Preface to the
First Edition

We are to admit no more causes of natural things (as we are told by
Newton) than such as are both true and sufficient to explain their ap-
pearances. This central theme is basic to the pursuit of science, and
goes back to the principle known as Occam’s razor: “if presented with
a choice between indifferent alternatives, then one ought to select the
simplest one.” Unconsciously or explicitly, informal applications of this
principle in science and mathematics abound.

The conglomerate of different research threads drawing on an objec-
tive and absolute form of this approach appears to be part of a single
emerging discipline, which will become a major applied science like in-
formation theory or probability theory. We aim at providing a unified
and comprehensive introduction to the central ideas and applications of
this discipline.

Intuitively, the amount of information in a finite string is the size (num-
ber of binary digits, or bits) of the shortest program that without ad-
ditional data, computes the string and terminates. A similar definition
can be given for infinite strings, but in this case the program produces
element after element forever. Thus, a long sequence of 1’s such as

11111...1
—_————

10,000 times

contains little information because a program of size about log 10, 000
bits outputs it:

for 7:=1 to 10,000
print 1

Likewise, the transcendental number 7 = 3.1415. .., an infinite sequence
of seemingly “random” decimal digits, contains but a few bits of infor-
mation. (There is a short program that produces the consecutive digits
of 7 forever.) Such a definition would appear to make the amount of
information in a string (or other object) depend on the particular pro-
gramming language used.

Fortunately, it can be shown that all reasonable choices of programming
languages lead to quantification of the amount of “absolute” information
in individual objects that is invariant up to an additive constant. We call
this quantity the “Kolmogorov complexity” of the object. If an object
contains regularities, then it has a shorter description than itself. We
call such an object “compressible.”

The application of Kolmogorov complexity takes a variety of forms, for
example, using the fact that some strings are extremely compressible;
using the compressibility of strings as a selection criterion; using the fact
that many strings are not compressible at all; and using the fact that
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some strings may be compressed, but that it takes a lot of effort to do
so.

The theory dealing with the quantity of information in individual ob-
jects goes by names such as “algorithmic information theory,” “Kol-
mogorov complexity,” “K-complexity,” “Kolmogorov-Chaitin random-
ness,” “algorithmic complexity,” “stochastic complexity,” “descriptional
complexity,” “minimum description length,” “program-size complexity,”
and others. Each such name may represent a variation of the basic un-
derlying idea or a different point of departure. The mathematical formu-
lation in each case tends to reflect the particular traditions of the field
that gave birth to it, be it probability theory, information theory, theory
of computing, statistics, or artificial intelligence.

7w

This raises the question about the proper name for the area. Although
there is a good case to be made for each of the alternatives listed above,
and a name like “Solomonoff-Kolmogorov-Chaitin complexity” would
give proper credit to the inventors, we regard “Kolmogorov complex-
ity” as well entrenched and commonly understood, and we shall use it
hereafter.

The mathematical theory of Kolmogorov complexity contains deep and
sophisticated mathematics. Yet one needs to know only a small amount
of this mathematics to apply the notions fruitfully in widely divergent
areas, from sorting algorithms to combinatorial theory, and from induc-
tive reasoning and machine learning to dissipationless computing.

Formal knowledge of basic principles does not necessarily imply the
wherewithal to apply it, perhaps especially so in the case of Kolmogorov
complexity. It is our purpose to develop the theory in detail and outline
a wide range of illustrative applications. In fact, while the pure theory of
the subject will have its appeal to the select few, the surprisingly large
field of its applications will, we hope, delight the multitude.

The mathematical theory of Kolmogorov complexity is treated in Chap-
ters 2, 3, and 4; the applications are treated in Chapters 5 through 8.
Chapter 1 can be skipped by the reader who wants to proceed immedi-
ately to the technicalities. Section 1.1 is meant as a leisurely, informal
introduction and peek at the contents of the book. The remainder of
Chapter 1 is a compilation of material on diverse notations and disci-
plines drawn upon.

We define mathematical notions and establish uniform notation to be
used throughout. In some cases we choose nonstandard notation since
the standard one is homonymous. For instance, the notions “absolute
value,” “cardinality of a set,” and “length of a string,” are commonly
denoted in the same way as | - |. We choose distinguishing notations | - |,
d(-), and I(+), respectively.
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Briefly, we review the basic elements of computability theory and prob-
ability theory that are required. Finally, in order to place the subject
in the appropriate historical and conceptual context we trace the main
roots of Kolmogorov complexity.

This way the stage is set for Chapters 2 and 3, where we introduce the
notion of optimal effective descriptions of objects. The length of such a
description (or the number of bits of information in it) is its Kolmogorov
complexity. We treat all aspects of the elementary mathematical theory
of Kolmogorov complexity. This body of knowledge may be called algo-
rithmic complexity theory. The theory of Martin-Lof tests for random-
ness of finite objects and infinite sequences is inextricably intertwined
with the theory of Kolmogorov complexity and is completely treated.
We also investigate the statistical properties of finite strings with high
Kolmogorov complexity. Both of these topics are eminently useful in
the applications part of the book. We also investigate the recursion-
theoretic properties of Kolmogorov complexity (relations with Gédel’s
incompleteness result), and the Kolmogorov complexity version of infor-
mation theory, which we may call “algorithmic information theory” or
“absolute information theory.”

The treatment of algorithmic probability theory in Chapter 4 presup-
poses Sections 1.6, 1.11.2, and Chapter 3 (at least Sections 3.1 through
3.4). Just as Chapters 2 and 3 deal with the optimal effective description
length of objects, we now turn to optimal (greatest) effective probabil-
ity of objects. We treat the elementary mathematical theory in detail.
Subsequently, we develop the theory of effective randomness tests under
arbitrary recursive distributions for both finite and infinite sequences.
This leads to several classes of randomness tests, each of which has a
universal randomness test. This is the basis for the treatment of a math-
ematical theory of inductive reasoning in Chapter 5 and the theory of
algorithmic entropy in Chapter 8.

Chapter 5 develops a general theory of inductive reasoning and ap-
plies the developed notions to particular problems of inductive infer-
ence, prediction, mistake bounds, computational learning theory, and
minimum description length induction in statistics. This development
can be viewed both as a resolution of certain problems in philosophy
about the concept and feasibility of induction (and the ambiguous no-
tion of “Occam’s razor”), as well as a mathematical theory underlying
computational machine learning and statistical reasoning.

Chapter 6 introduces the incompressibility method. Its utility is demon-
strated in a plethora of examples of proving mathematical and com-
putational results. Examples include combinatorial properties, the time
complexity of computations, the average-case analysis of algorithms such
as Heapsort, language recognition, string matching, “pumping lemmas”
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in formal language theory, lower bounds in parallel computation, and
Turing machine complexity. Chapter 6 assumes only the most basic no-
tions and facts of Sections 2.1, 2.2, 3.1, 3.3.

Some parts of the treatment of resource-bounded Kolmogorov com-
plexity and its many applications in computational complexity theory
in Chapter 7 presuppose familiarity with a first-year graduate theory
course in computer science or basic understanding of the material in
Section 1.7.4. Sections 7.5 and 7.7 on “universal optimal search” and
“logical depth” only require material covered in this book. The section
on “logical depth” is technical and can be viewed as a mathematical basis
with which to study the emergence of life-like phenomena thus form-
ing a bridge to Chapter 8, which deals with applications of Kolmogorov
complexity to relations between physics and computation.

Chapter 8 presupposes parts of Chapters 2, 3, 4, the basics of information
theory as given in Section 1.11, and some familiarity with college physics.
It treats physical theories like dissipationless reversible computing, in-
formation distance and picture similarity, thermodynamics of computa-
tion, statistical thermodynamics, entropy, and chaos from a Kolmogorov
complexity point of view. At the end of the book there is a comprehen-
sive listing of the literature on theory and applications of Kolmogorov
complexity and a detailed index.

The technical content of this book consists of four layers. The main
text is the first layer. The second layer consists of examples in the main
text. These elaborate the theory developed from the main theorems. The
third layer consists of nonindented, smaller-font paragraphs interspersed
with the main text. The purpose of such paragraphs is to have an ex-
planatory aside, to raise some technical issues that are important but
would distract attention from the main narrative, or to point to alter-
native or related technical issues. Much of the technical content of the
literature on Kolmogorov complexity and related issues appears in the
fourth layer, the exercises. When the idea behind a nontrivial exercise is
not our own, we have tried to give credit to the person who originated
the idea. Corresponding references to the literature are usually given in
comments to an exercise or in the historical section of that chapter.

Starred sections are not really required for the understanding of the se-
quel and should be omitted at first reading. The application sections are
not starred. The exercises are grouped together at the end of main sec-
tions. Each group relates to the material in between it and the previous
group. Each chapter is concluded by an extensive historical section with
full references. For convenience, all references in the text to the Kol-
mogorov complexity literature and other relevant literature are given in
full were they occur. The book concludes with a References section in-
tended as a separate exhaustive listing of the literature restricted to the
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theory and the direct applications of Kolmogorov complexity. There are
reference items that do not occur in the text and text references that do
not occur in the References. We added a very detailed index combining
the index to notation, the name index, and the concept index. The page
number where a notion is defined first is printed in boldface. The initial
part of the Index is an index to notation. Names as “J. von Neumann”
are indexed European style “Neumann, J. von.”

The exercises are sometimes trivial, sometimes genuine exercises, but
more often compilations of entire research papers or even well-known
open problems. There are good arguments to include both: the easy
and real exercises to let the student exercise his comprehension of the
material in the main text; the contents of research papers to have a com-
prehensive coverage of the field in a small number of pages; and research
problems to show where the field is (or could be) heading. To save the
reader the problem of having to determine which is which: “I found this
simple exercise in number theory that looked like Pythagoras’s Theorem.
Seems difficult.” “Oh, that is Fermat’s Last Theorem; it was unsolved
for three hundred and fifty years...,” we have adopted the system of rat-
ing numbers used by D.E. Knuth [The Art of Computer Programming,
Vol. 1: Fundamental Algorithms, Addison-Wesley, 1973 (2nd Edition),
pp. xvii—xix]. The interpretation is as follows:

00 A very easy exercise that can be answered immediately, from the
top of your head, if the material in the text is understood.

10 A simple problem to exercise understanding of the text. Use fifteen
minutes to think, and possibly pencil and paper.

20 An average problem to test basic understanding of the text and
may take one or two hours to answer completely.

30 A moderately difficult or complex problem taking perhaps several
hours to a day to solve satisfactorily.

40 A quite difficult or lengthy problem, suitable for a term project,
often a significant result in the research literature. We would expect
a very bright student or researcher to be able to solve the problem
in a reasonable amount of time, but the solution is not trivial.

50 A research problem that, to the authors’ knowledge, is open at the
time of writing. If the reader has found a solution, he is urged to
write it up for publication; furthermore, the authors of this book
would appreciate hearing about the solution as soon as possible
(provided it is correct).

This scale is “logarithmic”: a problem of rating 17 is a bit simpler than
average. Problems with rating 50, subsequently solved, will appear in
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a next edition of this book with rating 45. Rates are sometimes based
on the use of solutions to earlier problems. The rating of an exercise is
based on that of its most difficult item, but not on the number of items.
Assigning accurate rating numbers is impossible—one man’s meat is
another man’s poison—and our rating will differ from ratings by others.

An orthogonal rating “M” implies that the problem involves more math-
ematical concepts and motivation than is necessary for someone who is
primarily interested in Kolmogorov complexity and applications. Exer-
cises marked “HM” require the use of calculus or other higher mathe-
matics not developed in this book. Some exercises are marked with “e”;
and these are especially instructive or useful. Exercises marked “O” are
problems that are, to our knowledge, unsolved at the time of writing.
The rating of such exercises is based on our estimate of the difficulty of
solving them. Obviously, such an estimate may be totally wrong.

Solutions to exercises, or references to the literature where such solutions
can be found, appear in the “Comments” paragraph at the end of each
exercise. Nobody is expected to be able to solve all exercises.

The material presented in this book draws on work that until now was
available only in the form of advanced research publications, possibly not
translated into English, or was unpublished. A large portion of the ma-
terial is new. The book is appropriate for either a one- or a two-semester
introductory course in departments of mathematics, computer science,
physics, probability theory and statistics, artificial intelligence, cognitive
science, and philosophy. Outlines of possible one-semester courses that
can be taught using this book are presented below.

Fortunately, the field of descriptional complexity is fairly young and
the basics can still be comprehensively covered. We have tried to the
best of our abilities to read, digest, and verify the literature on the
topics covered in this book. We have taken pains to establish correctly
the history of the main ideas involved. We apologize to those who have
been unintentionally slighted in the historical sections. Many people have
generously and selflessly contributed to verify and correct drafts of this
book. We thank them below and apologize to those we forgot. In a
work of this scope and size there are bound to remain factual errors
and incorrect attributions. We greatly appreciate notification of errors
or any other comments the reader may have, preferably by email to
kolmogorov@cwi.nl, in order that future editions may be corrected.

We thank Greg Chaitin, Péter Gacs, Leonid Levin, and Ray Solomonoff
for taking the time to tell us about the early history of our subject and
for introducing us to many of its applications. Juris Hartmanis and Joel
Seiferas initiated us into Kolmogorov complexity in various ways.
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Many people gave substantial suggestions for examples and exercises,
or pointed out errors in a draft version. Apart from the people already
mentioned, these are, in alphabetical order, Eric Allender, Charles Ben-
nett, Piotr Berman, Robert Black, Ron Book, Dany Breslauer, Harry
Buhrman, Peter van Emde Boas, William Gasarch, Joe Halpern, Jan
Heering, G. Hotz, Tao Jiang, Max Kanovich, Danny Krizanc, Evange-
los Kranakis, Michiel van Lambalgen, Luc Longpré, Donald Loveland,
Albert Meyer, Lambert Meertens, Ilan Munro, Pekka Orponen, Ramamo-
han Paturi, Jorma Rissanen, Jeff Shallit, A.Kh. Shen’, J. Laurie Snell,
Th. Tsantilas, John Tromp, Vladimir Uspensky, N.K. Vereshchagin, Os-
amu Watanabe, and Yaacov Yesha. Apart from them, we thank the many
students and colleagues who contributed to this book.

We especially thank Péter Gécs for the extraordinary kindness of read-
ing and commenting in detail on the entire manuscript, including the
exercises. His expert advice and deep insight saved us from many pit-
falls and misunderstandings. Piergiorgio Odifreddi carefully checked and
commented on the first three chapters. Parts of the book have been
tested in one-semester courses and seminars at the University of Ams-
terdam in 1988 and 1989, the University of Waterloo in 1989, Dartmouth
College in 1990, the Universitat Polytecnica de Catalunya in Barcelona
in 1991/1992, the University of California at Santa Barbara, Johns Hop-
kins University, and Boston University in 1992/1993.

This document has been prepared using the IATEX system. We thank
Donald Knuth for TEX, Leslie Lamport for INTX, and Jan van der Steen
at CWT for online help. Some figures were prepared by John Tromp using
the xpic program.

The London Mathematical Society kindly gave permission to reproduce
a long extract by A.M. Turing. The Indian Statistical Institute, through
the editor of Sankhya, kindly gave permission to quote A.N. Kolmogorov.

We gratefully acknowledge the financial support by NSF Grant DCR-
8606366, ONR Grant N00014-85-k-0445, ARO Grant DAALO03-86-K-
0171, the Natural Sciences and Engineering Research Council of Canada
through operating grants OGP-0036747, OGP-046506, and International
Scientific Exchange Awards ISE0046203, ISE0125663, and NWO Grant
NF 62-376. The book was conceived in late Spring 1986 in the Valley of
the Moon in Sonoma County, California. The actual writing lasted on
and off from autumn 1987 until summer 1993.

One of us [PV] gives very special thanks to his lovely wife Pauline
for insisting from the outset on the significance of this enterprise. The
Aiken Computation Laboratory of Harvard University, Cambridge, Mas-
sachusetts, USA; the Computer Science Department of York University,
Ontario, Canada; the Computer Science Department of the University
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of Waterloo, Ontario, Canada; and CWI, Amsterdam, the Netherlands
provided the working environments in which this book could be written.

When this book was conceived ten years ago, few scientists realized
the width of scope and the power for applicability of the central ideas.
Partially because of the enthusiastic reception of the first edition, open
problems have been solved and new applications have been developed.
We have added new material on the relation between data compression
and minimum description length induction, computational learning, and
universal prediction; circuit theory; distributed algorithmics; instance
complexity; CD compression; computational complexity; Kolmogorov
random graphs; shortest encoding of routing tables in communication
networks; computable universal distributions; average case properties;
the equality of statistical entropy and expected Kolmogorov complexity;
and so on. Apart from being used by researchers and as reference work,
the book is now commonly used for graduate courses and seminars. In
recognition of this fact, the second edition has been produced in text-
book style. We have preserved as much as possible the ordering of the
material as it was in the first edition. The many exercises bunched to-
gether at the ends of some chapters have been moved to the appropriate
sections. The comprehensive bibliography on Kolmogorov complexity at
the end of the book has been updated, as have the “History and Ref-
erences” sections of the chapters. Many readers were kind enough to
express their appreciation for the first edition and to send notification of
typos, errors, and comments. Their number is too large to thank them
individually, so we thank them all collectively.

We have mapped out a number of one-semester courses on a variety of
topics. These topics range from basic courses in theory and applications
to special interest courses in learning theory, randomness, or information
theory using the Kolmogorov complexity approach.

PREREQUISITES: Sections 1.1, 1.2, 1.7 (except Section 1.7.4).

| Type OF COMPLEXITY | TuEORY | ApPLICATIONS |
plain complexity 2.1, 2.2, 2.3 | 4.4, Chapter 6
prefix complexity 1.11.2, 3.1 5.1, 5.1.3, 5.2, 5.5
3.3,34 8.2,8.38
resource-bounded complexity | 7.1, 7.5, 7.7 | 7.2, 7.3, 7.6, 7.7
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[I. Course on
Algorithmic
Complexity

[11. Course on
Algorithmic
Randomness

V. Course on
Algorithmic
Information
Theory and
Applications

V. Course on
Algorithmic
Probability
Theory,
Learning,
Inference and
Prediction

TypE oF COMPLEXITY | BASICS RANDOMNESS | ALGORITHMIC
PROPERTIES
state x symbol 1.12
plain complexity 21,2223 | 24 2.7
prefix complexity 1.11.2, 3.1 3.5 3.7, 3.8
3.3,34
monotone complexity 4.5 (intro) 4.5.4
RANDOMNESS TESTS | COMPLEXITY FINITE INFINITE
ACCORDING TO USED STRINGS | SEQUENCES
von Mises 1.9
Martin-Lof 2.1, 2.2 24 2.5
prefix complexity 1.11.2, 3.1, 3.3,34 | 3.5 3.6, 4.5.6
general discrete 1.6 (intro), 4.3.1 4.3
general continuous 1.6 (intro), 4.5
4.5 (intro), 4.5.1
TyPE OF COMPLEXITY | BASICS ENTROPY | SYMMETRY OF
USsED INFORMATION
classical 1.11 1.11 1.11
information theory
plain complexity 2.1, 2.2 2.8 2.8
prefix complexity 3.1, 3.3, 3.4 3.8, 3.9.1
resource-bounded 7.1 Exercises 7.1.11
7.1.12

applications 8.1, 8.4, Theorem 7.2.6

8.5 Exercise 6.10.15
THEORY Basics UNIVERSAL APPLICATIONS

DISTRIBUTION TO INFERENCE

classical 1.6, 1.11.2 1.6
probability
algorithmic 2.1,2.2,23 8
complexity 3.1, 3.3, 34
algorithmic discrete | 4.2, 4.1 4.3.1,4.3.2
probability 4.3 (intro) 4.3.3,4.3.4, 4.3.6
algorithmic contin. | 4.5 (intro) 45.1,4.5.2 5.2
probability 4.5.4, 4.5.8
Solomonoff’s 5.1,5.1.3,5.2 | 5.3,5.4.3, 5.5 5.1.3
inductive inference 5.4, 8 5.5.8
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VI. Course on
the

Incompressibility
Method

VII. Course on
Randomness,
Information, and
Physics

Chapter 2 (Sections 2.1, 2.2, 2.4, 2.6, 2.8), Chapter 3 (mainly Sec-
tions 3.1, 3.3), Section 4.4, and Chapters 6 and 7. The course covers
the basics of the theory with many applications in proving upper and
lower bounds on the running time and space use of algorithms.

Course IIT and Chapter 8. In physics the applications of Kolmogorov
complexity include theoretical illuminations of foundational issues. For
example, the approximate equality of statistical entropy and expected
Kolmogorov complexity, the nature of “entropy,” a fundamental resolu-
tion of the “Maxwell’s Demon” paradox. However, also more concrete
applications like “information distance” and “thermodynamics of com-
putation” are covered.



Contents

Preface to the First Edition . . . . . ... .. ... ... .... v
How to Use This Book . . .. ... ... .. .. ..... viii
Acknowledgments . . . . ... oL Lo X

Preface to the Second Edition . . . ... ... .. ... .... xii

Outlines of One-Semester Courses . . . . . . .. ... ..... xii

List of Figures . . . . . . . . . ... ... ... . Xix

Preliminaries 1

1.1 A Brief Introduction . . . . . . ... ... L. 1

1.2 Prerequisites and Notation . . . . . .. .. ... .. ... 6

1.3 Numbers and Combinatorics . . . . . ... ... .. ... 8

1.4 Binary Strings . . . . .. ... o 12

1.5 Asymptotic Notation . . ... ... .. .. ... ..... 15

1.6 Basics of Probability Theory . . . . . ... ... ..... 18

1.7 Basics of Computability Theory . . . ... ... ..... 24

1.8 The Roots of Kolmogorov Complexity . . . . .. .. ... 47

1.9 Randommness . .. ... ... ... ... ... 49

1.10 Prediction and Probability . . ... .. ... ... .... 99

1.11 Information Theory and Coding . . . . .. ... ... .. 65

1.12 State x Symbol Complexity . . .. .. .. ... ..... 84

1.13 History and References . . . . . ... ... ... ..... 86



Xvi

Contents

2 Algorithmic Complexity 93
2.1 The Invariance Theorem . . . . ... ... .. ... ... 96
2.2 Incompressibility . . . . . ... ..o 108
2.3 C as an Integer Function . . . . ... ... .. ... ... 119
2.4 Random Finite Sequences . . . . . . ... ... ... ... 127
2.5 *Random Infinite Sequences . . . . ... ... ... ... 136
2.6 Statistical Properties of Finite Sequences . . . . . .. .. 158
2.7 Algorithmic Propertiesof C' . . . . . ... ... .. ... 167
2.8 Algorithmic Information Theory . . . . . ... ... ... 179
2.9 History and References . . . . .. ... ... ... .... 185

3 Algorithmic Prefix Complexity 189
3.1 The Invariance Theorem . . . . ... ... ... ..... 192
3.2 *Sizes of the Constants . . . . . . . ... ... .. .... 197
3.3 Incompressibility . . . . ... ... .0 oL 202
3.4 K as an Integer Function . . . . .. .. .. ... .. ... 206
3.5 Random Finite Sequences . . . . . .. ... ... ..... 208
3.6 *Random Infinite Sequences . . . . .. ... ....... 211
3.7 Algorithmic Propertiesof K . . . . ... ... ... ... 224
3.8 *Complexity of Complexity . . . . . . ... .. ... ... 226
3.9 *Symmetry of Algorithmic Information . . . . . ... .. 229
3.10 History and References . . . . ... ... .. ... .... 237

4 Algorithmic Probability 239
4.1 Enumerable Functions Revisited . . . . . . ... ... .. 240
4.2 Nonclassical Notation of Measures . . . . . . .. ... .. 242
4.3 Discrete Sample Space . . . . . . .. ... ... L. 245
4.4 Universal Average-Case Complexity . . . . ... ... .. 268
4.5 Continuous Sample Space . . . . . . ... ... L. 272
4.6 Universal Average-Case Complexity, Continued . . . . . . 307
4.7 History and References . . . . ... ... ... ... 307



Contents xvii

5 Inductive Reasoning 315
5.1 Imtroduction . . . . ... ... .. ... . 315
5.2 Solomonoff’s Theory of Prediction . . . . ... ... ... 324
5.3 Universal Recursion Induction . . . . ... ... ... .. 335
5.4 Simple Pac-Learning . . . . . . .. .. ... ... ... 339
5.5 Hypothesis Identification by Minimum Description Length 351
5.6 History and References . . . . .. ... ... ....... 372

6 The Incompressibility Method 379
6.1 Three Examples . . . . . . . .. .. ... 0. 380
6.2 High- Probability Properties . . . . ... . ... ... .. 385
6.3 Combinatorics . . . . . ... ... Lo 389
6.4 Kolmogorov Random Graphs . . . . . ... ... ... .. 396
6.5 Compact Routing . . . . ... ... ... ... .... 404
6.6 Average-Case Complexity of Heapsort . . . .. . ... .. 412
6.7 Longest Common Subsequence . . . . ... ... ..... 417
6.8 Formal Language Theory . . . . .. .. ... .. .. ... 420
6.9 Online CFL Recognition . . . .. ... ... .. ..... 427
6.10 Turing Machine Time Complexity . . . . . ... ... .. 432
6.11 Parallel Computation . . . .. ... ... .. ... .... 445
6.12 Switching Lemma . . . . .. . .. ... oL 449
6.13 History and References . . . . ... ... ... ... ... 452

7 Resource-Bounded Complexity 459
7.1 Mathematical Theory . . . . . .. ... ... ... .... 460
7.2 Language Compression . . . . ... ... ... ...... 476
7.3 Computational Complexity . . . . . ... ... ... ... 488
7.4 TInstance Complexity . . . . . . ... ... .. ... ..., 495
7.5 Kt Complexity and Universal Optimal Search . . . . . . . 502
7.6 Time-Limited Universal Distributions . . . . . . ... .. 506
7.7 Logical Depth . . . . . ... ... ... .. ........ 510
7.8 History and References . . . . .. ... ... ... .... 516



xviii

Contents

8 Physics, Information, and Computation

8.1 Algorithmic Complexity and Shannon’s Entropy . . . . .

8.2 Reversible Computation . . . . . ... ... ... .....

8.3 Information Distance
8.4 Thermodynamics . . .
8.5 Entropy Revisited . .
8.6 Compression in Nature

8.7 History and References

References

Index

521
522
928
537
954
965
o83
286

591

618



List of Figures

1.1
1.2
1.3

1.4

2.1
2.2
2.3
2.4

2.5

3.1
3.2
3.3
3.4
3.5

4.1

Turing machine . . . . .. .. ... .. ... ... ... 28
Inferred probability for increasingn . . . . . .. .. ... 60
Binary tree for E(1) =0, E(2) = 10, E(3) = 110, E(4) =

I 72
Binary tree for E(1) =0, E(2) =01, E(3) =011, E(4) =

0111 .« . o 73
The graph of the integer function C'(z) . . ... ... .. 121
The graph of the integer function C(z|l(z)) . . . . . . .. 123
Test of Example 2.4.1 . . . . . ... .. ... ... .... 128
Complexity oscillations of initial segments of infinite high-

complexity sequences . . . . . . .. ... ... 139
Three notions of “chaotic” infinite sequences . . . . . . . 148
The 425-bit universal combinator U’ in pixels . . . . . . . 201
The graphs of K(z) and K(z|l(z)) . . . .. .. ... ... 207

Complexity oscillations of a typical random sequence w . 215
K-complexity criteria for randomness of infinite sequences 215

Complexity oscillationsof Q@ . . . . .. .. ... ... .. 216

Graph of m(z) with lower bound 1/z -logz -loglogz--- 249



XX

List of Figures

4.2

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

8.1
8.2
8.3
8.4
8.5

8.6

8.7
8.8
8.9
8.10
8.11
8.12

8.13
8.14
8.15
8.16

Relations between five complexities . . . . . .. ... .. 285
Trivial consistent automaton . . . . . . .. ... .. ... 317
Smallest consistent automaton . . . . . ... .. ... .. 317
Sample dataset . . .. ... . ... ... ... ... 365
Imperfect decision tree . . . . ... .. .. ... ..... 366
Perfect decision tree . . . . . . ... ... L. 367
Single-tape Turing machine . . . . . . ... ... .. ... 381

The two possible nni’s on (u,v): swap B <> C or B+ D 416

The nni distance between (i) and (i) is2 . .. ... ... 416
Multitape Turing machine . . . ... ... ... .. ... 428
Reversible Boolean gates . . . . .. .. ... ... .... 930
Implementing reversible AND gate and NOT gate . . . . 531
Controlling billiard ball movements . . . . ... ... .. 532
A billiard ball computer . . . . . . . ... ... ... 533

Combining irreversible computations of y from z and =z
from y to achieve a reversible computation of y from =z . 543

Reversible execution of concatenated programs for (y|z)

and (z|y) to transform z into z . . . . ... ... L. 545
Carnot cycle . . . . . . .. ..o 955
Heat engine . . . . . .. .. .. ... .. L. 956
State space . . . . . .. ..o 559
Atomic spin in CuQO, at low temperature . . . . .. ... 562
Regular “up” and “down” spins . . . ... ... ... .. 563
Algorithmic entropy: left a random micro state, right a

regular microstate . . . . . .. ..o 567
Szilard engine . . . . ... L oL o 568
Adiabatic demagnetization to achieve low temperature . 583
The maze: a binary tree constructed from matches . . . . 584

Time required for Formica sanguinea scouts to transmit
information about the direction to the syrup to the for-
agerants . . . . ... Lo Lo 5985



Preliminaries

1.1
A Brief
Introduction

Suppose we want to describe a given object by a finite binary string. We
do not care whether the object has many descriptions; however, each
description should describe but one object. From among all descriptions
of an object we can take the length of the shortest description as a mea-
sure of the object’s complexity. It is natural to call an object “simple”
if it has at least one short description, and to call it “complex” if all of
its descriptions are long.

But now we are in danger of falling into the trap so eloquently described
in the Richard-Berry paradox, where we define a natural number as
“the least natural number that cannot be described in less than twenty
words.” If this number does exist, we have just described it in thirteen
words, contradicting its definitional statement. If such a number does not
exist, then all natural numbers can be described in fewer than twenty
words. We need to look very carefully at the notion of “description.”

Assume that each description describes at most one object. That is,
there is a specification method D that associates at most one object
z with a description y. This means that D is a function from the set
of descriptions, say Y, into the set of objects, say X. It seems also
reasonable to require that for each object x in X, there is a description
y in Y such that D(y) = x. (Each object has a description.) To make
descriptions useful we like them to be finite. This means that there are
only countably many descriptions. Since there is a description for each
object, there are also only countably many describable objects. How do
we measure the complexity of descriptions?
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Taking our cue from the theory of computation, we express descriptions
as finite sequences of 0’s and 1’s. In communication technology, if the
specification method D is known to both a sender and a receiver, then
a message x can be transmitted from sender to receiver by transmitting
the sequence of 0’s and 1’s of a description y with D(y) = x. The cost of
this transmission is measured by the number of occurrences of 0’s and
1’s in y, that is, by the length of y. The least cost of transmission of z
is given by the length of a shortest y such that D(y) = z. We choose
this least cost of transmission as the descriptional complexity of z under
specification method D.

Obviously, this descriptional complexity of z depends crucially on D.
The general principle involved is that the syntactic framework of the
description language determines the succinctness of description.

In order to objectively compare descriptional complexities of objects, to
be able to say “z is more complex than z,” the descriptional complexity
of x should depend on z alone. This complexity can be viewed as related
to a universal description method that is a priori assumed by all senders
and receivers. This complexity is optimal if no other description method
assigns a lower complexity to any object.

We are not really interested in optimality with respect to all description
methods. For specifications to be useful at all it is necessary that the
mapping from y to D(y) can be executed in an effective manner. That
is, it can at least in principle be performed by humans or machines.
This notion has been formalized as that of “partial recursive functions.”
According to generally accepted mathematical viewpoints it coincides
with the intuitive notion of effective computation.

The set of partial recursive functions contains an optimal function that
minimizes description length of every other such function. We denote
this function by Dy. Namely, for any other recursive function D, for all
objects x, there is a description y of x under Dy that is shorter than any
description z of x under D. (That is, shorter up to an additive constant
that is independent of z.) Complexity with respect to Dy minorizes the
complexities with respect to all partial recursive functions.

We identify the length of the description of = with respect to a fixed spec-
ification function Dy with the “algorithmic (descriptional) complexity”
of x. The optimality of Dg in the sense above means that the complexity
of an object z is invariant (up to an additive constant independent of x)
under transition from one optimal specification function to another. Its
complexity is an objective attribute of the described object alone: it is an
intrinsic property of that object, and it does not depend on the descrip-
tion formalism. This complexity can be viewed as “absolute information
content”: the amount of information that needs to be transmitted be-
tween all senders and receivers when they communicate the message in
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Example 1.1.1

absence of any other a priori knowledge that restricts the domain of the
message.

Broadly speaking, this means that all description syntaxes that are pow-
erful enough to express the partial recursive functions are approximately
equally succinct. All algorithms can be expressed in each such program-
ming language equally succinctly, up to a fixed additive constant term.
The remarkable usefulness and inherent rightness of the theory of Kol-
mogorov complexity stems from this independence of the description
method.

Thus, we have outlined the program for a general theory of algorithmic
complexity. The four major innovations are as follows:

1. In restricting ourselves to formally effective descriptions, our defi-
nition covers every form of description that is intuitively acceptable
as being effective according to general viewpoints in mathematics
and logic.

2. The restriction to effective descriptions entails that there is a uni-
versal description method that minorizes the description length or
complexity with respect to any other effective description method.
This would not be the case if we considered, say, all noneffective
description methods. Significantly, this implies Item 3.

3. The description length or complexity of an object is an intrinsic
attribute of the object independent of the particular description
method or formalizations thereof.

4. The disturbing Richard-Berry paradox above does not disappear,
but resurfaces in the form of an alternative approach to proving
Kurt Godel’s (1906 1978) famous result that not every true math-
ematical statement is provable in mathematics.

(Godel’s incompleteness result) A formal system (consisting of def-
initions, axioms, rules of inference) is consistent if no statement that can
be expressed in the system can be proved to be both true and false in the
system. A formal system is sound if only true statements can be proved
to be true in the system. (Hence, a sound formal system is consistent.)

Let z be a finite binary string. We write “z is random” if the shortest
binary description of £ with respect to the optimal specification method
Dy has length at least . A simple counting argument shows that there
are random z’s of each length.

Fix any sound formal system F' in which we can express statements like
“z is random.” Suppose F' can be described in f bits—assume, for exam-
ple, that this is the number of bits used in the exhaustive description of
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F in the first chapter of the textbook Foundations of F. We claim that
for all but finitely many random strings =, the sentence “z is random”
is not provable in F. Assume the contrary. Then given F, we can start
to exhaustively search for a proof that some string of length n > f is
random, and print it when we find such a string z. This procedure to
print z of length n uses only logn + f bits of data, which is much less
than n. But z is random by the proof and the fact that F' is sound.
Hence, F' is not consistent, which is a contradiction. &

This shows that although most strings are random, it is impossible to
effectively prove them random. In a way, this explains why the incom-
pressibility method in Chapter 6 is so successful. We can argue about
a “typical” individual element, which is difficult or impossible by other
methods.

(Lower bounds) The secret of the successful use of descriptional com-
plexity arguments as a proof technique is due to a simple fact: the over-
whelming majority of strings have almost no computable regularities.
We have called such a string “random.” There is no shorter description
of such a string than the literal description: it is incompressible. Incom-
pressibility is a noneffective property in the sense of Example 1.1.1.

Traditional proofs often involve all instances of a problem in order to
conclude that some property holds for at least one instance. The proof
would be more simple, if only that one instance could have been used
in the first place. Unfortunately, that instance is hard or impossible to
find, and the proof has to involve all the instances. In contrast, in a
proof by the incompressibility method, we first choose a random (that
is, incompressible) individual object that is known to exist (even though
we cannot construct it). Then we show that if the assumed property did
not hold, then this object could be compressed, and hence it would not
be random. Let us give a simple example.

A prime number is a natural number that is not divisible by natural
numbers other than itself and 1. We prove that for infinitely many n,
the number of primes less than or equal to n is at least logn/loglogn.
The proof method is as follows. For each n, we construct a description
from which n can be effectively retrieved. This description will involve
the primes less than n. For some n this description must be long, which
shall give the desired result.

Assume that p, ps, ..., Pm is the list of all the primes less than n. Then,

n = pi‘p? . _pfr;n,
can be reconstructed from the vector of the exponents. Each exponent

is at most logn and can be represented by loglogn bits. The description
of n (given logn) can be given in mloglogn bits.
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It can be shown that each n that is random (given logn) cannot be
described in fewer than logn bits, whence the result follows. Can we do
better? This is slightly more complicated. Let I(z) denote the length of
the binary representation of . We shall show that for infinitely many n
of the form n = mlog® m, the number of distinct primes less than n is
at least m.

Firstly, we can describe any given integer N by E(m)N/py,, where E(m)
is a prefix-free encoding (page 71) of m, and p,, is the largest prime
dividing N. For random N, the length of this description, [(FE(m)) +
log N — log py,, must exceed log N. Therefore, logp,, < I(E(m)). It is
known (and easy) that we can set [(FE(m)) < logm + 2loglog m. Hence,
Pm < mlog® m. Setting n := mlog” m, and observing from our previous
result that p,, must grow with NV, we have proven our claim. The claim
is equivalent to the statement that for our special sequence of values
of n the number of primes less than n exceeds n/log®n. The idea of
connecting primality and prefix code-word length is due to P. Berman,
and the present proof is due to J. Tromp.

Chapter 6 introduces the incompressibility method. Its utility is demon-
strated in a variety of examples of proving mathematical and compu-
tational results. These include questions concerning the average case
analysis of algorithms (such as Heapsort), sequence analysis, average
case complexity in general, formal languages, combinatorics, time and
space complexity analysis of various sequential or parallel machine mod-
els, language recognition, and string matching. Other topics like the use
of resource-bounded Kolmogorov complexity in the analysis of compu-
tational complexity classes, the universal optimal search algorithm, and
“logical depth” are treated in Chapter 7. <

(Prediction) We are given an initial segment of an infinite sequence
of zeros and ones. Our task is to predict the next element in the se-
quence: zero or one? The set of possible sequences we are dealing with
constitutes the “sample space”; in this case, the set of one-way infinite
binary sequences. We assume some probability distribution g over the
sample space, where u(z) is the probability of the initial segment of a
sequence being z. Then the probability of the next bit being “0,” after
an initial segment z, is clearly u(0|z) = p(20)/u(z). This problem con-
stitutes, perhaps, the central task of inductive reasoning and artificial
intelligence. However, the problem of induction is that in general we do
not know the distribution u, preventing us from assessing the actual
probability. Hence, we have to use an estimate.

Now assume that p is computable. (This is not very restrictive, since any
distribution used in statistics is computable, provided the parameters are
computable.) We can use Kolmogorov complexity to give a very good
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1.2
Prerequisites
and Notation

estimate of p. This involves the so-called “universal distribution” M.
Roughly speaking, M(z) is close to 27!, where I is the length in bits
of the shortest effective description of z. Among other things, M has
the property that it assigns at least as high a probability to z as any
computable u (up to a multiplicative constant factor depending on p but
not on z). What is particularly important to prediction is the following:

Let S,, denote the u-expectation of the square of the error we make in es-
timating the probability of the nth symbol by M. Then it can be shown
that the sum )" S, is bounded by a constant. In other words, S,, con-
verges to zero faster than 1/n. Consequently, any actual (computable)
distribution can be estimated and predicted with great accuracy using
only the single universal distribution.

Chapter 5 develops a general theory of inductive reasoning and applies
the notions introduced to particular problems of inductive inference,
prediction, mistake bounds, computational learning theory, and mini-
mum description length induction methods in statistics. In particular,
it is demonstrated that data compression improves generalization and
prediction performance. <

The purpose of the remainder of this chapter is to define several concepts
we require, if not by way of introduction, then at least to establish
notation.

We usually deal with nonnegative integers, sets of nonnegative integers,
and mappings from nonnegative integers to nonnegative integers. A, B,
C,... denote sets. N, Z, Q, R denote the sets of nonnegative integers
(natural numbers including zero), integers, rational numbers, and real
numbers, respectively. For each such set A, by AT we denote the subset
of A consisting of positive numbers.

We use the following set-theoretical notations. z € A means that z is
a member of A. In {z : © € A}, the symbol “:” denotes set formation.
A B is the union of A and B, A B is the intersection of A and B,
and A is the complement of A when the universe A |J A is understood.
A C B means A is a subset of B. A = B means A and B are identical
as sets (have the same members).

The cardinality (or diameter) of a finite set A is the number of elements
it contains and is denoted as d(A). If A = {a4,...,a,}, then d(A) = n.
The empty set {}, with no elements in it, is denoted by . In particular,

d(0) = 0.

Given z and y, the ordered pair (z,y) consists of z and y in that order.
A x B is the Cartesian product of A and B, the set {(z,y) : z € A and
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y € B}. The n-fold Cartesian product of A with itself is denoted as A™.
If R C A%, then R is called a binary relation. The same definitions can be
given for n-tuples, n > 2, and the corresponding relations are n-ary. We
say that an n-ary relation R is single-valued if for every (z1,...,2,_1)
there is at most one y such that (z1,...,z,_1,y) € R. Consider the
domain {(x1,...,x,_1) : there is a y such that (z;,...,z,-1,y) € R} of
a single-valued relation R. Clearly, a single-valued relation R C A" ! x B
can be considered as a mapping from its domain into B. Therefore, we
also call a single-valued n-ary relation a partial function of n—1 variables
(“partial” because the domain of R may not comprise all of A"~ !). We
denote functions by ¢, 9, ... or f,g,h, ... Functions defined on the n-fold
Cartesian product A" are denoted with possibly a superscript denoting

the number of variables, like ¢(™) = ¢(") (z1,. .., x,).

We use the notation (-) for some standard one-to-one encoding of A™
into M. We will use (-) especially as a pairing function over N to as-
sociate a unique natural number (z,y) with each pair (z,y) of natural
numbers. An example is (z,y) defined by y + (z + y + 1)(z + y) /2. This
mapping can be used recursively: (z,y, z) = (z, (y, 2)).

If ¢ is a partial function from A to B, then for each z € A either
¢(x) € B or ¢(z) is undefined. If z is a member of the domain of ¢,
then ¢(x) is called a value of ¢, and we write ¢(z) < oo and ¢ is called
convergent or defined at x; otherwise we write ¢(z) = oo and we call ¢
divergent or undefined at x. The set of values of ¢ is called the range of
¢. If ¢ converges at every member of A, it is a total function, otherwise
a strictly partial function. If each member of a set B is also a value of
¢, then ¢ is said to map onto B, otherwise to map into B. If for each
pair x and y, = # y, for which ¢ converges ¢(z) # ¢(y) holds, then ¢ is
a one-to-one mapping, otherwise a many-to-one mapping. The function
f+ A — {0,1} defined by f(z) = 1 if ¢(x) converges, and f(z) = 0
otherwise, is called the characteristic function of the domain of ¢.

If ¢ and ¢ are two partial functions, then ¢ (equivalently, ¥ (é(z)))
denotes their composition, the function defined by {(z,y) : there is a
z such that ¢(z) = z and ¥ (2) = y}. The inverse ¢ of a one-to-one
partial function ¢ is defined by ¢~ '(y) = z iff ¢(x) = y.

A set A is called countable if it is either empty or there is a total one-to-
one mapping from A to the natural numbers A. We say A is countably
infinite if it is both countable and infinite. By 24 we denote the set of
all subsets of A. The set 2V has the cardinality of the continuum and is
therefore uncountably infinite.

For binary relations, we use the terms reflexive, transitive, symmetric,
equivalence, partial order, and linear (or total) order in the usual mean-
ing. Partial orders can be sirict (<) or nonstrict (<).
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1.3
Numbers and
Combinatorics

Example 1.3.1

If we use the logarithm notation logz without subscript, then we shall
always mean base 2. By In z we mean the natural logarithm log, x, where

e=271....

We use the quantifiers 3 (“there exists”), V (“for all”), 3 (“there exist
infinitely many”), and the awkward V> (“for all but finitely many”).
This way, Y®z[¢(z)] iff -3*°x[-¢(z)].

The absolute value of a real number r is denoted by |r| and is defined as
|r| = —r if r < 0 and r otherwise. The floor of a real number r, denoted
by |r], is the greatest integer n such that n < r. Analogously, the ceiling
of a real number r, denoted by [r], is the least integer n such that n > r.

| —1] = |1] = 1. [0.5] = 0 and [0.5] = 1. Analogously, | -0.5] = —1 and
[—0.5] =0. But |2] =[2] =2 and |-2| = [-2] = —-2. O

A permutation of n objects is an arrangement of n distinct objects in an
ordered sequence. For example, the six different permutations of objects
a,b,c are

abc, achb, bac, bea, cab, cba.

The number of permutations of n objects is found most easily by imag-
ining a sequential process to choose a permutation. There are n choices
of which object to place in the first position; after filling the first po-
sition there remain n — 1 objects and therefore n — 1 choices of which
object to place in the second position, and so on. Therefore, the number
of permutations of n objects isn x (n —1) x -+ x 2 x 1, denoted by n!
and is referred to as n factorial. In particular, 0! = 1.

A wariation of k out of n objects is an arrangement consisting of the
first k£ elements of a permutation of n objects. For example, the twelve
variations of two out of four objects a, b, ¢, d are

ab, ac, ad, ba, be, bd, ca, cb, cd, da, db, de.

The number of variations of k out of n is n!/(n — k)!, as follows by the
previous argument. While there is no accepted standard notation, we
denote the number of variations as (n)g. In particular, (n)y = 1.

The combinations of n objects taken k at a time (“n choose k”) are the
possible choices of k different elements from a collection of n objects.
The six different combinations of two out of four objects a, b, ¢, d are

{a,b},{a,c},{a,d}, {b,c}, {b,d}, {c,d}.
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Example 1.3.2

Exercises

We can consider a combination as a variation in which the order does
not count. We have seen that there are n(n — 1)---(n — k + 1) ways
to choose the first k elements of a permutation. Every k-combination
appears precisely k! times in these arrangements, since each combination
occurs in all its permutations. Therefore, the number of combinations,
denoted by (}), is

@ - ;é)”i)@- -_<f)+ =

In particular, (g) = 1. The quantity (Z) is also called a binomial co-
efficient. It has an extraordinary number of applications. Perhaps the
foremost relation associated with it is the Binomial Theorem, discovered
in 1676 by Isaac Newton

oy =3 ()

with n a positive integer. Note that in the summation k& need not be
restricted to 0 < k£ < n, but can range over —oo < k < +o0, since for
k < 0 or k > n the terms are all zero.

An important relation following from the Binomial Theorem is found by
substituting y = 1:

e =3 ()"
k
Substituting also £ = 1 we find

2”—2(2)

k

1.3.1. [13] A “stock” of bridge cards consists of four suits and thirteen
face values, respectively. Each card is defined by its suit and face value.

(a) How many cards are there?

(b) Each player gets a “hand” consisting of thirteen cards. How many
different hands are there?

(c) What is the probability of getting a full suit as a hand? Assume this
is the probability of obtaining a full suit when drawing thirteen cards,
successively without replacement, from a full stock.
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Comments. (a) 4 x 13 = 52. (b) (J7) = 635013559600. (c) 4/(32).

1.3.2. [12] Consider a random distribution of k distinguishable balls
in n cells, that is, each of the n* possible arrangements has probability
n~ k. Show that the probability P; that a specified cell contains exactly
i balls (0 <i < k) is given by P; = (¥)(1/n)/(1 — 1/n)F—".

Comments. Source: W. Feller, An Introduction to Probability Theory and
Its Applications, Vol. 1, Wiley, 1968.

1.3.3. [08] Show that (7) = “e and (7) = (,",).

1.3.4. [M34] Prove the following identity, which is very useful in the
sequel of this book.

) ) 1
log (n) :klog%-l—(nfk)log—-l—glogk +0(1).

n n

k n—=k (n—k)
1.3.5. [15] (a) Prove that the number of ways n distinguishable balls
can be placed in & numbered cells such that the first cell contains n;
balls, the second cell ny balls, up to the kth cell contains ny balls with
ny+---+nE=nis

< n ) n!
N1y ..., N nyl---ny!

This number is called a multinomial coefficient. Note that the order
of the cells is essential in that the partitions (ny = 1,n, = 2) and
(n1 = 2,ny = 1) are different. The order of the elements within a cell is
irrelevant.

(b) Show that

n_ nl n e n
(1 4+ p) _Z<m7...,nk>m]1 '

with the sum taken for all ny +--- + ng = n.

(¢c) The number of ordered different partitions of n in r nonnegative
integral summands is denoted by A,, .. Compute A, , in the form of a
binomial coefficient.

Comments. (1,0) and (0, 1) are different partitions, so 4; » = 2. Source:
W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. 1, Wiley, 1968.

1.3.6. [14] Define the occupancy numbers for n balls distributed over k
cells as a k-tuple of integers (n1,na, ..., ng) satisfying ny +nqo+- - -+ng =
n with n; > 0 (1 < i < k). That is, the first cell contains n; balls, the
second cell ny balls, and so on.
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(a) Show that there are (, "

1s--05Tk
in the numbers (nq,...,ng).

) placements of n balls in k cells resulting

(b) There are k™ possible placements of n balls in k cells altogether.
Compute the fraction that results in the given occupancy numbers.

(c) Assume that all k™ possible placements of n balls in &k cells are
equally probable. Conclude that the probability of obtaining the given
occupancy numbers is

n! pn

3| I... nk' ' '
Comments. In physics this is known as the Mazwell-Boltzmann statistics
(here “statistics” is used as a synonym to “distribution”). Source: W.
Feller, Ibid.

1.3.7. [15] We continue with the previous Exercise. In physical situ-
ations the assumption of equiprobability of possible placements seems
unavoidable, for example, molecules in a volume of gas divided into (hy-
pothetical) cells of equal volume. Numerous attempts have been made
to prove that physical particles behave in accordance with the Maxwell-
Boltzmann distribution. However, it has been shown conclusively that
no known particles behave according to this distribution.

(a) In the Bose-Einstein distribution we count only distinguishable dis-
tributions of n balls over k cells without regard for the identities of the
balls. We are only interested in the number of solutions of n; +no+-- -+
ng = n. Show that this number is 4,, ;, = (]H'Z*l) = (’H,;ffl) Conclude
that the probability of obtaining each given occupancy number is equally
1/Ap k. (Hlustration: the distinguishable distributions of two balls over
two cells are [** */* and **|. Hence, according to Bose-Einstein statis-
tics there are only three possible outcomes for two coin flips: head-head,
head-tail, and tail-tail, and each outcome has equal probability %)

(b) In the Fermi-Dirac distribution, (1) two or more particles cannot
occupy the same cell and (2) all distinguishable arrangements satisfying
(1) have the same probability. Note that (1) requires n < k. Prove that in
the Fermi-Dirac distribution there are in total (fl) possible arrangements.
Conclude that the probability for each possible occupancy number is

equally 1/(%).

Comments. According to modern physics, photons, nuclei, and atoms
containing an even number of elementary particles behave according to
model (a), and electrons, neutrons, and protons behave according to
model (b). This shows that nature does not necessarily satisfy our a
priori assumptions, however plausible they may be. Source: W. Feller,
Ibid.
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1.4
Binary Strings

We are concerned with strings over a nonempty set B of basic elements.
Unless otherwise noted, we use B = {0, 1}. Instead of “string” we also
use “word” and “sequence,” synonymously. The way we use it, “strings”
and “words” are usually finite, while “sequences” are usually infinite.
The set of all finite strings over B is denoted by B*, defined as

B* = {¢,0,1,00,01, 10, 11,000, ...},

with e denoting the empty string, with no letters. Concatenation is a
binary operation on the elements of B* that associates zy with each
ordered pair of elements (z,y) in the Cartesian product B* x 5*. Clearly,

1. B* is closed under the operation of concatenation; that is, if 2 and
y are elements of B*, then so is zy;

2. concatenation is an associative operation on B*; that is, (zy)z =
z(yz) = xyz; and

3. concatenation on B* has the unit element €; that is, ex = xe = .

We now consider a correspondence of finite binary strings and natural
numbers. The standard binary representation has the disadvantage that
either some strings do not represent a natural number, or each natu-
ral number is represented by more than one string. For example, either
“010” does not represent “2,” or both “010” and “10” represent “2.”
However, we can map B* one-to-one onto the natural numbers by asso-
ciating each string with its index in the lexicographical ordering

(e,0),(0,1),(1,2),(00,3), (01,4), (10,5), (11,6), . ... (1.1)

This way we represent x = ontl 14 Z:':O a;2" by a, ...a1ap. This is equiv-
alent to z = Z?:O b;2" with b; € {1,2} and b; = a; + 1 for 0 < i < n.

This way we have a binary representation for the natural numbers that
is different from the standard binary representation. It is convenient not
to distinguish between the first and second element of the same pair, and
call them “string” or “number” arbitrarily. That is, we consider both the
string 01 and the natural number 4 as the same object. For example,
we may write 01 = 4. We denote these objects in general with lowercase
roman letters. A string consisting of n zeros is denoted by 0.

If x is a string of n 0’s and 1’s, then z; denotes the ith bit (binary digit)
of z for all 4, 1 < i < n, and z;;; denotes the (j — i + 1)-bits segment
ZiTit1 ...x;. For = 1010 we have ;1 = 23 = 1 and 2 = 24 = 0; for
T = Ty ... T, we have z1,; = T12s...x;. The reverse, ¥, of a string
T =T1T...Tpn 1S TpTp_1...7%1.
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Example 1.4.1

The length of a finite binary string x is the number of bits it contains
and is denoted by I(z). If z = 122 ... x,, then [(z) = n. In particular,
I(e) = 0.

Thus, I(zy) = I(z)+1(y), and () = I(x). Recall that we use the above
pairing of binary strings and natural numbers. Thus, [(4) = 2 and 01 = 4.
The number of elements (cardinality) in a finite set A is denoted by d(A).
Therefore, d({u : l(u) = n}) = 2" and d({u : l(u) < n}) =27 — 1.

Let D be any function D : {0,1}* — N. Considering the domain of
D as the set of code words, and the range of D as the set of source
words, D(y) = z is interpreted as “y is a code word for the source word
z, and D is the decoding function.” (In the introduction we called D
a specification method.) The set of all code words for source word x is
the set D~!(z) = {y : D(y) = z}. Hence, E = D! can be called the
encoding substitution (E is not necessarily a function). Let z,y € {0,1}*.
We call = a prefiz of y if there is a z such that y = z2. A set A C {0,1}*
is prefiz-free, if no element in A is the prefix of another element in A.
A function D : {0,1}* — N defines a prefiz-code if its domain is prefix-
free. (Coding theory is treated in Section 1.11.1.) A simple prefix-code
we use throughout is obtained by reserving one symbol, say 0, as a stop
sign and encoding x € A" as 170. We can prefix an object with its length
and iterate this idea to obtain ever shorter codes:

1*0 for i =0,
Eiz) = { E;_1(l(z))x fori>0. (1.2)

Thus, E; (z) = 1'®)0z and has length I(E; (z)) = 2I(x)41. This encoding
is sufficiently important to have a simpler notation:

z=10)0g,
I(z) =2l(z)+ 1.

Sometimes we need the shorter prefix-code Es(x),

Es(z) = I(x)x,
W(Ey(z)) = 1(x) + 21(I(x)) + 1.

We call T the self-delimiting version of the binary string z. Now we can
effectively recover both z and y unambiguously from the binary string
zy. If zy = 111011011, then z = 110 and y = 11. If zy = 1110110101
then z = 110 and y = 1.

It is convenient to consider also the set of one-way infinite sequences
B°. If w is an element of B, then w = wjws ... and wi., = Wiws ... wWy.

The set of infinite sequences of elements in a finite, nonempty basic set
B corresponds with the set R of real numbers in the following way:
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Let B ={0,1,...,k — 1} with & > 2. If r is a real number 0 < r < 1
then there is a sequence wjws ... of elements w, € B such that

r= an/k”,

and that sequence is unique except when r is of the form ¢/k", in which
case there are exactly two such sequences, one of which has infinitely
many 0’s. Conversely, if wiws ... is an infinite sequence of integers with
0 < wy < k, then the series

an/k"

converges to a real number r with 0 < r < 1. This sequence is called the
k-ary expansion of r. In the following we identify a real number r with
its k-ary expansion (if there are two k-ary expansions, then we identify
r with the expansion with infinitely many 0’s).

Define the set S C B> as the set of sequences that do not end with
infinitely many digits “6 —1.” Then, S is in one-to-one relation with the
set of real numbers in the interval [0, 1).

Let z be a finite string over B. The set of all one-way infinite sequences
starting with z is called a cylinder and is denoted by ? , and is defined
by 7, = {w : wi;(z) = =}. Geometrically speaking, the cylinder 7, can
be identified with the half-open interval [0.z,0.z + 27'(*)) in the real
interval [0,1). Observe that the usual geometric length of interval 7,
equals 27/*) Furthermore, 7?7y C 7, iff x is a prefix of y. The prefix
relation induces a partial order on the cylinders of B <

1.4.1. [03] If zyz = 10010111, what are z,y, z in decimal numbers?
Comments. 1,2, 6.
1.4.2. [07] Show that for 2 € N we have I(z) = |log(z + 1)].

1.4.3. [10] Let E : N' = {0,1}* be a total one-to-one function whose
range is prefix-free. F defines a prefix-code. Define the mapping (-) :
N xN = N by (z,y) = E(z)y.

(a) Show that (-) is total and one-to-one.

(b) Show that we can extend this scheme to k-tuples (ni,ns,...,ny) of
natural numbers to obtain a total one-to-one mapping from N x N x

.- x N into V.

Comments. Define the mapping for (z,y, z) as (z, (y, z)), and iterate this
construction.
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1.5
Asymptotic
Notation

1.4.4. [10] Let E be as above. Define the mapping () : N x N = N
by (z,y) = E(x)E(y).

(a) Show that (-) is a total one-to-one mapping and a prefix-code.

(b) Show that we can extend this scheme to k-tuples (ni,ns,...,ny) of
natural numbers to obtain a total one-to-one mapping from N x N x
- x N into N that is a prefix-code.

Comments. Define the mapping for (z,y, z) as (z

,{y, 2)) and iterate this
construction. Another way is to map (z,y,...,2) to

E(2)E(y)... E(2).
1.4.5. [10] (a) Show that E(z) = Z is a prefix-code.

(b) Consider a variant of the Z code such that x = 125 ...z, is encoded
as x11xol...1x,_112,0. Show that this is a prefix-code for the binary
nonempty strings with I(z) = 2I(z).

(c) Consider £ = z125 . ..x, encoded as T1L1X2Ts ... Ty _1Tp 1L Ty,
Show that this is a prefix-code for the nonempty binary strings.

(d) Give a prefix-code & for the set of all binary strings z including e,
such that I(z) = 2l(z) + 2

It is often convenient to express approximate equality or inequality of
one quantity with another. If f and g are functions of a real variable,
then it is customary to denote lim,,_, f(n)/g(n) = 1 by f(n) ~ g(n),
and we write “f goes asymptotically to g.”

P. Bachman introduced a convenient notation for dealing with approx-
imations in his book Analytische Zahlentheorie in 1892. This “big-O”
notation allows us to write I(z) = logz + O(1) (no subscript on the
logarithm means base 2).

We use the notation O(f(n)) whenever we want to denote a quantity
that does not exceed f(n) by more than a fixed multiplicative factor.
This is useful in case we want to simplify the expression involving this
quantity by suppressing unnecessary detail, but also in case we do not
know this quantity explicitly. Bachman’s notation is the first of a family
of order of magnitude symbols: O,0,(, and ©. If f and g are functions
on the real numbers, then

1. f(z) = O(g(x)) if there are constants ¢, g > 0 such that |f(z)| <
clg(z)], for all z > zo;

2. f(z) = og(x)) if lim, o0 f(2)/9(2) =
3. f(x) = Qg(x)) if f(z) # o(g(x)); and



