-ity of objects. We treat the elementary mathematical theory in detail.Subsequently, we develop the theory of e�ective randomness tests underarbitrary recursive distributions for both �nite and in�nite sequences.This leads to several classes of randomness tests, each of which has auniversal randomness test. This is the basis for the treatment of a math-ematical theory of inductive reasoning in Chapter 5 and the theory ofalgorithmic entropy in Chapter 8.Chapter 5 develops a general theory of inductive reasoning and ap-plies the developed notions to particular problems of inductive infer-ence, prediction, mistake bounds, computational learning theory, andminimum description length induction in statistics. This developmentcan be viewed both as a resolution of certain problems in philosophyabout the concept and feasibility of induction (and the ambiguous no-tion of \Occam's razor"), as well as a mathematical theory underlyingcomputational machine learning and statistical reasoning.Chapter 6 introduces the incompressibility method. Its utility is demon-strated in a plethora of examples of proving mathematical and com-putational results. Examples include combinatorial properties, the timecomplexity of computations, the average-case analysis of algorithms suchas Heapsort, language recognition, string matching, \pumping lemmas"



viii in formal language theory, lower bounds in parallel computation, andTuring machine complexity. Chapter 6 assumes only the most basic no-tions and facts of Sections 2.1, 2.2, 3.1, 3.3.Some parts of the treatment of resource-bounded Kolmogorov com-plexity and its many applications in computational complexity theoryin Chapter 7 presuppose familiarity with a �rst-year graduate theorycourse in computer science or basic understanding of the material inSection 1.7.4. Sections 7.5 and 7.7 on \universal optimal search" and\logical depth" only require material covered in this book. The sectionon \logical depth" is technical and can be viewed as a mathematical basiswith which to study the emergence of life-like phenomena|thus form-ing a bridge to Chapter 8, which deals with applications of Kolmogorovcomplexity to relations between physics and computation.Chapter 8 presupposes parts of Chapters 2, 3, 4, the basics of informationtheory as given in Section 1.11, and some familiarity with college physics.It treats physical theories like dissipationless reversible computing, in-formation distance and picture similarity, thermodynamics of computa-tion, statistical thermodynamics, entropy, and chaos from a Kolmogorovcomplexity point of view. At the end of the book there is a comprehen-sive listing of the literature on theory and applications of Kolmogorovcomplexity and a detailed index.How to Use ThisBook The technical content of this book consists of four layers. The maintext is the �rst layer. The second layer consists of examples in the maintext. These elaborate the theory developed from the main theorems. Thethird layer consists of nonindented, smaller-font paragraphs interspersedwith the main text. The purpose of such paragraphs is to have an ex-planatory aside, to raise some technical issues that are important butwould distract attention from the main narrative, or to point to alter-native or related technical issues. Much of the technical content of theliterature on Kolmogorov complexity and related issues appears in thefourth layer, the exercises. When the idea behind a nontrivial exercise isnot our own, we have tried to give credit to the person who originatedthe idea. Corresponding references to the literature are usually given incomments to an exercise or in the historical section of that chapter.Starred sections are not really required for the understanding of the se-quel and should be omitted at �rst reading. The application sections arenot starred. The exercises are grouped together at the end of main sec-tions. Each group relates to the material in between it and the previousgroup. Each chapter is concluded by an extensive historical section withfull references. For convenience, all references in the text to the Kol-mogorov complexity literature and other relevant literature are given infull were they occur. The book concludes with a References section in-tended as a separate exhaustive listing of the literature restricted to the



Preface to the First Edition ixtheory and the direct applications of Kolmogorov complexity. There arereference items that do not occur in the text and text references that donot occur in the References. We added a very detailed index combiningthe index to notation, the name index, and the concept index. The pagenumber where a notion is de�ned �rst is printed in boldface. The initialpart of the Index is an index to notation. Names as \J. von Neumann"are indexed European style \Neumann, J. von."The exercises are sometimes trivial, sometimes genuine exercises, butmore often compilations of entire research papers or even well-knownopen problems. There are good arguments to include both: the easyand real exercises to let the student exercise his comprehension of thematerial in the main text; the contents of research papers to have a com-prehensive coverage of the �eld in a small number of pages; and researchproblems to show where the �eld is (or could be) heading. To save thereader the problem of having to determine which is which: \I found thissimple exercise in number theory that looked like Pythagoras's Theorem.Seems di�cult." \Oh, that is Fermat's Last Theorem; it was unsolvedfor three hundred and �fty years...," we have adopted the system of rat-ing numbers used by D.E. Knuth [The Art of Computer Programming,Vol. 1: Fundamental Algorithms, Addison-Wesley, 1973 (2nd Edition),pp. xvii{xix]. The interpretation is as follows:00 A very easy exercise that can be answered immediately, from thetop of your head, if the material in the text is understood.10 A simple problem to exercise understanding of the text. Use �fteenminutes to think, and possibly pencil and paper.20 An average problem to test basic understanding of the text andmay take one or two hours to answer completely.30 A moderately di�cult or complex problem taking perhaps severalhours to a day to solve satisfactorily.40 A quite di�cult or lengthy problem, suitable for a term project,often a signi�cant result in the research literature. We would expecta very bright student or researcher to be able to solve the problemin a reasonable amount of time, but the solution is not trivial.50 A research problem that, to the authors' knowledge, is open at thetime of writing. If the reader has found a solution, he is urged towrite it up for publication; furthermore, the authors of this bookwould appreciate hearing about the solution as soon as possible(provided it is correct).This scale is \logarithmic": a problem of rating 17 is a bit simpler thanaverage. Problems with rating 50, subsequently solved, will appear in



x a next edition of this book with rating 45. Rates are sometimes basedon the use of solutions to earlier problems. The rating of an exercise isbased on that of its most di�cult item, but not on the number of items.Assigning accurate rating numbers is impossible|one man's meat isanother man's poison|and our rating will di�er from ratings by others.An orthogonal rating \M" implies that the problem involves more math-ematical concepts and motivation than is necessary for someone who isprimarily interested in Kolmogorov complexity and applications. Exer-cises marked \HM" require the use of calculus or other higher mathe-matics not developed in this book. Some exercises are marked with \�";and these are especially instructive or useful. Exercises marked \O" areproblems that are, to our knowledge, unsolved at the time of writing.The rating of such exercises is based on our estimate of the di�culty ofsolving them. Obviously, such an estimate may be totally wrong.Solutions to exercises, or references to the literature where such solutionscan be found, appear in the \Comments" paragraph at the end of eachexercise. Nobody is expected to be able to solve all exercises.The material presented in this book draws on work that until now wasavailable only in the form of advanced research publications, possibly nottranslated into English, or was unpublished. A large portion of the ma-terial is new. The book is appropriate for either a one- or a two-semesterintroductory course in departments of mathematics, computer science,physics, probability theory and statistics, arti�cial intelligence, cognitivescience, and philosophy. Outlines of possible one-semester courses thatcan be taught using this book are presented below.Fortunately, the �eld of descriptional complexity is fairly young andthe basics can still be comprehensively covered. We have tried to thebest of our abilities to read, digest, and verify the literature on thetopics covered in this book. We have taken pains to establish correctlythe history of the main ideas involved. We apologize to those who havebeen unintentionally slighted in the historical sections. Many people havegenerously and sel
essly contributed to verify and correct drafts of thisbook. We thank them below and apologize to those we forgot. In awork of this scope and size there are bound to remain factual errorsand incorrect attributions. We greatly appreciate noti�cation of errorsor any other comments the reader may have, preferably by email tokolmogorov@cwi.nl, in order that future editions may be corrected.Acknowledg-ments We thank Greg Chaitin, P�eter G�acs, Leonid Levin, and Ray Solomono�for taking the time to tell us about the early history of our subject andfor introducing us to many of its applications. Juris Hartmanis and JoelSeiferas initiated us into Kolmogorov complexity in various ways.
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xii of Waterloo, Ontario, Canada; and CWI, Amsterdam, the Netherlandsprovided the working environments in which this book could be written.Preface to theSecondEdition When this book was conceived ten years ago, few scientists realizedthe width of scope and the power for applicability of the central ideas.Partially because of the enthusiastic reception of the �rst edition, openproblems have been solved and new applications have been developed.We have added new material on the relation between data compressionand minimum description length induction, computational learning, anduniversal prediction; circuit theory; distributed algorithmics; instancecomplexity; CD compression; computational complexity; Kolmogorovrandom graphs; shortest encoding of routing tables in communicationnetworks; computable universal distributions; average case properties;the equality of statistical entropy and expected Kolmogorov complexity;and so on. Apart from being used by researchers and as reference work,the book is now commonly used for graduate courses and seminars. Inrecognition of this fact, the second edition has been produced in text-book style. We have preserved as much as possible the ordering of thematerial as it was in the �rst edition. The many exercises bunched to-gether at the ends of some chapters have been moved to the appropriatesections. The comprehensive bibliography on Kolmogorov complexity atthe end of the book has been updated, as have the \History and Ref-erences" sections of the chapters. Many readers were kind enough toexpress their appreciation for the �rst edition and to send noti�cation oftypos, errors, and comments. Their number is too large to thank themindividually, so we thank them all collectively.Outlines ofOne-SemesterCourses We have mapped out a number of one-semester courses on a variety oftopics. These topics range from basic courses in theory and applicationsto special interest courses in learning theory, randomness, or informationtheory using the Kolmogorov complexity approach.Prerequisites: Sections 1.1, 1.2, 1.7 (except Section 1.7.4).I. Course onBasicAlgorithmicComplexity andApplications Type of Complexity Theory Applicationsplain complexity 2.1, 2.2, 2.3 4.4, Chapter 6pre�x complexity 1.11.2, 3.1 5.1, 5.1.3, 5.2, 5.53.3, 3.4 8.2, 8.3 8resource-bounded complexity 7.1, 7.5, 7.7 7.2, 7.3, 7.6, 7.7



Outlines of One-Semester Courses xiiiII. Course onAlgorithmicComplexity Type of Complexity Basics Randomness AlgorithmicPropertiesstate � symbol 1.12plain complexity 2.1, 2.2, 2.3 2.4 2.7pre�x complexity 1.11.2, 3.1 3.5 3.7, 3.83.3, 3.4monotone complexity 4.5 (intro) 4.5.4III. Course onAlgorithmicRandomness Randomness Tests Complexity Finite InfiniteAccording to Used Strings Sequencesvon Mises 1.9Martin-L�of 2.1, 2.2 2.4 2.5pre�x complexity 1.11.2, 3.1, 3.3, 3.4 3.5 3.6, 4.5.6general discrete 1.6 (intro), 4.3.1 4.3general continuous 1.6 (intro), 4.54.5 (intro), 4.5.1IV. Course onAlgorithmicInformationTheory andApplications Type of Complexity Basics Entropy Symmetry ofUsed Informationclassical 1.11 1.11 1.11information theoryplain complexity 2.1, 2.2 2.8 2.8pre�x complexity 3.1, 3.3, 3.4 3.8, 3.9.1resource-bounded 7.1 Exercises 7.1.117.1.12applications 8.1, 8.4, Theorem 7.2.68.5 Exercise 6.10.15V. Course onAlgorithmicProbabilityTheory,Learning,Inference andPrediction
Theory Basics Universal ApplicationsDistribution to Inferenceclassical 1.6, 1.11.2 1.6probabilityalgorithmic 2.1, 2.2, 2.3 8complexity 3.1, 3.3, 3.4algorithmic discrete 4.2, 4.1 4.3.1, 4.3.2probability 4.3 (intro) 4.3.3, 4.3.4, 4.3.6algorithmic contin. 4.5 (intro) 4.5.1, 4.5.2 5.2probability 4.5.4, 4.5.8Solomono�'s 5.1, 5.1.3, 5.2 5.3, 5.4.3, 5.5 5.1.3inductive inference 5.4, 8 5.5.8



xiv ContentsVI. Course ontheIncompressibilityMethod Chapter 2 (Sections 2.1, 2.2, 2.4, 2.6, 2.8), Chapter 3 (mainly Sec-tions 3.1, 3.3), Section 4.4, and Chapters 6 and 7. The course coversthe basics of the theory with many applications in proving upper andlower bounds on the running time and space use of algorithms.VII. Course onRandomness,Information, andPhysics Course III and Chapter 8. In physics the applications of Kolmogorovcomplexity include theoretical illuminations of foundational issues. Forexample, the approximate equality of statistical entropy and expectedKolmogorov complexity, the nature of \entropy," a fundamental resolu-tion of the \Maxwell's Demon" paradox. However, also more concreteapplications like \information distance" and \thermodynamics of com-putation" are covered.



Contents
Preface to the First Edition : : : : : : : : : : : : : : : : : : : : vHow to Use This Book : : : : : : : : : : : : : : : : : : : viiiAcknowledgments : : : : : : : : : : : : : : : : : : : : : : xPreface to the Second Edition : : : : : : : : : : : : : : : : : : xiiOutlines of One-Semester Courses : : : : : : : : : : : : : : : : xiiList of Figures : : : : : : : : : : : : : : : : : : : : : : : : : : : xix1 Preliminaries 11.1 A Brief Introduction : : : : : : : : : : : : : : : : : : : : : 11.2 Prerequisites and Notation : : : : : : : : : : : : : : : : : 61.3 Numbers and Combinatorics : : : : : : : : : : : : : : : : 81.4 Binary Strings : : : : : : : : : : : : : : : : : : : : : : : : 121.5 Asymptotic Notation : : : : : : : : : : : : : : : : : : : : 151.6 Basics of Probability Theory : : : : : : : : : : : : : : : : 181.7 Basics of Computability Theory : : : : : : : : : : : : : : 241.8 The Roots of Kolmogorov Complexity : : : : : : : : : : : 471.9 Randomness : : : : : : : : : : : : : : : : : : : : : : : : : 491.10 Prediction and Probability : : : : : : : : : : : : : : : : : 591.11 Information Theory and Coding : : : : : : : : : : : : : : 651.12 State � Symbol Complexity : : : : : : : : : : : : : : : : 841.13 History and References : : : : : : : : : : : : : : : : : : : 86



xvi Contents 2 Algorithmic Complexity 932.1 The Invariance Theorem : : : : : : : : : : : : : : : : : : 962.2 Incompressibility : : : : : : : : : : : : : : : : : : : : : : : 1082.3 C as an Integer Function : : : : : : : : : : : : : : : : : : 1192.4 Random Finite Sequences : : : : : : : : : : : : : : : : : : 1272.5 *Random In�nite Sequences : : : : : : : : : : : : : : : : 1362.6 Statistical Properties of Finite Sequences : : : : : : : : : 1582.7 Algorithmic Properties of C : : : : : : : : : : : : : : : : 1672.8 Algorithmic Information Theory : : : : : : : : : : : : : : 1792.9 History and References : : : : : : : : : : : : : : : : : : : 1853 Algorithmic Pre�x Complexity 1893.1 The Invariance Theorem : : : : : : : : : : : : : : : : : : 1923.2 *Sizes of the Constants : : : : : : : : : : : : : : : : : : : 1973.3 Incompressibility : : : : : : : : : : : : : : : : : : : : : : : 2023.4 K as an Integer Function : : : : : : : : : : : : : : : : : : 2063.5 Random Finite Sequences : : : : : : : : : : : : : : : : : : 2083.6 *Random In�nite Sequences : : : : : : : : : : : : : : : : 2113.7 Algorithmic Properties of K : : : : : : : : : : : : : : : : 2243.8 *Complexity of Complexity : : : : : : : : : : : : : : : : : 2263.9 *Symmetry of Algorithmic Information : : : : : : : : : : 2293.10 History and References : : : : : : : : : : : : : : : : : : : 2374 Algorithmic Probability 2394.1 Enumerable Functions Revisited : : : : : : : : : : : : : : 2404.2 Nonclassical Notation of Measures : : : : : : : : : : : : : 2424.3 Discrete Sample Space : : : : : : : : : : : : : : : : : : : : 2454.4 Universal Average-Case Complexity : : : : : : : : : : : : 2684.5 Continuous Sample Space : : : : : : : : : : : : : : : : : : 2724.6 Universal Average-Case Complexity, Continued : : : : : : 3074.7 History and References : : : : : : : : : : : : : : : : : : : 307



Contents xvii5 Inductive Reasoning 3155.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : 3155.2 Solomono�'s Theory of Prediction : : : : : : : : : : : : : 3245.3 Universal Recursion Induction : : : : : : : : : : : : : : : 3355.4 Simple Pac-Learning : : : : : : : : : : : : : : : : : : : : : 3395.5 Hypothesis Identi�cation by Minimum Description Length 3515.6 History and References : : : : : : : : : : : : : : : : : : : 3726 The Incompressibility Method 3796.1 Three Examples : : : : : : : : : : : : : : : : : : : : : : : 3806.2 High- Probability Properties : : : : : : : : : : : : : : : : 3856.3 Combinatorics : : : : : : : : : : : : : : : : : : : : : : : : 3896.4 Kolmogorov Random Graphs : : : : : : : : : : : : : : : : 3966.5 Compact Routing : : : : : : : : : : : : : : : : : : : : : : 4046.6 Average-Case Complexity of Heapsort : : : : : : : : : : : 4126.7 Longest Common Subsequence : : : : : : : : : : : : : : : 4176.8 Formal Language Theory : : : : : : : : : : : : : : : : : : 4206.9 Online CFL Recognition : : : : : : : : : : : : : : : : : : 4276.10 Turing Machine Time Complexity : : : : : : : : : : : : : 4326.11 Parallel Computation : : : : : : : : : : : : : : : : : : : : 4456.12 Switching Lemma : : : : : : : : : : : : : : : : : : : : : : 4496.13 History and References : : : : : : : : : : : : : : : : : : : 4527 Resource-Bounded Complexity 4597.1 Mathematical Theory : : : : : : : : : : : : : : : : : : : : 4607.2 Language Compression : : : : : : : : : : : : : : : : : : : 4767.3 Computational Complexity : : : : : : : : : : : : : : : : : 4887.4 Instance Complexity : : : : : : : : : : : : : : : : : : : : : 4957.5 Kt Complexity and Universal Optimal Search : : : : : : : 5027.6 Time-Limited Universal Distributions : : : : : : : : : : : 5067.7 Logical Depth : : : : : : : : : : : : : : : : : : : : : : : : 5107.8 History and References : : : : : : : : : : : : : : : : : : : 516



xviii Contents 8 Physics, Information, and Computation 5218.1 Algorithmic Complexity and Shannon's Entropy : : : : : 5228.2 Reversible Computation : : : : : : : : : : : : : : : : : : : 5288.3 Information Distance : : : : : : : : : : : : : : : : : : : : 5378.4 Thermodynamics : : : : : : : : : : : : : : : : : : : : : : : 5548.5 Entropy Revisited : : : : : : : : : : : : : : : : : : : : : : 5658.6 Compression in Nature : : : : : : : : : : : : : : : : : : : 5838.7 History and References : : : : : : : : : : : : : : : : : : : 586References 591Index 618



List of Figures

1.1 Turing machine : : : : : : : : : : : : : : : : : : : : : : : 281.2 Inferred probability for increasing n : : : : : : : : : : : : 601.3 Binary tree for E(1) = 0, E(2) = 10, E(3) = 110, E(4) =111 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 721.4 Binary tree for E(1) = 0, E(2) = 01, E(3) = 011, E(4) =0111 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 732.1 The graph of the integer function C(x) : : : : : : : : : : 1212.2 The graph of the integer function C(xjl(x)) : : : : : : : : 1232.3 Test of Example 2.4.1 : : : : : : : : : : : : : : : : : : : : 1282.4 Complexity oscillations of initial segments of in�nite high-complexity sequences : : : : : : : : : : : : : : : : : : : : 1392.5 Three notions of \chaotic" in�nite sequences : : : : : : : 1483.1 The 425-bit universal combinator U 0 in pixels : : : : : : : 2013.2 The graphs of K(x) and K(xjl(x)) : : : : : : : : : : : : : 2073.3 Complexity oscillations of a typical random sequence ! : 2153.4 K-complexity criteria for randomness of in�nite sequences 2153.5 Complexity oscillations of 
 : : : : : : : : : : : : : : : : 2164.1 Graph of m(x) with lower bound 1=x � logx � log logx � � � 249



xx List of Figures 4.2 Relations between �ve complexities : : : : : : : : : : : : 2855.1 Trivial consistent automaton : : : : : : : : : : : : : : : : 3175.2 Smallest consistent automaton : : : : : : : : : : : : : : : 3175.3 Sample data set : : : : : : : : : : : : : : : : : : : : : : : 3655.4 Imperfect decision tree : : : : : : : : : : : : : : : : : : : 3665.5 Perfect decision tree : : : : : : : : : : : : : : : : : : : : : 3676.1 Single-tape Turing machine : : : : : : : : : : : : : : : : : 3816.2 The two possible nni's on (u; v): swap B $ C or B $ D 4166.3 The nni distance between (i) and (ii) is 2 : : : : : : : : : 4166.4 Multitape Turing machine : : : : : : : : : : : : : : : : : 4288.1 Reversible Boolean gates : : : : : : : : : : : : : : : : : : 5308.2 Implementing reversible AND gate and NOT gate : : : : 5318.3 Controlling billiard ball movements : : : : : : : : : : : : 5328.4 A billiard ball computer : : : : : : : : : : : : : : : : : : : 5338.5 Combining irreversible computations of y from x and xfrom y to achieve a reversible computation of y from x : 5438.6 Reversible execution of concatenated programs for (yjx)and (zjy) to transform x into z : : : : : : : : : : : : : : : 5458.7 Carnot cycle : : : : : : : : : : : : : : : : : : : : : : : : : 5558.8 Heat engine : : : : : : : : : : : : : : : : : : : : : : : : : : 5568.9 State space : : : : : : : : : : : : : : : : : : : : : : : : : : 5598.10 Atomic spin in CuO2 at low temperature : : : : : : : : : 5628.11 Regular \up" and \down" spins : : : : : : : : : : : : : : 5638.12 Algorithmic entropy: left a random micro state, right aregular micro state : : : : : : : : : : : : : : : : : : : : : : 5678.13 Szilard engine : : : : : : : : : : : : : : : : : : : : : : : : 5688.14 Adiabatic demagnetization to achieve low temperature : 5838.15 The maze: a binary tree constructed from matches : : : : 5848.16 Time required for Formica sanguinea scouts to transmitinformation about the direction to the syrup to the for-ager ants : : : : : : : : : : : : : : : : : : : : : : : : : : : 585



1Preliminaries

1.1A BriefIntroduction Suppose we want to describe a given object by a �nite binary string. Wedo not care whether the object has many descriptions; however, eachdescription should describe but one object. From among all descriptionsof an object we can take the length of the shortest description as a mea-sure of the object's complexity. It is natural to call an object \simple"if it has at least one short description, and to call it \complex" if all ofits descriptions are long.But now we are in danger of falling into the trap so eloquently describedin the Richard-Berry paradox, where we de�ne a natural number as\the least natural number that cannot be described in less than twentywords." If this number does exist, we have just described it in thirteenwords, contradicting its de�nitional statement. If such a number does notexist, then all natural numbers can be described in fewer than twentywords. We need to look very carefully at the notion of \description."Assume that each description describes at most one object. That is,there is a speci�cation method D that associates at most one objectx with a description y. This means that D is a function from the setof descriptions, say Y , into the set of objects, say X . It seems alsoreasonable to require that for each object x in X , there is a descriptiony in Y such that D(y) = x. (Each object has a description.) To makedescriptions useful we like them to be �nite. This means that there areonly countably many descriptions. Since there is a description for eachobject, there are also only countably many describable objects. How dowe measure the complexity of descriptions?



2 1. Preliminaries Taking our cue from the theory of computation, we express descriptionsas �nite sequences of 0's and 1's. In communication technology, if thespeci�cation method D is known to both a sender and a receiver, thena message x can be transmitted from sender to receiver by transmittingthe sequence of 0's and 1's of a description y with D(y) = x. The cost ofthis transmission is measured by the number of occurrences of 0's and1's in y, that is, by the length of y. The least cost of transmission of xis given by the length of a shortest y such that D(y) = x. We choosethis least cost of transmission as the descriptional complexity of x underspeci�cation method D.Obviously, this descriptional complexity of x depends crucially on D.The general principle involved is that the syntactic framework of thedescription language determines the succinctness of description.In order to objectively compare descriptional complexities of objects, tobe able to say \x is more complex than z," the descriptional complexityof x should depend on x alone. This complexity can be viewed as relatedto a universal description method that is a priori assumed by all sendersand receivers. This complexity is optimal if no other description methodassigns a lower complexity to any object.We are not really interested in optimality with respect to all descriptionmethods. For speci�cations to be useful at all it is necessary that themapping from y to D(y) can be executed in an e�ective manner. Thatis, it can at least in principle be performed by humans or machines.This notion has been formalized as that of \partial recursive functions."According to generally accepted mathematical viewpoints it coincideswith the intuitive notion of e�ective computation.The set of partial recursive functions contains an optimal function thatminimizes description length of every other such function. We denotethis function by D0. Namely, for any other recursive function D, for allobjects x, there is a description y of x under D0 that is shorter than anydescription z of x under D. (That is, shorter up to an additive constantthat is independent of x.) Complexity with respect to D0 minorizes thecomplexities with respect to all partial recursive functions.We identify the length of the description of x with respect to a �xed spec-i�cation function D0 with the \algorithmic (descriptional) complexity"of x. The optimality of D0 in the sense above means that the complexityof an object x is invariant (up to an additive constant independent of x)under transition from one optimal speci�cation function to another. Itscomplexity is an objective attribute of the described object alone: it is anintrinsic property of that object, and it does not depend on the descrip-tion formalism. This complexity can be viewed as \absolute informationcontent": the amount of information that needs to be transmitted be-tween all senders and receivers when they communicate the message in



1.1. A Brief Introduction 3absence of any other a priori knowledge that restricts the domain of themessage.Broadly speaking, this means that all description syntaxes that are pow-erful enough to express the partial recursive functions are approximatelyequally succinct. All algorithms can be expressed in each such program-ming language equally succinctly, up to a �xed additive constant term.The remarkable usefulness and inherent rightness of the theory of Kol-mogorov complexity stems from this independence of the descriptionmethod.Thus, we have outlined the program for a general theory of algorithmiccomplexity. The four major innovations are as follows:1. In restricting ourselves to formally e�ective descriptions, our de�-nition covers every form of description that is intuitively acceptableas being e�ective according to general viewpoints in mathematicsand logic.2. The restriction to e�ective descriptions entails that there is a uni-versal description method that minorizes the description length orcomplexity with respect to any other e�ective description method.This would not be the case if we considered, say, all none�ectivedescription methods. Signi�cantly, this implies Item 3.3. The description length or complexity of an object is an intrinsicattribute of the object independent of the particular descriptionmethod or formalizations thereof.4. The disturbing Richard-Berry paradox above does not disappear,but resurfaces in the form of an alternative approach to provingKurt G�odel's (1906{1978) famous result that not every true math-ematical statement is provable in mathematics.Example 1.1.1 (G�odel's incompleteness result) A formal system (consisting of def-initions, axioms, rules of inference) is consistent if no statement that canbe expressed in the system can be proved to be both true and false in thesystem. A formal system is sound if only true statements can be provedto be true in the system. (Hence, a sound formal system is consistent.)Let x be a �nite binary string. We write \x is random" if the shortestbinary description of x with respect to the optimal speci�cation methodD0 has length at least x. A simple counting argument shows that thereare random x's of each length.Fix any sound formal system F in which we can express statements like\x is random." Suppose F can be described in f bits|assume, for exam-ple, that this is the number of bits used in the exhaustive description of



4 1. Preliminaries F in the �rst chapter of the textbook Foundations of F . We claim thatfor all but �nitely many random strings x, the sentence \x is random"is not provable in F . Assume the contrary. Then given F , we can startto exhaustively search for a proof that some string of length n � f israndom, and print it when we �nd such a string x. This procedure toprint x of length n uses only logn + f bits of data, which is much lessthan n. But x is random by the proof and the fact that F is sound.Hence, F is not consistent, which is a contradiction. 3This shows that although most strings are random, it is impossible toe�ectively prove them random. In a way, this explains why the incom-pressibility method in Chapter 6 is so successful. We can argue abouta \typical" individual element, which is di�cult or impossible by othermethods.Example 1.1.2 (Lower bounds) The secret of the successful use of descriptional com-plexity arguments as a proof technique is due to a simple fact: the over-whelming majority of strings have almost no computable regularities.We have called such a string \random." There is no shorter descriptionof such a string than the literal description: it is incompressible. Incom-pressibility is a none�ective property in the sense of Example 1.1.1.Traditional proofs often involve all instances of a problem in order toconclude that some property holds for at least one instance. The proofwould be more simple, if only that one instance could have been usedin the �rst place. Unfortunately, that instance is hard or impossible to�nd, and the proof has to involve all the instances. In contrast, in aproof by the incompressibility method, we �rst choose a random (thatis, incompressible) individual object that is known to exist (even thoughwe cannot construct it). Then we show that if the assumed property didnot hold, then this object could be compressed, and hence it would notbe random. Let us give a simple example.A prime number is a natural number that is not divisible by naturalnumbers other than itself and 1. We prove that for in�nitely many n,the number of primes less than or equal to n is at least logn= log logn.The proof method is as follows. For each n, we construct a descriptionfrom which n can be e�ectively retrieved. This description will involvethe primes less than n. For some n this description must be long, whichshall give the desired result.Assume that p1; p2; : : : ; pm is the list of all the primes less than n. Then,n = pe11 pe22 � � � pemmcan be reconstructed from the vector of the exponents. Each exponentis at most logn and can be represented by log logn bits. The descriptionof n (given logn) can be given in m log logn bits.



1.1. A Brief Introduction 5It can be shown that each n that is random (given logn) cannot bedescribed in fewer than logn bits, whence the result follows. Can we dobetter? This is slightly more complicated. Let l(x) denote the length ofthe binary representation of x. We shall show that for in�nitely many nof the form n = m log2m, the number of distinct primes less than n isat least m.Firstly, we can describe any given integerN by E(m)N=pm, where E(m)is a pre�x-free encoding (page 71) of m, and pm is the largest primedividing N . For random N , the length of this description, l(E(m)) +logN � log pm, must exceed logN . Therefore, log pm < l(E(m)). It isknown (and easy) that we can set l(E(m)) � logm+2 log logm. Hence,pm < m log2m. Setting n := m log2m, and observing from our previousresult that pm must grow with N , we have proven our claim. The claimis equivalent to the statement that for our special sequence of valuesof n the number of primes less than n exceeds n= log2 n. The idea ofconnecting primality and pre�x code-word length is due to P. Berman,and the present proof is due to J. Tromp.Chapter 6 introduces the incompressibility method. Its utility is demon-strated in a variety of examples of proving mathematical and compu-tational results. These include questions concerning the average caseanalysis of algorithms (such as Heapsort), sequence analysis, averagecase complexity in general, formal languages, combinatorics, time andspace complexity analysis of various sequential or parallel machine mod-els, language recognition, and string matching. Other topics like the useof resource-bounded Kolmogorov complexity in the analysis of compu-tational complexity classes, the universal optimal search algorithm, and\logical depth" are treated in Chapter 7. 3Example 1.1.3 (Prediction) We are given an initial segment of an in�nite sequenceof zeros and ones. Our task is to predict the next element in the se-quence: zero or one? The set of possible sequences we are dealing withconstitutes the \sample space"; in this case, the set of one-way in�nitebinary sequences. We assume some probability distribution � over thesample space, where �(x) is the probability of the initial segment of asequence being x. Then the probability of the next bit being \0," afteran initial segment x, is clearly �(0jx) = �(x0)=�(x). This problem con-stitutes, perhaps, the central task of inductive reasoning and arti�cialintelligence. However, the problem of induction is that in general we donot know the distribution �, preventing us from assessing the actualprobability. Hence, we have to use an estimate.Now assume that � is computable. (This is not very restrictive, since anydistribution used in statistics is computable, provided the parameters arecomputable.) We can use Kolmogorov complexity to give a very good



6 1. Preliminaries estimate of �. This involves the so-called \universal distribution" M.Roughly speaking, M(x) is close to 2�l, where l is the length in bitsof the shortest e�ective description of x. Among other things, M hasthe property that it assigns at least as high a probability to x as anycomputable � (up to a multiplicative constant factor depending on � butnot on x). What is particularly important to prediction is the following:Let Sn denote the �-expectation of the square of the error we make in es-timating the probability of the nth symbol byM. Then it can be shownthat the sum Pn Sn is bounded by a constant. In other words, Sn con-verges to zero faster than 1=n. Consequently, any actual (computable)distribution can be estimated and predicted with great accuracy usingonly the single universal distribution.Chapter 5 develops a general theory of inductive reasoning and appliesthe notions introduced to particular problems of inductive inference,prediction, mistake bounds, computational learning theory, and mini-mum description length induction methods in statistics. In particular,it is demonstrated that data compression improves generalization andprediction performance. 3The purpose of the remainder of this chapter is to de�ne several conceptswe require, if not by way of introduction, then at least to establishnotation.1.2Prerequisitesand Notation We usually deal with nonnegative integers, sets of nonnegative integers,and mappings from nonnegative integers to nonnegative integers. A, B,C; : : : denote sets. N , Z , Q, R denote the sets of nonnegative integers(natural numbers including zero), integers, rational numbers, and realnumbers, respectively. For each such set A, by A+ we denote the subsetof A consisting of positive numbers.We use the following set-theoretical notations. x 2 A means that x isa member of A. In fx : x 2 Ag, the symbol \:" denotes set formation.ASB is the union of A and B, ATB is the intersection of A and B,and �A is the complement of A when the universe AS �A is understood.A � B means A is a subset of B. A = B means A and B are identicalas sets (have the same members).The cardinality (or diameter) of a �nite set A is the number of elementsit contains and is denoted as d(A). If A = fa1; : : : ; ang, then d(A) = n.The empty set fg, with no elements in it, is denoted by �. In particular,d(�) = 0.Given x and y, the ordered pair (x; y) consists of x and y in that order.A� B is the Cartesian product of A and B, the set f(x; y) : x 2 A and



1.2. Prerequisites and Notation 7y 2 Bg. The n-fold Cartesian product of A with itself is denoted as An.If R � A2, then R is called a binary relation. The same de�nitions can begiven for n-tuples, n > 2, and the corresponding relations are n-ary. Wesay that an n-ary relation R is single-valued if for every (x1; : : : ; xn�1)there is at most one y such that (x1; : : : ; xn�1; y) 2 R. Consider thedomain f(x1; : : : ; xn�1) : there is a y such that (x1; : : : ; xn�1; y) 2 Rg ofa single-valued relation R. Clearly, a single-valued relation R � An�1�Bcan be considered as a mapping from its domain into B. Therefore, wealso call a single-valued n-ary relation a partial function of n�1 variables(\partial" because the domain of R may not comprise all of An�1). Wedenote functions by �;  ; : : : or f; g; h; : : : Functions de�ned on the n-foldCartesian product An are denoted with possibly a superscript denotingthe number of variables, like �(n) = �(n)(x1; : : : ; xn).We use the notation h�i for some standard one-to-one encoding of Nninto N . We will use h�i especially as a pairing function over N to as-sociate a unique natural number hx; yi with each pair (x; y) of naturalnumbers. An example is hx; yi de�ned by y+ (x+ y+1)(x+ y)=2. Thismapping can be used recursively: hx; y; zi = hx; hy; zii.If � is a partial function from A to B, then for each x 2 A either�(x) 2 B or �(x) is unde�ned. If x is a member of the domain of �,then �(x) is called a value of �, and we write �(x) <1 and � is calledconvergent or de�ned at x; otherwise we write �(x) = 1 and we call �divergent or unde�ned at x. The set of values of � is called the range of�. If � converges at every member of A, it is a total function, otherwisea strictly partial function. If each member of a set B is also a value of�, then � is said to map onto B, otherwise to map into B. If for eachpair x and y, x 6= y, for which � converges �(x) 6= �(y) holds, then � isa one-to-one mapping, otherwise a many-to-one mapping. The functionf : A ! f0; 1g de�ned by f(x) = 1 if �(x) converges, and f(x) = 0otherwise, is called the characteristic function of the domain of �.If � and  are two partial functions, then  � (equivalently,  (�(x)))denotes their composition, the function de�ned by f(x; y) : there is az such that �(x) = z and  (z) = yg. The inverse ��1 of a one-to-onepartial function � is de�ned by ��1(y) = x i� �(x) = y.A set A is called countable if it is either empty or there is a total one-to-one mapping from A to the natural numbers N . We say A is countablyin�nite if it is both countable and in�nite. By 2A we denote the set ofall subsets of A. The set 2N has the cardinality of the continuum and istherefore uncountably in�nite.For binary relations, we use the terms re
exive, transitive, symmetric,equivalence, partial order, and linear (or total) order in the usual mean-ing. Partial orders can be strict (<) or nonstrict (�).



8 1. Preliminaries If we use the logarithm notation logx without subscript, then we shallalways mean base 2. By lnx we mean the natural logarithm loge x, wheree = 2:71 : : : :We use the quanti�ers 9 (\there exists"), 8 (\for all"), 91 (\there existin�nitely many"), and the awkward 81 (\for all but �nitely many").This way, 81x[�(x)] i� :91x[:�(x)].1.3Numbers andCombinatorics The absolute value of a real number r is denoted by jrj and is de�ned asjrj = �r if r < 0 and r otherwise. The 
oor of a real number r, denotedby brc, is the greatest integer n such that n � r. Analogously, the ceilingof a real number r, denoted by dre, is the least integer n such that n � r.Example 1.3.1 j � 1j = j1j = 1. b0:5c = 0 and d0:5e = 1. Analogously, b�0:5c = �1 andd�0:5e = 0. But b2c = d2e = 2 and b�2c = d�2e = �2. 3A permutation of n objects is an arrangement of n distinct objects in anordered sequence. For example, the six di�erent permutations of objectsa; b; c areabc; acb; bac; bca; cab; cba:The number of permutations of n objects is found most easily by imag-ining a sequential process to choose a permutation. There are n choicesof which object to place in the �rst position; after �lling the �rst po-sition there remain n � 1 objects and therefore n � 1 choices of whichobject to place in the second position, and so on. Therefore, the numberof permutations of n objects is n� (n� 1)� � � � � 2� 1, denoted by n!and is referred to as n factorial. In particular, 0! = 1.A variation of k out of n objects is an arrangement consisting of the�rst k elements of a permutation of n objects. For example, the twelvevariations of two out of four objects a; b; c; d areab; ac; ad; ba; bc; bd; ca; cb; cd; da; db; dc:The number of variations of k out of n is n!=(n� k)!, as follows by theprevious argument. While there is no accepted standard notation, wedenote the number of variations as (n)k. In particular, (n)0 = 1.The combinations of n objects taken k at a time (\n choose k") are thepossible choices of k di�erent elements from a collection of n objects.The six di�erent combinations of two out of four objects a; b; c; d arefa; bg; fa; cg; fa; dg; fb; cg; fb; dg; fc; dg:



Exercises 9We can consider a combination as a variation in which the order doesnot count. We have seen that there are n(n � 1) � � � (n � k + 1) waysto choose the �rst k elements of a permutation. Every k-combinationappears precisely k! times in these arrangements, since each combinationoccurs in all its permutations. Therefore, the number of combinations,denoted by �nk�, is�nk� = n(n� 1) � � � (n� k + 1)k(k � 1) � � � (1) :In particular, �n0� = 1. The quantity �nk� is also called a binomial co-e�cient. It has an extraordinary number of applications. Perhaps theforemost relation associated with it is the Binomial Theorem, discoveredin 1676 by Isaac Newton(x+ y)n =Xk �nk�xkyn�k;with n a positive integer. Note that in the summation k need not berestricted to 0 � k � n, but can range over �1 < k < +1, since fork < 0 or k > n the terms are all zero.Example 1.3.2 An important relation following from the Binomial Theorem is found bysubstituting y = 1:(x+ 1)n =Xk �nk�xk :Substituting also x = 1 we �nd2n =Xk �nk�: 3Exercises 1.3.1. [13] A \stock" of bridge cards consists of four suits and thirteenface values, respectively. Each card is de�ned by its suit and face value.(a) How many cards are there?(b) Each player gets a \hand" consisting of thirteen cards. How manydi�erent hands are there?(c) What is the probability of getting a full suit as a hand? Assume thisis the probability of obtaining a full suit when drawing thirteen cards,successively without replacement, from a full stock.



10 1. Preliminaries Comments. (a) 4� 13 = 52. (b) �5213� = 635013559600. (c) 4=�5213�.1.3.2. [12] Consider a random distribution of k distinguishable ballsin n cells, that is, each of the nk possible arrangements has probabilityn�k. Show that the probability Pi that a speci�ed cell contains exactlyi balls (0 � i � k) is given by Pi = �ki�(1=n)i(1� 1=n)k�i.Comments. Source: W. Feller, An Introduction to Probability Theory andIts Applications, Vol. 1, Wiley, 1968.1.3.3. [08] Show that �nk� = (n)kk! and �nk� = � nn�k�.1.3.4. [M34] Prove the following identity, which is very useful in thesequel of this book.log�nk� = k log nk + (n� k) log nn� k + 12 log nk(n� k) +O(1):1.3.5. [15] (a) Prove that the number of ways n distinguishable ballscan be placed in k numbered cells such that the �rst cell contains n1balls, the second cell n2 balls, up to the kth cell contains nk balls withn1 + � � �+ nk = n is� nn1; : : : ; nk� = n!n1! � � �nk! :This number is called a multinomial coe�cient. Note that the orderof the cells is essential in that the partitions (n1 = 1; n2 = 2) and(n1 = 2; n2 = 1) are di�erent. The order of the elements within a cell isirrelevant.(b) Show that(x1 + � � �+ xk)n =X� nn1; : : : ; nk�xn11 � � �xnkk ;with the sum taken for all n1 + � � �+ nk = n.(c) The number of ordered di�erent partitions of n in r nonnegativeintegral summands is denoted by An;r. Compute An;r in the form of abinomial coe�cient.Comments. (1; 0) and (0; 1) are di�erent partitions, so A1;2 = 2. Source:W. Feller, An Introduction to Probability Theory and Its Applications,Vol. 1, Wiley, 1968.1.3.6. [14] De�ne the occupancy numbers for n balls distributed over kcells as a k-tuple of integers (n1; n2; : : : ; nk) satisfying n1+n2+� � �+nk =n with ni � 0 (1 � i � k). That is, the �rst cell contains n1 balls, thesecond cell n2 balls, and so on.



Exercises 11(a) Show that there are � nn1;:::;nk� placements of n balls in k cells resultingin the numbers (n1; : : : ; nk).(b) There are kn possible placements of n balls in k cells altogether.Compute the fraction that results in the given occupancy numbers.(c) Assume that all kn possible placements of n balls in k cells areequally probable. Conclude that the probability of obtaining the givenoccupancy numbers isn!n1! � � �nk!k�n:Comments. In physics this is known as theMaxwell-Boltzmann statistics(here \statistics" is used as a synonym to \distribution"). Source: W.Feller, Ibid.1.3.7. [15] We continue with the previous Exercise. In physical situ-ations the assumption of equiprobability of possible placements seemsunavoidable, for example, molecules in a volume of gas divided into (hy-pothetical) cells of equal volume. Numerous attempts have been madeto prove that physical particles behave in accordance with the Maxwell-Boltzmann distribution. However, it has been shown conclusively thatno known particles behave according to this distribution.(a) In the Bose-Einstein distribution we count only distinguishable dis-tributions of n balls over k cells without regard for the identities of theballs. We are only interested in the number of solutions of n1+n2+ � � �+nk = n. Show that this number is An;k = �k+n�1n � = �k+n�1k�1 �. Concludethat the probability of obtaining each given occupancy number is equally1=An;k. (Illustration: the distinguishable distributions of two balls overtwo cells are j**, *j*, and **j. Hence, according to Bose-Einstein statis-tics there are only three possible outcomes for two coin 
ips: head-head,head-tail, and tail-tail, and each outcome has equal probability 13 .)(b) In the Fermi-Dirac distribution, (1) two or more particles cannotoccupy the same cell and (2) all distinguishable arrangements satisfying(1) have the same probability. Note that (1) requires n � k. Prove that inthe Fermi-Dirac distribution there are in total �kn� possible arrangements.Conclude that the probability for each possible occupancy number isequally 1=�kn�.Comments. According to modern physics, photons, nuclei, and atomscontaining an even number of elementary particles behave according tomodel (a), and electrons, neutrons, and protons behave according tomodel (b). This shows that nature does not necessarily satisfy our apriori assumptions, however plausible they may be. Source: W. Feller,Ibid.



12 1. Preliminaries1.4Binary Strings We are concerned with strings over a nonempty set B of basic elements.Unless otherwise noted, we use B = f0; 1g. Instead of \string" we alsouse \word" and \sequence," synonymously. The way we use it, \strings"and \words" are usually �nite, while \sequences" are usually in�nite.The set of all �nite strings over B is denoted by B�, de�ned asB� = f�; 0; 1; 00; 01; 10; 11; 000; : : :g;with � denoting the empty string, with no letters. Concatenation is abinary operation on the elements of B� that associates xy with eachordered pair of elements (x; y) in the Cartesian product B��B�. Clearly,1. B� is closed under the operation of concatenation; that is, if x andy are elements of B�, then so is xy;2. concatenation is an associative operation on B�; that is, (xy)z =x(yz) = xyz; and3. concatenation on B� has the unit element �; that is, �x = x� = x.We now consider a correspondence of �nite binary strings and naturalnumbers. The standard binary representation has the disadvantage thateither some strings do not represent a natural number, or each natu-ral number is represented by more than one string. For example, either\010" does not represent \2," or both \010" and \10" represent \2."However, we can map B� one-to-one onto the natural numbers by asso-ciating each string with its index in the lexicographical ordering(�; 0); (0; 1); (1; 2); (00; 3); (01; 4); (10; 5); (11; 6); : : : : (1.1)This way we represent x = 2n+1� 1+Pni=0 ai2i by an : : : a1a0. This is equiv-alent to x =Pni=0 bi2i with bi 2 f1; 2g and bi = ai + 1 for 0 � i � n.This way we have a binary representation for the natural numbers thatis di�erent from the standard binary representation. It is convenient notto distinguish between the �rst and second element of the same pair, andcall them \string" or \number" arbitrarily. That is, we consider both thestring 01 and the natural number 4 as the same object. For example,we may write 01 = 4. We denote these objects in general with lowercaseroman letters. A string consisting of n zeros is denoted by 0n.If x is a string of n 0's and 1's, then xi denotes the ith bit (binary digit)of x for all i, 1 � i � n, and xi:j denotes the (j � i + 1)-bits segmentxixi+1 : : : xj . For x = 1010 we have x1 = x3 = 1 and x2 = x4 = 0; forx = x1x2 : : : xn we have x1:i = x1x2 : : : xi. The reverse, xR, of a stringx = x1x2 : : : xn is xnxn�1 : : : x1.



1.4. Binary Strings 13The length of a �nite binary string x is the number of bits it containsand is denoted by l(x). If x = x1x2 : : : xn, then l(x) = n. In particular,l(�) = 0.Thus, l(xy) = l(x)+ l(y), and l(xR) = l(x). Recall that we use the abovepairing of binary strings and natural numbers. Thus, l(4) = 2 and 01 = 4.The number of elements (cardinality) in a �nite set A is denoted by d(A).Therefore, d(fu : l(u) = ng) = 2n and d(fu : l(u) � ng) = 2n+1 � 1.Let D be any function D : f0; 1g� ! N . Considering the domain ofD as the set of code words, and the range of D as the set of sourcewords, D(y) = x is interpreted as \y is a code word for the source wordx, and D is the decoding function." (In the introduction we called Da speci�cation method.) The set of all code words for source word x isthe set D�1(x) = fy : D(y) = xg. Hence, E = D�1 can be called theencoding substitution (E is not necessarily a function). Let x; y 2 f0; 1g�.We call x a pre�x of y if there is a z such that y = xz. A set A � f0; 1g�is pre�x-free, if no element in A is the pre�x of another element in A.A function D : f0; 1g� ! N de�nes a pre�x-code if its domain is pre�x-free. (Coding theory is treated in Section 1.11.1.) A simple pre�x-codewe use throughout is obtained by reserving one symbol, say 0, as a stopsign and encoding x 2 N as 1x0. We can pre�x an object with its lengthand iterate this idea to obtain ever shorter codes:Ei(x) = � 1x0 for i = 0;Ei�1(l(x))x for i > 0: (1.2)Thus, E1(x) = 1l(x)0x and has length l(E1(x)) = 2l(x)+1. This encodingis su�ciently important to have a simpler notation:�x = 1l(x)0x;l(�x) = 2l(x) + 1:Sometimes we need the shorter pre�x-code E2(x),E2(x) = l(x)x;l(E2(x)) = l(x) + 2l(l(x)) + 1:We call �x the self-delimiting version of the binary string x. Now we cane�ectively recover both x and y unambiguously from the binary string�xy. If �xy = 111011011, then x = 110 and y = 11. If �x�y = 1110110101then x = 110 and y = 1.Example 1.4.1 It is convenient to consider also the set of one-way in�nite sequencesB1. If ! is an element of B1, then ! = !1!2 : : : and !1:n = !1!2 : : : !n.The set of in�nite sequences of elements in a �nite, nonempty basic setB corresponds with the set R of real numbers in the following way:



14 1. Preliminaries Let B = f0; 1; : : : ; k � 1g with k � 2. If r is a real number 0 < r < 1then there is a sequence !1!2 : : : of elements !n 2 B such thatr =Xn !n=kn;and that sequence is unique except when r is of the form q=kn, in whichcase there are exactly two such sequences, one of which has in�nitelymany 0's. Conversely, if !1!2 : : : is an in�nite sequence of integers with0 � !n < k, then the seriesXn !n=knconverges to a real number r with 0 � r � 1. This sequence is called thek-ary expansion of r. In the following we identify a real number r withits k-ary expansion (if there are two k-ary expansions, then we identifyr with the expansion with in�nitely many 0's).De�ne the set S � B1 as the set of sequences that do not end within�nitely many digits \k�1." Then, S is in one-to-one relation with theset of real numbers in the interval [0; 1).Let x be a �nite string over B. The set of all one-way in�nite sequencesstarting with x is called a cylinder and is denoted by �x and is de�nedby �x = f! : !1:l(x) = xg. Geometrically speaking, the cylinder �x canbe identi�ed with the half-open interval [0:x; 0:x + 2�l(x)) in the realinterval [0; 1). Observe that the usual geometric length of interval �xequals 2�l(x). Furthermore, �y � �x i� x is a pre�x of y. The pre�xrelation induces a partial order on the cylinders of B1. 3Exercises 1.4.1. [03] If �x�yz = 10010111, what are x; y; z in decimal numbers?Comments. 1; 2; 6.1.4.2. [07] Show that for x 2 N we have l(x) = blog(x+ 1)c.1.4.3. [10] Let E : N ! f0; 1g� be a total one-to-one function whoserange is pre�x-free. E de�nes a pre�x-code. De�ne the mapping h�i :N �N ! N by hx; yi = E(x)y.(a) Show that h�i is total and one-to-one.(b) Show that we can extend this scheme to k-tuples (n1; n2; : : : ; nk) ofnatural numbers to obtain a total one-to-one mapping from N � N �� � � � N into N .Comments. De�ne the mapping for (x; y; z) as hx; hy; zii, and iterate thisconstruction.



1.5. Asymptotic Notation 151.4.4. [10] Let E be as above. De�ne the mapping h�i : N �N ! Nby hx; yi = E(x)E(y).(a) Show that h�i is a total one-to-one mapping and a pre�x-code.(b) Show that we can extend this scheme to k-tuples (n1; n2; : : : ; nk) ofnatural numbers to obtain a total one-to-one mapping from N � N �� � � � N into N that is a pre�x-code.Comments. De�ne the mapping for (x; y; z) as hx; hy; zii and iterate thisconstruction. Another way is to map (x; y; : : : ; z) to E(x)E(y) : : : E(z).1.4.5. [10] (a) Show that E(x) = �x is a pre�x-code.(b) Consider a variant of the �x code such that x = x1x2 : : : xn is encodedas x11x21 : : : 1xn�11xn0. Show that this is a pre�x-code for the binarynonempty strings with l(�x) = 2l(x).(c) Consider x = x1x2 : : : xn encoded as x1x1x2x2 : : : xn�1xn�1xn:xn.Show that this is a pre�x-code for the nonempty binary strings.(d) Give a pre�x-code ~x for the set of all binary strings x including �,such that l(~x) = 2l(x) + 2.1.5AsymptoticNotation It is often convenient to express approximate equality or inequality ofone quantity with another. If f and g are functions of a real variable,then it is customary to denote limn!1 f(n)=g(n) = 1 by f(n) � g(n),and we write \f goes asymptotically to g."P. Bachman introduced a convenient notation for dealing with approx-imations in his book Analytische Zahlentheorie in 1892. This \big-O"notation allows us to write l(x) = logx + O(1) (no subscript on thelogarithm means base 2).We use the notation O(f(n)) whenever we want to denote a quantitythat does not exceed f(n) by more than a �xed multiplicative factor.This is useful in case we want to simplify the expression involving thisquantity by suppressing unnecessary detail, but also in case we do notknow this quantity explicitly. Bachman's notation is the �rst of a familyof order of magnitude symbols: O; o;
, and �. If f and g are functionson the real numbers, then1. f(x) = O(g(x)) if there are constants c; x0 > 0 such that jf(x)j �cjg(x)j, for all x � x0;2. f(x) = o(g(x)) if limx!1 f(x)=g(x) = 0;3. f(x) = 
(g(x)) if f(x) 6= o(g(x)); and


